1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-01-09 20:46:07 +01:00
LibrePilot/flight/AHRS/ahrs.c
peabody124 2b0c75e46d AHRS: Fix LED flashing light
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@2300 ebee16cc-31ac-478f-84a7-5cbb03baadba
2010-12-28 02:10:52 +00:00

1094 lines
35 KiB
C

/**
******************************************************************************
* @addtogroup AHRS AHRS
* @brief The AHRS Modules perform
*
* @{
* @addtogroup AHRS_Main
* @brief Main function which does the hardware dependent stuff
* @{
*
*
* @file ahrs.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief INSGPS Test Program
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* OpenPilot Includes */
#include "ahrs.h"
#include "ahrs_adc.h"
#include "ahrs_timer.h"
#include "ahrs_spi_comm.h"
#include "insgps.h"
#include "CoordinateConversions.h"
#include <stdbool.h>
#include "fifo_buffer.h"
#define INSGPS_GPS_TIMEOUT 2 /* 2 seconds triggers reinit of position */
#define INSGPS_GPS_MINSAT 6 /* 2 seconds triggers reinit of position */
#define INSGPS_GPS_MINPDOP 3.5 /* minimum PDOP for postition updates */
#define INSGPS_MAGLEN 1000
#define INSGPS_MAGTOL 0.5 /* error in magnetic vector length to use */
// For debugging the raw sensors
//#define DUMP_RAW
//#define DUMP_FRIENDLY
//#define DUMP_EKF
volatile int8_t ahrs_algorithm;
/* INS functions */
void ins_outdoor_update();
void ins_indoor_update();
void simple_update();
/* Data accessors */
void adc_callback(float *);
bool get_accel_gyro_data();
void process_mag_data();
void reset_values();
void calibrate_sensors(void);
/* Communication functions */
void send_calibration(void);
void send_attitude(void);
void send_velocity(void);
void send_position(void);
void homelocation_callback(AhrsObjHandle obj);
void altitude_callback(AhrsObjHandle obj);
void calibration_callback(AhrsObjHandle obj);
void gps_callback(AhrsObjHandle obj);
void settings_callback(AhrsObjHandle obj);
/* Bootloader related functions and var*/
static uint32_t iap_calc_crc(void);
static void read_description(uint8_t *);
void firmwareiapobj_callback(AhrsObjHandle obj);
volatile uint8_t reset_count=0;
/**
* @addtogroup AHRS_Global_Data AHRS Global Data
* @{
* Public data. Used by both EKF and the sender
*/
//! Contains the data from the mag sensor chip
struct mag_sensor mag_data;
//! Contains the data from the accelerometer
struct accel_sensor accel_data;
//! Contains the data from the gyro
struct gyro_sensor gyro_data;
//! Conains the current estimate of the attitude
struct attitude_solution attitude_data;
//! Contains data from the altitude sensor
struct altitude_sensor altitude_data;
//! Contains data from the GPS (via the SPI link)
struct gps_sensor gps_data;
//! The oversampling rate, ekf is 2k / this
static uint8_t adc_oversampling = 15;
//! Offset correction of barometric alt, to match gps data
static float baro_offset = 0;
typedef enum { AHRS_IDLE, AHRS_DATA_READY, AHRS_PROCESSING } states;
volatile int32_t ekf_too_slow;
volatile int32_t total_conversion_blocks;
//! Buffer to allow ADC to run a bit faster than EKF
uint8_t adc_fifo_buf[sizeof(float) * 6 * 4] __attribute__ ((aligned(4))); // align to 32-bit to try and provide speed improvement
t_fifo_buffer adc_fifo_buffer;
/**
* @}
*/
/* INS functions */
/**
* @brief Update the EKF when in outdoor mode. The primary difference is using the GPS values.
