1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-12-12 20:08:48 +01:00
LibrePilot/flight/modules/PathFollower/vtolautotakeoffcontroller.cpp

404 lines
16 KiB
C++

/*
******************************************************************************
*
* @file vtollandcontroller.cpp
* @author The LibrePilot Project, http://www.librepilot.org Copyright (C) 2016.
* The OpenPilot Team, http://www.openpilot.org Copyright (C) 2015.
* @brief Vtol landing controller loop
* @see The GNU Public License (GPL) Version 3
* @addtogroup LibrePilot LibrePilotModules Modules PathFollower Navigation
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
extern "C" {
#include <openpilot.h>
#include <math.h>
#include <pid.h>
#include <alarms.h>
#include <CoordinateConversions.h>
#include <sin_lookup.h>
#include <pathdesired.h>
#include <paths.h>
#include "plans.h"
#include <sanitycheck.h>
#include <homelocation.h>
#include <accelstate.h>
#include <vtolpathfollowersettings.h>
#include <flightstatus.h>
#include <flightmodesettings.h>
#include <pathstatus.h>
#include <positionstate.h>
#include <velocitystate.h>
#include <velocitydesired.h>
#include <stabilizationdesired.h>
#include <airspeedstate.h>
#include <attitudestate.h>
#include <takeofflocation.h>
#include <poilocation.h>
#include <manualcontrolcommand.h>
#include <systemsettings.h>
#include <stabilizationbank.h>
#include <stabilizationdesired.h>
#include <vtolselftuningstats.h>
#include <statusvtolautotakeoff.h>
#include <pathsummary.h>
}
// C++ includes
#include "vtolautotakeoffcontroller.h"
#include "pathfollowerfsm.h"
#include "vtolautotakeofffsm.h"
#include "pidcontroldown.h"
// Private constants
#define AUTOTAKEOFF_TO_INCREMENTAL_HEIGHT_MIN 2.0f
#define AUTOTAKEOFF_TO_INCREMENTAL_HEIGHT_MAX 50.0f
#define AUTOTAKEOFF_INFLIGHT_THROTTLE_CHECK_LIMIT 0.2f
#define AUTOTAKEOFF_THROTTLE_LIMIT_TO_ALLOW_TAKEOFF_START 0.3f
#define AUTOTAKEOFF_THROTTLE_ABORT_LIMIT 0.1f
// pointer to a singleton instance
VtolAutoTakeoffController *VtolAutoTakeoffController::p_inst = 0;
VtolAutoTakeoffController::VtolAutoTakeoffController()
: fsm(0), vtolPathFollowerSettings(0), mActive(false)
{}
// Called when mode first engaged
void VtolAutoTakeoffController::Activate(void)
{
if (!mActive) {
mActive = true;
mOverride = true;
SettingsUpdated();
fsm->Activate();
controlDown.Activate();
controlNE.Activate();
autotakeoffState = STATUSVTOLAUTOTAKEOFF_CONTROLSTATE_WAITFORARMED;
// We only allow takeoff if the state transition of disarmed to armed occurs
// whilst in the autotake flight mode
FlightStatusData flightStatus;
FlightStatusGet(&flightStatus);
StabilizationDesiredData stabiDesired;
StabilizationDesiredGet(&stabiDesired);
if (flightStatus.Armed) {
// Are we inflight?
if (stabiDesired.Thrust > AUTOTAKEOFF_INFLIGHT_THROTTLE_CHECK_LIMIT || flightStatus.ControlChain.PathPlanner == FLIGHTSTATUS_CONTROLCHAIN_TRUE) {
// ok assume already in flight and just enter position hold
// if we are not actually inflight this will just be a violent autotakeoff
autotakeoffState = STATUSVTOLAUTOTAKEOFF_CONTROLSTATE_POSITIONHOLD;
} else {
autotakeoffState = STATUSVTOLAUTOTAKEOFF_CONTROLSTATE_REQUIREUNARMEDFIRST;
// Note that if this mode was invoked unintentionally whilst in flight, effectively
// all inputs get ignored and the vtol continues to fly to its previous
// stabi command.
