mirror of
https://bitbucket.org/librepilot/librepilot.git
synced 2025-01-09 20:46:07 +01:00
a1a3b0774f
find ./flight/AHRS/ \! \( -name '*~' -a -prune \) -type f | xargs -I{} bash -c 'echo {}; dos2unix {}; gnuindent -npro -kr -i8 -ts8 -sob -ss -ncs -cp1 -il0 {};' git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@1707 ebee16cc-31ac-478f-84a7-5cbb03baadba
150 lines
4.7 KiB
C
150 lines
4.7 KiB
C
|
|
/**
|
|
******************************************************************************
|
|
*
|
|
* @file MagOrAccelSensorCal.c
|
|
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
|
|
* @brief 3 axis sensor cal from six measurements taken in a constant field.
|
|
* Call SixPointInConstFieldCal(FieldMagnitude, X, Y, Z, S, b)
|
|
* - FieldMagnitude is the constant field, e.g. 9.81 for accels
|
|
* - X, Y, Z are vectors of six measurements from different orientations
|
|
* - returns, S[3] and b[3], that are the scale and offsett for the axes
|
|
* - i.e. Measurementx = S[0]*Sensorx + b[0]
|
|
*
|
|
* @see The GNU Public License (GPL) Version 3
|
|
*
|
|
*****************************************************************************/
|
|
/*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include "stdint.h"
|
|
|
|
//Function Prototypes
|
|
int16_t SixPointInConstFieldCal(double ConstMag, double x[6], double y[6],
|
|
double z[6], double S[3], double b[3]);
|
|
int16_t LinearEquationsSolving(int16_t nDim, double *pfMatr,
|
|
double *pfVect, double *pfSolution);
|
|
|
|
int16_t SixPointInConstFieldCal(double ConstMag, double x[6], double y[6],
|
|
double z[6], double S[3], double b[3])
|
|
{
|
|
int16_t i;
|
|
double A[5][5];
|
|
double f[5], c[5];
|
|
double xp, yp, zp, Sx;
|
|
|
|
// Fill in matrix A -
|
|
// write six difference-in-magnitude equations of the form
|
|
// Sx^2(x2^2-x1^2) + 2*Sx*bx*(x2-x1) + Sy^2(y2^2-y1^2) + 2*Sy*by*(y2-y1) + Sz^2(z2^2-z1^2) + 2*Sz*bz*(z2-z1) = 0
|
|
// or in other words
|
|
// 2*Sx*bx*(x2-x1)/Sx^2 + Sy^2(y2^2-y1^2)/Sx^2 + 2*Sy*by*(y2-y1)/Sx^2 + Sz^2(z2^2-z1^2)/Sx^2 + 2*Sz*bz*(z2-z1)/Sx^2 = (x1^2-x2^2)
|
|
for (i = 0; i < 5; i++) {
|
|
A[i][0] = 2.0 * (x[i + 1] - x[i]);
|
|
A[i][1] = y[i + 1] * y[i + 1] - y[i] * y[i];
|
|
A[i][2] = 2.0 * (y[i + 1] - y[i]);
|
|
A[i][3] = z[i + 1] * z[i + 1] - z[i] * z[i];
|
|
A[i][4] = 2.0 * (z[i + 1] - z[i]);
|
|
f[i] = x[i] * x[i] - x[i + 1] * x[i + 1];
|
|
}
|
|
|
|
// solve for c0=bx/Sx, c1=Sy^2/Sx^2; c2=Sy*by/Sx^2, c3=Sz^2/Sx^2, c4=Sz*bz/Sx^2
|
|
if (!LinearEquationsSolving(5, (double *)A, f, c))
|
|
return 0;
|
|
|
|
// use one magnitude equation and c's to find Sx - doesn't matter which - all give the same answer
|
|
xp = x[0];
|
|
yp = y[0];
|
|
zp = z[0];
|
|
Sx = sqrt(ConstMag * ConstMag /
|
|
(xp * xp + 2 * c[0] * xp + c[0] * c[0] + c[1] * yp * yp +
|
|
2 * c[2] * yp + c[2] * c[2] / c[1] + c[3] * zp * zp +
|
|
2 * c[4] * zp + c[4] * c[4] / c[3]));
|
|
|
|
S[0] = Sx;
|
|
b[0] = Sx * c[0];
|
|
S[1] = sqrt(c[1] * Sx * Sx);
|
|
b[1] = c[2] * Sx * Sx / S[1];
|
|
S[2] = sqrt(c[3] * Sx * Sx);
|
|
b[2] = c[4] * Sx * Sx / S[2];
|
|
|
|
return 1;
|
|
}
|
|
|
|
//*****************************************************************
|
|
|
|
int16_t LinearEquationsSolving(int16_t nDim, double *pfMatr,
|
|
double *pfVect, double *pfSolution)
|
|
{
|
|
double fMaxElem;
|
|
double fAcc;
|
|
|
|
int16_t i, j, k, m;
|
|
|
|
for (k = 0; k < (nDim - 1); k++) // base row of matrix
|
|
{
|
|
// search of line with max element
|
|
fMaxElem = fabs(pfMatr[k * nDim + k]);
|
|
m = k;
|
|
for (i = k + 1; i < nDim; i++) {
|
|
if (fMaxElem < fabs(pfMatr[i * nDim + k])) {
|
|
fMaxElem = pfMatr[i * nDim + k];
|
|
m = i;
|
|
}
|
|
}
|
|
|
|
// permutation of base line (index k) and max element line(index m)
|
|
if (m != k) {
|
|
for (i = k; i < nDim; i++) {
|
|
fAcc = pfMatr[k * nDim + i];
|
|
pfMatr[k * nDim + i] =
|
|
pfMatr[m * nDim + i];
|
|
pfMatr[m * nDim + i] = fAcc;
|
|
}
|
|
fAcc = pfVect[k];
|
|
pfVect[k] = pfVect[m];
|
|
pfVect[m] = fAcc;
|
|
}
|
|
|
|
if (pfMatr[k * nDim + k] == 0.)
|
|
return 0; // needs improvement !!!
|
|
|
|
// triangulation of matrix with coefficients
|
|
for (j = (k + 1); j < nDim; j++) // current row of matrix
|
|
{
|
|
fAcc =
|
|
-pfMatr[j * nDim + k] / pfMatr[k * nDim + k];
|
|
for (i = k; i < nDim; i++) {
|
|
pfMatr[j * nDim + i] =
|
|
pfMatr[j * nDim + i] +
|
|
fAcc * pfMatr[k * nDim + i];
|
|
}
|
|
pfVect[j] = pfVect[j] + fAcc * pfVect[k]; // free member recalculation
|
|
}
|
|
}
|
|
|
|
for (k = (nDim - 1); k >= 0; k--) {
|
|
pfSolution[k] = pfVect[k];
|
|
for (i = (k + 1); i < nDim; i++) {
|
|
pfSolution[k] -=
|
|
(pfMatr[k * nDim + i] * pfSolution[i]);
|
|
}
|
|
pfSolution[k] = pfSolution[k] / pfMatr[k * nDim + k];
|
|
}
|
|
|
|
return 1;
|
|
}
|