*/
void ins_outdoor_update()
{
float gyro[3], accel[3], vel[3];
static uint32_t last_gps_time = 0;
uint16_t sensors;
// format data for INS algo
gyro[0] = gyro_data.filtered.x;
gyro[1] = gyro_data.filtered.y;
gyro[2] = gyro_data.filtered.z;
accel[0] = accel_data.filtered.x,
accel[1] = accel_data.filtered.y,
accel[2] = accel_data.filtered.z,
INSStatePrediction(gyro, accel, 1 / (float)EKF_RATE);
attitude_data.quaternion.q1 = Nav.q[0];
attitude_data.quaternion.q2 = Nav.q[1];
attitude_data.quaternion.q3 = Nav.q[2];
attitude_data.quaternion.q4 = Nav.q[3];
send_attitude(); // get message out quickly
send_velocity();
send_position();
INSCovariancePrediction(1 / (float)EKF_RATE);
sensors = 0;
/*
* Detect if greater than certain time since last gps update and if so
* reset EKF to that position since probably drifted too far for safe
* update
*/
uint32_t this_gps_time = timer_count();
float gps_delay;
if (this_gps_time < last_gps_time)
gps_delay = ((0xFFFF - last_gps_time) - this_gps_time) / timer_rate();
else
gps_delay = (this_gps_time - last_gps_time) / timer_rate();
last_gps_time = this_gps_time;
if (gps_data.updated) {
vel[0] = gps_data.groundspeed * cos(gps_data.heading * M_PI / 180);
vel[1] = gps_data.groundspeed * sin(gps_data.heading * M_PI / 180);
vel[2] = 0;
if(gps_delay > INSGPS_GPS_TIMEOUT)
INSPosVelReset(gps_data.NED,vel); // position stale, reset
else {
sensors |= HORIZ_SENSORS | POS_SENSORS;
}
/*
* When using gps need to make sure that barometer is brought into NED frame
* we should try and see if the altitude from the home location is good enough
* to use for the offset but for now starting with this conservative filter
*/
if(fabs(gps_data.NED[2] + (altitude_data.altitude - baro_offset)) > 10) {
baro_offset = gps_data.NED[2] + altitude_data.altitude;
} else {
/* IIR filter with 100 second or so tau to keep them crudely in the same frame */
baro_offset = baro_offset * 0.999 + (gps_data.NED[2] + altitude_data.altitude) * 0.001;
}
gps_data.updated = false;
} else if (gps_delay > INSGPS_GPS_TIMEOUT) {
vel[0] = 0;
vel[1] = 0;
vel[2] = 0;
sensors |= VERT_SENSORS | HORIZ_SENSORS;
}
if(mag_data.updated) {
sensors |= MAG_SENSORS;
mag_data.updated = false;
}
if(altitude_data.updated) {
sensors |= BARO_SENSOR;
altitude_data.updated = false;
}
/*
* TODO: Need to add a general sanity check for all the inputs to make sure their kosher
* although probably should occur within INS itself
*/
INSCorrection(mag_data.scaled.axis, gps_data.NED, vel, altitude_data.altitude - baro_offset, sensors);
}
/**
* @brief Update the EKF when in indoor mode
*/
void ins_indoor_update()
{
float gyro[3], accel[3], vel[3];
static uint32_t last_indoor_time = 0;
uint16_t sensors = 0;
// format data for INS algo
gyro[0] = gyro_data.filtered.x;
gyro[1] = gyro_data.filtered.y;
gyro[2] = gyro_data.filtered.z;
accel[0] = accel_data.filtered.x,
accel[1] = accel_data.filtered.y,
accel[2] = accel_data.filtered.z,
INSStatePrediction(gyro, accel, 1 / (float)EKF_RATE);
attitude_data.quaternion.q1 = Nav.q[0];
attitude_data.quaternion.q2 = Nav.q[1];
attitude_data.quaternion.q3 = Nav.q[2];
attitude_data.quaternion.q4 = Nav.q[3];
send_attitude(); // get message out quickly
send_velocity();
send_position();
INSCovariancePrediction(1 / (float)EKF_RATE);
/* Indoors, update with zero position and velocity and high covariance */
vel[0] = 0;
vel[1] = 0;
vel[2] = 0;
uint32_t this_indoor_time = timer_count();
float indoor_delay;
/*
* Detect if greater than certain time since last gps update and if so
* reset EKF to that position since probably drifted too far for safe
* update
*/
if (this_indoor_time < last_indoor_time)
indoor_delay = ((0xFFFF - last_indoor_time) - this_indoor_time) / timer_rate();
else
indoor_delay = (this_indoor_time - last_indoor_time) / timer_rate();
last_indoor_time = this_indoor_time;
if(indoor_delay > INSGPS_GPS_TIMEOUT)
INSPosVelReset(vel,vel);
else
sensors = HORIZ_SENSORS | VERT_SENSORS;
if(mag_data.updated && (ahrs_algorithm == AHRSSETTINGS_ALGORITHM_INSGPS_INDOOR)) {
sensors |= MAG_SENSORS;
mag_data.updated = false;
}
if(altitude_data.updated) {
sensors |= BARO_SENSOR;
altitude_data.updated = false;
}
/*
* TODO: Need to add a general sanity check for all the inputs to make sure their kosher
* although probably should occur within INS itself
*/
INSCorrection(mag_data.scaled.axis, gps_data.NED, vel, altitude_data.altitude, sensors | HORIZ_SENSORS | VERT_SENSORS);
}
/**
* @brief Initialize the EKF assuming stationary
*/
void ins_init_algorithm()
{
float Rbe[3][3], q[4], accels[3], rpy[3], mag;
float ge[3]={0,0,-9.81}, zeros[3]={0,0,0}, Pdiag[16]={25,25,25,5,5,5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-4,1e-4,1e-4};
bool using_mags, using_gps;
INSGPSInit();
HomeLocationData home;
HomeLocationGet(&home);
accels[0]=accel_data.filtered.x;
accels[1]=accel_data.filtered.y;
accels[2]=accel_data.filtered.z;
using_mags = (ahrs_algorithm == AHRSSETTINGS_ALGORITHM_INSGPS_OUTDOOR) || (ahrs_algorithm == AHRSSETTINGS_ALGORITHM_INSGPS_INDOOR);
using_mags &= (home.Be[0] != 0) || (home.Be[1] != 0) || (home.Be[2] != 0); /* only use mags when valid home location */
using_gps = (ahrs_algorithm == AHRSSETTINGS_ALGORITHM_INSGPS_OUTDOOR) && (gps_data.quality != 0);
/* Block till a data update */
get_accel_gyro_data();
/* Ensure we get mag data in a timely manner */
uint16_t fail_count = 50; // 50 at 200 Hz is up to 0.25 sec
while(using_mags && !mag_data.updated && fail_count--) {
get_accel_gyro_data();
AhrsPoll();
}
using_mags &= mag_data.updated;
if (using_mags) {
/* Spin waiting for mag data */
while(!mag_data.updated) {
get_accel_gyro_data();
AhrsPoll();
}
mag_data.updated = false;
RotFrom2Vectors(accels, ge, mag_data.scaled.axis, home.Be, Rbe);
R2Quaternion(Rbe,q);
if (using_gps)
INSSetState(gps_data.NED, zeros, q, zeros, zeros);
else
INSSetState(zeros, zeros, q, zeros, zeros);
} else {
// assume yaw = 0
mag = VectorMagnitude(accels);
rpy[1] = asinf(-accels[0]/mag);
rpy[0] = atan2(accels[1]/mag,accels[2]/mag);
rpy[2] = 0;
RPY2Quaternion(rpy,q);
if (using_gps)
INSSetState(gps_data.NED, zeros, q, zeros, zeros);
else
INSSetState(zeros, zeros, q, zeros, zeros);
}
INSResetP(Pdiag);
// TODO: include initial estimate of gyro bias?