}
}
fsm->setControlState(autotakeoffState);
}
}
uint8_t VtolAutoTakeoffController::IsActive(void)
{
return mActive;
}
uint8_t VtolAutoTakeoffController::Mode(void)
{
return PATHDESIRED_MODE_AUTOTAKEOFF;
}
// Objective updated in pathdesired, e.g. same flight mode but new target velocity
void VtolAutoTakeoffController::ObjectiveUpdated(void)
{
if (mOverride) {
// override pathDesired from PathPlanner with current position,
// as we deliberately don't care about the location of the waypoints on the map
float velocity_down;
float autotakeoff_height;
PositionStateData positionState;
PositionStateGet(&positionState);
FlightModeSettingsAutoTakeOffVelocityGet(&velocity_down);
FlightModeSettingsAutoTakeOffHeightGet(&autotakeoff_height);
autotakeoff_height = fabsf(autotakeoff_height);
if (autotakeoff_height < AUTOTAKEOFF_TO_INCREMENTAL_HEIGHT_MIN) {
autotakeoff_height = AUTOTAKEOFF_TO_INCREMENTAL_HEIGHT_MIN;
} else if (autotakeoff_height > AUTOTAKEOFF_TO_INCREMENTAL_HEIGHT_MAX) {
autotakeoff_height = AUTOTAKEOFF_TO_INCREMENTAL_HEIGHT_MAX;
}
controlDown.UpdateVelocitySetpoint(velocity_down);
controlNE.UpdateVelocitySetpoint(0.0f, 0.0f);
controlNE.UpdatePositionSetpoint(positionState.North, positionState.East);
controlDown.UpdatePositionSetpoint(positionState.Down - autotakeoff_height);
mOverride = false; // further updates always come from ManualControl and will control horizontal position
} else {
// Set the objective's target velocity
controlDown.UpdateVelocitySetpoint(pathDesired->ModeParameters[PATHDESIRED_MODEPARAMETER_AUTOTAKEOFF_DOWN]);
controlNE.UpdateVelocitySetpoint(pathDesired->ModeParameters[PATHDESIRED_MODEPARAMETER_AUTOTAKEOFF_NORTH],
pathDesired->ModeParameters[PATHDESIRED_MODEPARAMETER_AUTOTAKEOFF_EAST]);
controlNE.UpdatePositionSetpoint(pathDesired->End.North, pathDesired->End.East);
controlDown.UpdatePositionSetpoint(pathDesired->End.Down);
}
}
// Controller deactivated
void VtolAutoTakeoffController::Deactivate(void)
{
if (mActive) {
mActive = false;
fsm->Inactive();
controlDown.Deactivate();
controlNE.Deactivate();
}
}
// AutoTakeoff Uses different vertical velocity PID.
void VtolAutoTakeoffController::SettingsUpdated(void)
{
const float dT = vtolPathFollowerSettings->UpdatePeriod / 1000.0f;
controlNE.UpdateParameters(vtolPathFollowerSettings->HorizontalVelPID.Kp,
vtolPathFollowerSettings->HorizontalVelPID.Ki,
vtolPathFollowerSettings->HorizontalVelPID.Kd,
vtolPathFollowerSettings->HorizontalVelPID.Beta,
dT,
vtolPathFollowerSettings->HorizontalVelMax);
controlNE.UpdatePositionalParameters(vtolPathFollowerSettings->HorizontalPosP);
controlNE.UpdateCommandParameters(-vtolPathFollowerSettings->MaxRollPitch, vtolPathFollowerSettings->MaxRollPitch, vtolPathFollowerSettings->VelocityFeedforward);
controlDown.UpdateParameters(vtolPathFollowerSettings->AutoTakeoffVerticalVelPID.Kp,
vtolPathFollowerSettings->AutoTakeoffVerticalVelPID.Ki,
vtolPathFollowerSettings->AutoTakeoffVerticalVelPID.Kd,
vtolPathFollowerSettings->AutoTakeoffVerticalVelPID.Beta,
dT,
vtolPathFollowerSettings->VerticalVelMax);
controlDown.UpdatePositionalParameters(vtolPathFollowerSettings->VerticalPosP);
VtolSelfTuningStatsData vtolSelfTuningStats;
VtolSelfTuningStatsGet(&vtolSelfTuningStats);
controlDown.UpdateNeutralThrust(vtolSelfTuningStats.NeutralThrustOffset + vtolPathFollowerSettings->ThrustLimits.Neutral);
controlDown.SetThrustLimits(vtolPathFollowerSettings->ThrustLimits.Min, vtolPathFollowerSettings->ThrustLimits.Max);
fsm->SettingsUpdated();
}
// AutoTakeoff Uses a different FSM to its parent
int32_t VtolAutoTakeoffController::Initialize(VtolPathFollowerSettingsData *ptr_vtolPathFollowerSettings)
{
PIOS_Assert(ptr_vtolPathFollowerSettings);
vtolPathFollowerSettings = ptr_vtolPathFollowerSettings;
if (fsm == 0) {
fsm = VtolAutoTakeoffFSM::instance();
