1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-12-11 19:24:10 +01:00
LibrePilot/flight/modules/Stabilization/virtualflybar.c
2013-04-25 13:13:36 +03:00

120 lines
3.7 KiB
C

/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup StabilizationModule Stabilization Module
* @brief Virtual flybar mode
* @note This file implements the logic for a virtual flybar
* @{
*
* @file virtualflybar.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012.
* @brief Attitude stabilization module.
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "openpilot.h"
#include "stabilization.h"
#include "stabilizationsettings.h"
//! Private variables
static float vbar_integral[MAX_AXES];
static float vbar_decay = 0.991f;
//! Private methods
static float bound(float val, float range);
int stabilization_virtual_flybar(float gyro, float command, float *output, float dT, bool reinit, uint32_t axis, StabilizationSettingsData *settings)
{
float gyro_gain = 1.0f;
float kp = 0, ki = 0;
if(reinit)
vbar_integral[axis] = 0;
// Track the angle of the virtual flybar which includes a slow decay
vbar_integral[axis] = vbar_integral[axis] * vbar_decay + gyro * dT;
vbar_integral[axis] = bound(vbar_integral[axis], settings->VbarMaxAngle);
// Command signal can indicate how much to disregard the gyro feedback (fast flips)
if (settings->VbarGyroSuppress > 0) {
gyro_gain = (1.0f - fabsf(command) * settings->VbarGyroSuppress / 100.0f);
gyro_gain = (gyro_gain < 0) ? 0 : gyro_gain;
}
// Get the settings for the correct axis
switch(axis)
{
case ROLL:
kp = settings->VbarRollPI[STABILIZATIONSETTINGS_VBARROLLPI_KP];
ki = settings->VbarRollPI[STABILIZATIONSETTINGS_VBARROLLPI_KI];
break;
case PITCH:
kp = settings->VbarPitchPI[STABILIZATIONSETTINGS_VBARROLLPI_KP];
ki = settings->VbarPitchPI[STABILIZATIONSETTINGS_VBARROLLPI_KI];
break;
case YAW:
kp = settings->VbarYawPI[STABILIZATIONSETTINGS_VBARROLLPI_KP];
ki = settings->VbarYawPI[STABILIZATIONSETTINGS_VBARROLLPI_KI];
break;
default:
PIOS_DEBUG_Assert(0);
}
// Command signal is composed of stick input added to the gyro and virtual flybar
*output = command * settings->VbarSensitivity[axis] -
gyro_gain * (vbar_integral[axis] * ki + gyro * kp);
return 0;
}
/**
* Want to keep the virtual flybar fixed in world coordinates as we pirouette
* @param[in] z_gyro The deg/s of rotation along the z axis
* @param[in] dT The time since last sample
*/
int stabilization_virtual_flybar_pirocomp(float z_gyro, float dT)
{
const float F_PI = (float) M_PI;
float cy = cosf(z_gyro / 180.0f * F_PI * dT);
float sy = sinf(z_gyro / 180.0f * F_PI * dT);
float vbar_pitch = cy * vbar_integral[1] - sy * vbar_integral[0];
float vbar_roll = sy * vbar_integral[1] + cy * vbar_integral[0];
vbar_integral[1] = vbar_pitch;
vbar_integral[0] = vbar_roll;
return 0;
}
/**
* Bound input value between limits
*/
static float bound(float val, float range)
{
if(val < -range) {
val = -range;
} else if(val > range) {
val = range;
}
return val;
}