}
/**
* @brief Simple update using just mag and accel. Yaw biased and big attitude changes.
*/
void simple_update() {
float q[4];
float rpy[3];
/***************** SIMPLE ATTITUDE FROM NORTH AND ACCEL ************/
/* Very simple computation of the heading and attitude from accel. */
rpy[2] =
atan2((mag_data.raw.axis[0]),
(-1 * mag_data.raw.axis[1])) * 180 /
M_PI;
rpy[1] =
atan2(accel_data.filtered.x,
accel_data.filtered.z) * 180 / M_PI;
rpy[0] =
atan2(accel_data.filtered.y,
accel_data.filtered.z) * 180 / M_PI;
RPY2Quaternion(rpy, q);
attitude_data.quaternion.q1 = q[0];
attitude_data.quaternion.q2 = q[1];
attitude_data.quaternion.q3 = q[2];
attitude_data.quaternion.q4 = q[3];
send_attitude();
}
/**
* @brief Output all the important inputs and states of the ekf through serial port
*/
#ifdef DUMP_EKF
extern float **P, *X; // covariance matrix and state vector
void print_ekf_binary()
{
uint16_t states = ins_get_num_states();
uint8_t framing[16] = { 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 };
// Dump raw buffer
PIOS_COM_SendBuffer(PIOS_COM_AUX, &framing[0], 16); // framing header (1:16)
PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & total_conversion_blocks, sizeof(total_conversion_blocks)); // dump block number (17:20)
PIOS_COM_SendBufferNonBlocking(PIOS_COM_AUX, (uint8_t *) & accel_data.filtered.x, 4*3); // accel data (21:32)
PIOS_COM_SendBufferNonBlocking(PIOS_COM_AUX, (uint8_t *) & gyro_data.filtered.x, 4*3); // gyro data (33:44)
PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & mag_data.updated, 1); // mag update (45)
PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & mag_data.scaled.axis, 3*4); // mag data (46:57)
PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & gps_data, sizeof(gps_data)); // gps data (58:85)
PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & X, 4 * states); // X (86:149)
for(uint8_t i = 0; i < states; i++)
PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) &((*P)[i + i * states]), 4); // diag(P) (150:213)
PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & altitude_data.altitude, 4); // BaroAlt (214:217)
PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & baro_offset, 4); // baro_offset (218:221)
}
#else
void print_ekf_binary() {}
#endif
/**
* @brief Debugging function to output all the ADC samples
*/
void print_ahrs_raw()
{
/*int result;
static int previous_conversion = 0;
uint8_t framing[16] =
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15 };
while (ahrs_state != AHRS_DATA_READY) ;
ahrs_state = AHRS_PROCESSING;
if (total_conversion_blocks != previous_conversion + 1)
PIOS_LED_On(LED1); // not keeping up
else
PIOS_LED_Off(LED1);
previous_conversion = total_conversion_blocks;
downsample_data();
ahrs_state = AHRS_IDLE;;
// Dump raw buffer
result = PIOS_COM_SendBuffer(PIOS_COM_AUX, &framing[0], 16); // framing header
result += PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & total_conversion_blocks, sizeof(total_conversion_blocks)); // dump block number
result +=
PIOS_COM_SendBuffer(PIOS_COM_AUX,
(uint8_t *) & valid_data_buffer[0],
adc_oversampling *
PIOS_ADC_NUM_PINS *
sizeof(valid_data_buffer[0]));
if (result == 0)
PIOS_LED_Off(LED1);
else {
PIOS_LED_On(LED1);
} */
}
/**
* @brief AHRS Main function
*/
int main()
{
gps_data.quality = -1;
uint32_t up_time_real = 0;
uint32_t up_time = 0;
uint32_t last_up_time = 0;
static int8_t last_ahrs_algorithm;
uint32_t last_counter_idle_start = 0;
uint32_t last_counter_idle_end = 0;
uint32_t idle_counts = 0;
uint32_t running_counts = 0;
uint32_t counter_val = 0;
ahrs_algorithm = AHRSSETTINGS_ALGORITHM_SIMPLE;
/* Brings up System using CMSIS functions, enables the LEDs. */
PIOS_SYS_Init();
/* Delay system */
PIOS_DELAY_Init();
/* Communication system */
PIOS_COM_Init();
/* IAP System Setup */
PIOS_IAP_Init();
/* ADC system */
AHRS_ADC_Config(adc_oversampling);
AHRS_ADC_SetCallback(adc_callback);