VtolAutoTakeoffFSM::instance()->Initialize(vtolPathFollowerSettings, pathDesired, flightStatus);
controlDown.Initialize(fsm);
}
return 0;
}
void VtolAutoTakeoffController::UpdateVelocityDesired()
{
VelocityStateData velocityState;
VelocityStateGet(&velocityState);
VelocityDesiredData velocityDesired;
PositionStateData positionState;
PositionStateGet(&positionState);
if (fsm->PositionHoldState()) {
controlDown.UpdatePositionState(positionState.Down);
controlDown.ControlPosition();
}
controlDown.UpdateVelocityState(velocityState.Down);
controlNE.UpdateVelocityState(velocityState.North, velocityState.East);
controlNE.UpdatePositionState(positionState.North, positionState.East);
controlNE.ControlPosition();
velocityDesired.Down = controlDown.GetVelocityDesired();
float north, east;
controlNE.GetVelocityDesired(&north, &east);
velocityDesired.North = north;
velocityDesired.East = east;
// update pathstatus
pathStatus->error = 0.0f;
pathStatus->fractional_progress = 0.0f;
if (fsm->PositionHoldState()) {
pathStatus->fractional_progress = 1.0f;
// note if the takeoff waypoint and the launch position are significantly different
// the above check might need to expand to assessment of north and east.
}
pathStatus->path_direction_north = velocityDesired.North;
pathStatus->path_direction_east = velocityDesired.East;
pathStatus->path_direction_down = velocityDesired.Down;
pathStatus->correction_direction_north = velocityDesired.North - velocityState.North;
pathStatus->correction_direction_east = velocityDesired.East - velocityState.East;
pathStatus->correction_direction_down = velocityDesired.Down - velocityState.Down;
VelocityDesiredSet(&velocityDesired);
}
int8_t VtolAutoTakeoffController::UpdateStabilizationDesired()
{
uint8_t result = 1;
StabilizationDesiredData stabDesired;
AttitudeStateData attitudeState;
StabilizationBankData stabSettings;
float northCommand;
float eastCommand;
StabilizationDesiredGet(&stabDesired);
AttitudeStateGet(&attitudeState);
StabilizationBankGet(&stabSettings);
controlNE.GetNECommand(&northCommand, &eastCommand);
stabDesired.Thrust = controlDown.GetDownCommand();
switch (autotakeoffState) {
case STATUSVTOLAUTOTAKEOFF_CONTROLSTATE_WAITFORARMED:
case STATUSVTOLAUTOTAKEOFF_CONTROLSTATE_WAITFORMIDTHROTTLE:
case STATUSVTOLAUTOTAKEOFF_CONTROLSTATE_REQUIREUNARMEDFIRST:
case STATUSVTOLAUTOTAKEOFF_CONTROLSTATE_ABORT:
stabDesired.Thrust = 0.0f;
break;
default:
break;
}
float angle_radians = DEG2RAD(attitudeState.Yaw);
float cos_angle = cosf(angle_radians);
float sine_angle = sinf(angle_radians);
float maxPitch = vtolPathFollowerSettings->MaxRollPitch;
stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.Pitch = boundf(-northCommand * cos_angle - eastCommand * sine_angle, -maxPitch, maxPitch);
stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.Roll = boundf(-northCommand * sine_angle + eastCommand * cos_angle, -maxPitch, maxPitch);
ManualControlCommandData manualControl;
ManualControlCommandGet(&manualControl);
stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK;
stabDesired.Yaw = stabSettings.MaximumRate.Yaw * manualControl.Yaw;
// default thrust mode to cruise control
stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_CRUISECONTROL;
fsm->ConstrainStabiDesired(&stabDesired); // excludes thrust
StabilizationDesiredSet(&stabDesired);
return result;
}
void VtolAutoTakeoffController::UpdateAutoPilot()
{
// state machine updates:
// Vtol AutoTakeoff invocation from flight mode requires the following sequence:
// 1. Arming must be done whilst in the AutoTakeOff flight mode
// 2. If the AutoTakeoff flight mode is selected and already armed, requires disarming first
// 3. Wait for armed state
// 4. Once the user increases the throttle position to above 50%, then and only then initiate auto-takeoff.