/* ADC buffer */
fifoBuf_init(&adc_fifo_buffer, adc_fifo_buf, sizeof(adc_fifo_buf));
/* Setup the Accelerometer FS (Full-Scale) GPIO */
PIOS_GPIO_Enable(0);
SET_ACCEL_6G;
#if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C)
/* Magnetic sensor system */
PIOS_I2C_Init();
PIOS_HMC5843_Init();
// Get 3 ID bytes
strcpy((char *)mag_data.id, "ZZZ");
PIOS_HMC5843_ReadID(mag_data.id);
#endif
reset_values();
AhrsInitComms();
while(!AhrsLinkReady()) {
AhrsPoll();
}
/* we didn't connect the callbacks before because we have to wait
for all data to be up to date before doing anything*/
AHRSCalibrationConnectCallback(calibration_callback);
GPSPositionConnectCallback(gps_callback);
BaroAltitudeConnectCallback(altitude_callback);
AHRSSettingsConnectCallback(settings_callback);
HomeLocationConnectCallback(homelocation_callback);
FirmwareIAPObjConnectCallback(firmwareiapobj_callback);
calibration_callback(AHRSCalibrationHandle()); //force an update
#ifdef DUMP_RAW
while (1) {
AhrsPoll();
print_ahrs_raw();
}
#endif
timer_start();
/******************* Main EKF loop ****************************/
while(1) {
AhrsPoll();
AhrsStatusData status;
AhrsStatusGet(&status);
status.CPULoad = ((float)running_counts /
(float)(idle_counts + running_counts)) * 100;
status.IdleTimePerCyle = idle_counts / (timer_rate() / 10000);
status.RunningTimePerCyle = running_counts / (timer_rate() / 10000);
status.DroppedUpdates = ekf_too_slow;
up_time = timer_count();
if(up_time >= last_up_time) // normal condition
up_time_real += ((up_time - last_up_time) * 1000) / timer_rate();
else
up_time_real += ((0xFFFF - last_up_time + up_time) * 1000) / timer_rate();
last_up_time = up_time;
status.RunningTime = up_time_real;
AhrsStatusSet(&status);
// Alive signal
if ((total_conversion_blocks % 100) == 0)
PIOS_LED_Toggle(LED1);
// Delay for valid data
counter_val = timer_count();
running_counts = counter_val - last_counter_idle_end;
last_counter_idle_start = counter_val;
// This function blocks till data avilable
get_accel_gyro_data();
counter_val = timer_count();
idle_counts = counter_val - last_counter_idle_start;
last_counter_idle_end = counter_val;
process_mag_data();
print_ekf_binary();
/* If algorithm changed reinit. This could go in callback but wouldn't be synchronous */
if (ahrs_algorithm != last_ahrs_algorithm)
ins_init_algorithm();
last_ahrs_algorithm = ahrs_algorithm;
switch(ahrs_algorithm) {
case AHRSSETTINGS_ALGORITHM_SIMPLE:
simple_update();
break;
case AHRSSETTINGS_ALGORITHM_INSGPS_OUTDOOR:
ins_outdoor_update();
break;
case AHRSSETTINGS_ALGORITHM_INSGPS_INDOOR:
case AHRSSETTINGS_ALGORITHM_INSGPS_INDOOR_NOMAG:
ins_indoor_update();
break;
}
}
return 0;
}
/**
* @brief Get the accel and gyro data from whichever source when available
*
* This function will act as the HAL for the new INS sensors
*/
bool get_accel_gyro_data()
{
float accel[6];
float gyro[6];
while(fifoBuf_getUsed(&adc_fifo_buffer) < (sizeof(accel) + sizeof(gyro)));
fifoBuf_getData(&adc_fifo_buffer, &accel[0], sizeof(float) * 3);
fifoBuf_getData(&adc_fifo_buffer, &gyro[0], sizeof(float) * 3);
fifoBuf_getData(&adc_fifo_buffer, &accel[3], sizeof(float) * 3);
fifoBuf_getData(&adc_fifo_buffer, &gyro[3], sizeof(float) * 3);
accel_data.filtered.x = (accel[0] + accel[3]) / 2;
accel_data.filtered.y = (accel[1] + accel[4]) / 2;
accel_data.filtered.z = (accel[2] + accel[5]) / 2;
gyro_data.filtered.x = (gyro[0] + gyro[3]) / 2;
gyro_data.filtered.y = (gyro[1] + gyro[4]) / 2;
gyro_data.filtered.z = (gyro[2] + gyro[5]) / 2;
return true;
}
/**
* @brief Downsample the analog data
* @return none
*
* Tried to make as much of the filtering fixed point when possible. Need to account
* for offset for each sample before the multiplication if filter not a boxcar. Could
* precompute fixed offset as sum[fir_coeffs[i]] * ACCEL_OFFSET. Puts data into global
* data structures @ref accel_data and @ref gyro_data.
*
* The accel_data values are converted into a coordinate system where X is forwards along
* the fuselage, Y is along right the wing, and Z is down.
*/
void adc_callback(float * downsampled_data)
{
AHRSSettingsData settings;
AHRSSettingsGet(&settings);
float accel[3], gyro[3];
// Accel data is (y,x,z) in first third and fifth byte. Convert to m/s
accel[0] = (downsampled_data[2] * accel_data.calibration.scale[0]) + accel_data.calibration.bias[0];
accel[1] = (downsampled_data[0] * accel_data.calibration.scale[1]) + accel_data.calibration.bias[1];
accel[2] = (downsampled_data[4] * accel_data.calibration.scale[2]) + accel_data.calibration.bias[2];
// Gyro data is (x,y,z) in second, fifth and seventh byte. Convert to rad/s
gyro[0] = (downsampled_data[1] * gyro_data.calibration.scale[0]) + gyro_data.calibration.bias[0];
gyro[1] = (downsampled_data[3] * gyro_data.calibration.scale[1]) + gyro_data.calibration.bias[1];
gyro[2] = (downsampled_data[5] * gyro_data.calibration.scale[2]) + gyro_data.calibration.bias[2];
#if 0
static float gravity_tracking[3] = {0,0,0};
const float tau = 0.9999;
gravity_tracking[0] = tau * gravity_tracking[0] + (1-tau) * accel[0];
gravity_tracking[1] = tau * gravity_tracking[1] + (1-tau) * accel[1];
gravity_tracking[2] = tau * gravity_tracking[2] + (1-tau) * (accel[2] + 9.81);
if(settings.BiasCorrectedRaw == AHRSSETTINGS_BIASCORRECTEDRAW_TRUE) {
accel[0] -= gravity_tracking[0];
accel[1] -= gravity_tracking[1];
accel[2] -= gravity_tracking[2];
}
#endif
if(fifoBuf_getFree(&adc_fifo_buffer) >= (sizeof(accel) + sizeof(gyro))) {
fifoBuf_putData(&adc_fifo_buffer, (uint8_t *) &accel[0], sizeof(accel));
fifoBuf_putData(&adc_fifo_buffer, (uint8_t *) &gyro[0], sizeof(gyro));
} else {
ekf_too_slow++;
}
AttitudeRawData raw;
raw.accels[0] = downsampled_data[2];
raw.accels[1] = downsampled_data[0];
raw.accels[2] = downsampled_data[4];
raw.gyros[0] = downsampled_data[1];
raw.gyros[1] = downsampled_data[3];
raw.gyros[2] = downsampled_data[5];
raw.gyrotemp[0] = downsampled_data[6];
raw.gyrotemp[1] = downsampled_data[7];
raw.gyros_filtered[0] = gyro[0] * 180 / M_PI;
raw.gyros_filtered[1] = gyro[1] * 180 / M_PI;
raw.gyros_filtered[2] = gyro[2] * 180 / M_PI;
raw.accels_filtered[0] = accel[0];
raw.accels_filtered[1] = accel[1];
raw.accels_filtered[2] = accel[2];
raw.magnetometers[0] = mag_data.scaled.axis[0];
raw.magnetometers[1] = mag_data.scaled.axis[1];
raw.magnetometers[2] = mag_data.scaled.axis[2];
if(settings.BiasCorrectedRaw == AHRSSETTINGS_BIASCORRECTEDRAW_TRUE) {
raw.gyros_filtered[0] -= Nav.gyro_bias[0] * 180 / M_PI;
raw.gyros_filtered[1] -= Nav.gyro_bias[1] * 180 / M_PI;
raw.gyros_filtered[2] -= Nav.gyro_bias[2] * 180 / M_PI;
raw.accels_filtered[0] -= Nav.accel_bias[0];
raw.accels_filtered[1] -= Nav.accel_bias[1];
raw.accels_filtered[2] -= Nav.accel_bias[2];
}
AttitudeRawSet(&raw);
total_conversion_blocks++;
}
#if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C)
/**
* @brief Get the mag data from the I2C sensor and load into structure
* @return none
*
* This function also considers if the home location is set and has a valid
* magnetic field before updating the mag data to prevent data being used that
* cannot be interpreted. In addition the mag data is not used for the first
* five seconds to allow the filter to start to converge
*/
void process_mag_data()
{
// Get magnetic readings
// For now don't use mags until the magnetic field is set AND until 5 seconds
// after initialization otherwise it seems to have problems
// TODO: Follow up this initialization issue
HomeLocationData home;
HomeLocationGet(&home);
if (PIOS_HMC5843_NewDataAvailable()) {
PIOS_HMC5843_ReadMag(mag_data.raw.axis);
// Swap the axis here to acount for orientation of mag chip (notice 0 and 1 swapped in raw)
mag_data.scaled.axis[0] = (mag_data.raw.axis[1] * mag_data.calibration.scale[0]) + mag_data.calibration.bias[0];
mag_data.scaled.axis[1] = (mag_data.raw.axis[0] * mag_data.calibration.scale[1]) + mag_data.calibration.bias[1];
mag_data.scaled.axis[2] = (mag_data.raw.axis[2] * mag_data.calibration.scale[2]) + mag_data.calibration.bias[2];
// Only use if magnetic length reasonable
float Blen = sqrt(pow(mag_data.scaled.axis[0],2) + pow(mag_data.scaled.axis[1],2) + pow(mag_data.scaled.axis[2],2));
mag_data.updated = (home.Set == HOMELOCATION_SET_TRUE) &&
((home.Be[0] != 0) || (home.Be[1] != 0) || (home.Be[2] != 0)) &&
((mag_data.raw.axis[0] != 0) || (mag_data.raw.axis[1] != 0) || (mag_data.raw.axis[2] != 0)) &&
((Blen < INSGPS_MAGLEN * (1 + INSGPS_MAGTOL)) && (Blen > INSGPS_MAGLEN * (1 - INSGPS_MAGTOL)));
}
}
#else
void process_mag_data() { }
#endif
/**
* @brief Assumes board is not moving computes biases and variances of sensors
* @returns None
*
* All data is stored in global structures. This function should be called from OP when
* aircraft is in stable state and then the data stored to SD card.