// 5. Whilst the throttle is < 50% before takeoff, all stick inputs are being ignored.
// 6. If during the autotakeoff sequence, at any stage, if the throttle stick position reduces to less than 10%, landing is initiated.
switch (autotakeoffState) {
case STATUSVTOLAUTOTAKEOFF_CONTROLSTATE_REQUIREUNARMEDFIRST:
{
FlightStatusData flightStatus;
FlightStatusGet(&flightStatus);
if (!flightStatus.Armed) {
autotakeoffState = STATUSVTOLAUTOTAKEOFF_CONTROLSTATE_WAITFORARMED;
fsm->setControlState(autotakeoffState);
}
}
break;
case STATUSVTOLAUTOTAKEOFF_CONTROLSTATE_WAITFORARMED:
{
FlightStatusData flightStatus;
FlightStatusGet(&flightStatus);
if (flightStatus.Armed) {
autotakeoffState = STATUSVTOLAUTOTAKEOFF_CONTROLSTATE_WAITFORMIDTHROTTLE;
fsm->setControlState(autotakeoffState);
}
}
break;
case STATUSVTOLAUTOTAKEOFF_CONTROLSTATE_WAITFORMIDTHROTTLE:
{
ManualControlCommandData cmd;
ManualControlCommandGet(&cmd);
if (cmd.Throttle > AUTOTAKEOFF_THROTTLE_LIMIT_TO_ALLOW_TAKEOFF_START) {
autotakeoffState = STATUSVTOLAUTOTAKEOFF_CONTROLSTATE_INITIATE;
fsm->setControlState(autotakeoffState);
}
}
break;
case STATUSVTOLAUTOTAKEOFF_CONTROLSTATE_INITIATE:
{
ManualControlCommandData cmd;
ManualControlCommandGet(&cmd);
FlightStatusData flightStatus;
FlightStatusGet(&flightStatus);
// we do not do a takeoff abort in pathplanner mode
if (flightStatus.ControlChain.PathPlanner != FLIGHTSTATUS_CONTROLCHAIN_TRUE &&
cmd.Throttle < AUTOTAKEOFF_THROTTLE_ABORT_LIMIT) {
autotakeoffState = STATUSVTOLAUTOTAKEOFF_CONTROLSTATE_ABORT;
fsm->setControlState(autotakeoffState);
}
}
break;
case STATUSVTOLAUTOTAKEOFF_CONTROLSTATE_ABORT:
{
FlightStatusData flightStatus;
FlightStatusGet(&flightStatus);
if (!flightStatus.Armed) {
autotakeoffState = STATUSVTOLAUTOTAKEOFF_CONTROLSTATE_WAITFORARMED;
fsm->setControlState(autotakeoffState);
}
}
break;
case STATUSVTOLAUTOTAKEOFF_CONTROLSTATE_POSITIONHOLD:
// nothing to do. land has been requested. stay here for forever until mode change.
default:
break;
}
fsm->Update();
UpdateVelocityDesired();
int8_t result = UpdateStabilizationDesired();
if (result) {
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_OK);
} else {
pathStatus->Status = PATHSTATUS_STATUS_CRITICAL;
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_WARNING);
}
PathStatusSet(pathStatus);
}