*
* After this function the bias for each sensor will be the mean value. This doesn't make
* sense for the z accel so make sure 6 point calibration is also run and those values set
* after these read.
*/
#define NBIAS 100
#define NVAR 500
void calibrate_sensors()
{
int i,j;
float accel_bias[3] = {0, 0, 0};
float gyro_bias[3] = {0, 0, 0};
float mag_bias[3] = {0, 0, 0};
for (i = 0, j = 0; i < NBIAS; i++) {
get_accel_gyro_data();
gyro_bias[0] += gyro_data.filtered.x / NBIAS;
gyro_bias[1] += gyro_data.filtered.y / NBIAS;
gyro_bias[2] += gyro_data.filtered.z / NBIAS;
accel_bias[0] += accel_data.filtered.x / NBIAS;
accel_bias[1] += accel_data.filtered.y / NBIAS;
accel_bias[2] += accel_data.filtered.z / NBIAS;
#if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C)
if(PIOS_HMC5843_NewDataAvailable()) {
j ++;
PIOS_HMC5843_ReadMag(mag_data.raw.axis);
mag_data.scaled.axis[0] = (mag_data.raw.axis[0] * mag_data.calibration.scale[0]) + mag_data.calibration.bias[0];
mag_data.scaled.axis[1] = (mag_data.raw.axis[1] * mag_data.calibration.scale[1]) + mag_data.calibration.bias[1];
mag_data.scaled.axis[2] = (mag_data.raw.axis[2] * mag_data.calibration.scale[2]) + mag_data.calibration.bias[2];
mag_bias[0] += mag_data.scaled.axis[0];
mag_bias[1] += mag_data.scaled.axis[1];
mag_bias[2] += mag_data.scaled.axis[2];
}
#endif
}
mag_bias[0] /= j;
mag_bias[1] /= j;
mag_bias[2] /= j;
gyro_data.calibration.variance[0] = 0;
gyro_data.calibration.variance[1] = 0;
gyro_data.calibration.variance[2] = 0;
mag_data.calibration.variance[0] = 0;
mag_data.calibration.variance[1] = 0;
mag_data.calibration.variance[2] = 0;
accel_data.calibration.variance[0] = 0;
accel_data.calibration.variance[1] = 0;
accel_data.calibration.variance[2] = 0;
for (i = 0, j = 0; j < NVAR; j++) {
get_accel_gyro_data();
gyro_data.calibration.variance[0] += pow(gyro_data.filtered.x-gyro_bias[0],2) / NVAR;
gyro_data.calibration.variance[1] += pow(gyro_data.filtered.y-gyro_bias[1],2) / NVAR;
gyro_data.calibration.variance[2] += pow(gyro_data.filtered.z-gyro_bias[2],2) / NVAR;
accel_data.calibration.variance[0] += pow(accel_data.filtered.x-accel_bias[0],2) / NVAR;
accel_data.calibration.variance[1] += pow(accel_data.filtered.y-accel_bias[1],2) / NVAR;
accel_data.calibration.variance[2] += pow(accel_data.filtered.z-accel_bias[2],2) / NVAR;
#if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C)
if(PIOS_HMC5843_NewDataAvailable()) {
j ++;
PIOS_HMC5843_ReadMag(mag_data.raw.axis);
mag_data.scaled.axis[0] = (mag_data.raw.axis[0] * mag_data.calibration.scale[0]) + mag_data.calibration.bias[0];
mag_data.scaled.axis[1] = (mag_data.raw.axis[1] * mag_data.calibration.scale[1]) + mag_data.calibration.bias[1];
mag_data.scaled.axis[2] = (mag_data.raw.axis[2] * mag_data.calibration.scale[2]) + mag_data.calibration.bias[2];
mag_data.calibration.variance[0] += pow(mag_data.scaled.axis[0]-mag_bias[0],2);
mag_data.calibration.variance[1] += pow(mag_data.scaled.axis[1]-mag_bias[1],2);
mag_data.calibration.variance[2] += pow(mag_data.scaled.axis[2]-mag_bias[2],2);
}
#endif
}
mag_data.calibration.variance[0] /= j;
mag_data.calibration.variance[1] /= j;
mag_data.calibration.variance[2] /= j;
gyro_data.calibration.bias[0] -= gyro_bias[0];
gyro_data.calibration.bias[1] -= gyro_bias[1];
gyro_data.calibration.bias[2] -= gyro_bias[2];
}
/**
* @brief Populate fields with initial values
*/
void reset_values() {
accel_data.calibration.scale[0] = 0.012;
accel_data.calibration.scale[1] = 0.012;
accel_data.calibration.scale[2] = -0.012;
accel_data.calibration.bias[0] = 24;
accel_data.calibration.bias[1] = 24;
accel_data.calibration.bias[2] = -24;
accel_data.calibration.variance[0] = 1e-4;
accel_data.calibration.variance[1] = 1e-4;
accel_data.calibration.variance[2] = 1e-4;
gyro_data.calibration.scale[0] = -0.014;
gyro_data.calibration.scale[1] = 0.014;
gyro_data.calibration.scale[2] = -0.014;
gyro_data.calibration.bias[0] = -24;
gyro_data.calibration.bias[1] = -24;
gyro_data.calibration.bias[2] = -24;
gyro_data.calibration.variance[0] = 1;
gyro_data.calibration.variance[1] = 1;
gyro_data.calibration.variance[2] = 1;
mag_data.calibration.scale[0] = 1;
mag_data.calibration.scale[1] = 1;
mag_data.calibration.scale[2] = 1;
mag_data.calibration.bias[0] = 0;
mag_data.calibration.bias[1] = 0;
mag_data.calibration.bias[2] = 0;
mag_data.calibration.variance[0] = 1;
mag_data.calibration.variance[1] = 1;
mag_data.calibration.variance[2] = 1;
}
void send_attitude(void)
{
AttitudeActualData attitude;
AHRSSettingsData settings;
AHRSSettingsGet(&settings);
attitude.q1 = attitude_data.quaternion.q1;
attitude.q2 = attitude_data.quaternion.q2;
attitude.q3 = attitude_data.quaternion.q3;
attitude.q4 = attitude_data.quaternion.q4;
float rpy[3];
Quaternion2RPY(&attitude_data.quaternion.q1, rpy);
attitude.Roll = rpy[0] + settings.RollBias;
attitude.Pitch = rpy[1] + settings.PitchBias;
attitude.Yaw = rpy[2] + settings.YawBias;
if(attitude.Yaw > 360)
attitude.Yaw -= 360;
AttitudeActualSet(&attitude);
}
void send_velocity(void)
{
VelocityActualData velocityActual;
VelocityActualGet(&velocityActual);
// convert into cm
velocityActual.North = Nav.Vel[0] * 100;
velocityActual.East = Nav.Vel[1] * 100;
velocityActual.Down = Nav.Vel[2] * 100;
VelocityActualSet(&velocityActual);
}
void send_position(void)
{
PositionActualData positionActual;
PositionActualGet(&positionActual);
// convert into cm
positionActual.North = Nav.Pos[0] * 100;
positionActual.East = Nav.Pos[1] * 100;
positionActual.Down = Nav.Pos[2] * 100;
PositionActualSet(&positionActual);
}
void send_calibration(void)
{
AHRSCalibrationData cal;
AHRSCalibrationGet(&cal);
for(int ct=0; ct<3; ct++)
{
cal.accel_var[ct] = accel_data.calibration.variance[ct];
cal.gyro_bias[ct] = gyro_data.calibration.bias[ct];
cal.gyro_var[ct] = gyro_data.calibration.variance[ct];
cal.mag_var[ct] = mag_data.calibration.variance[ct];
}
cal.measure_var = AHRSCALIBRATION_MEASURE_VAR_SET;
AHRSCalibrationSet(&cal);
}
/**
* @brief AHRS calibration callback
*
* Called when the OP board sets the calibration
*/
void calibration_callback(AhrsObjHandle obj)
{
AHRSCalibrationData cal;
AHRSCalibrationGet(&cal);
if(cal.measure_var == AHRSCALIBRATION_MEASURE_VAR_SET){
for(int ct=0; ct<3; ct++)
{
accel_data.calibration.scale[ct] = cal.accel_scale[ct];
accel_data.calibration.bias[ct] = cal.accel_bias[ct];
accel_data.calibration.variance[ct] = cal.accel_var[ct];
gyro_data.calibration.scale[ct] = cal.gyro_scale[ct];
gyro_data.calibration.bias[ct] = cal.gyro_bias[ct];
gyro_data.calibration.variance[ct] = cal.gyro_var[ct];
mag_data.calibration.bias[ct] = cal.mag_bias[ct];
mag_data.calibration.scale[ct] = cal.mag_scale[ct];
mag_data.calibration.variance[ct] = cal.mag_var[ct];
}
// Note: We need the divided by 1000^2 since we scale mags to have a norm of 1000 and they are scaled to
// one in code
float mag_var[3] = {mag_data.calibration.variance[0] / INSGPS_MAGLEN / INSGPS_MAGLEN,
mag_data.calibration.variance[1] / INSGPS_MAGLEN / INSGPS_MAGLEN,
mag_data.calibration.variance[2] / INSGPS_MAGLEN / INSGPS_MAGLEN};
INSSetMagVar(mag_var);
INSSetAccelVar(accel_data.calibration.variance);
INSSetGyroVar(gyro_data.calibration.variance);
}else if(cal.measure_var == AHRSCALIBRATION_MEASURE_VAR_MEASURE){
calibrate_sensors();
send_calibration();
}
INSSetPosVelVar(cal.pos_var, cal.vel_var);
}
void gps_callback(AhrsObjHandle obj)
{
GPSPositionData pos;
GPSPositionGet(&pos);
HomeLocationData home;
HomeLocationGet(&home);
// convert from cm back to meters
double LLA[3] = {(double) pos.Latitude / 1e7, (double) pos.Longitude / 1e7, (double) (pos.GeoidSeparation + pos.Altitude)};
// put in local NED frame
double ECEF[3] = {(double) (home.ECEF[0] / 100), (double) (home.ECEF[1] / 100), (double) (home.ECEF[2] / 100)};
LLA2Base(LLA, ECEF, (float (*)[3]) home.RNE, gps_data.NED);
gps_data.heading = pos.Heading;
gps_data.groundspeed = pos.Groundspeed;
gps_data.quality = 1; /* currently unused */
gps_data.updated = true;
// if poor don't use this update
if((ahrs_algorithm != AHRSSETTINGS_ALGORITHM_INSGPS_OUTDOOR) ||
(pos.Satellites < INSGPS_GPS_MINSAT) ||
(pos.PDOP >= INSGPS_GPS_MINPDOP) ||
(home.Set == FALSE) ||
((home.ECEF[0] == 0) && (home.ECEF[1] == 0) && (home.ECEF[2] == 0)))
{
gps_data.quality = 0;
gps_data.updated = false;
}
}
void altitude_callback(AhrsObjHandle obj)
{
BaroAltitudeData alt;
BaroAltitudeGet(&alt);
altitude_data.altitude = alt.Altitude;
altitude_data.updated = true;
}
void settings_callback(AhrsObjHandle obj)
{
AHRSSettingsData settings;
AHRSSettingsGet(&settings);
ahrs_algorithm = settings.Algorithm;
if(settings.Downsampling != adc_oversampling) {
adc_oversampling = settings.Downsampling;
if(adc_oversampling > MAX_OVERSAMPLING) {
adc_oversampling = MAX_OVERSAMPLING;
settings.Downsampling = MAX_OVERSAMPLING;
AHRSSettingsSet(&settings);
}
AHRS_ADC_Config(adc_oversampling);
}
}
void homelocation_callback(AhrsObjHandle obj)
{
HomeLocationData data;
HomeLocationGet(&data);
float Bmag = sqrt(pow(data.Be[0],2) + pow(data.Be[1],2) + pow(data.Be[2],2));
float Be[3] = {data.Be[0] / Bmag, data.Be[1] / Bmag, data.Be[2] / Bmag};
INSSetMagNorth(Be);
}
void firmwareiapobj_callback(AhrsObjHandle obj)
{
FirmwareIAPObjData firmwareIAPObj;
FirmwareIAPObjGet(&firmwareIAPObj);
if(firmwareIAPObj.ArmReset==0)
reset_count=0;
if(firmwareIAPObj.ArmReset==1)
{
if((firmwareIAPObj.Target==FUNC_ID) || (firmwareIAPObj.Target==0xFF))
{
++reset_count;
if(reset_count>2)
{
PIOS_IAP_SetRequest1();
PIOS_IAP_SetRequest2();
PIOS_SYS_Reset();
}
}
}
else if(firmwareIAPObj.Target==FUNC_ID && firmwareIAPObj.crc!=iap_calc_crc())
{
read_description(firmwareIAPObj.Description);
firmwareIAPObj.crc=iap_calc_crc();
firmwareIAPObj.HWVersion=HW_VERSION;
FirmwareIAPObjSet(&firmwareIAPObj);
}
}
static uint32_t iap_calc_crc(void)
{
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_CRC, ENABLE);
CRC_ResetDR();
CRC_CalcBlockCRC((uint32_t *) START_OF_USER_CODE, (SIZE_OF_CODE) >> 2);
return CRC_GetCRC();
}
static uint8_t *FLASH_If_Read(uint32_t SectorAddress)
{
return (uint8_t *) (SectorAddress);
}
static void read_description(uint8_t * array)
{
uint8_t x = 0;
for (uint32_t i = START_OF_USER_CODE + SIZE_OF_CODE; i < START_OF_USER_CODE + SIZE_OF_CODE + SIZE_OF_DESCRIPTION; ++i) {
array[x] = *FLASH_If_Read(i);
++x;
}
}
/**
* @}
*/