1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-12-14 21:23:52 +01:00
LibrePilot/flight/Modules/ManualControl/manualcontrol.c
Oleg Semyonov 727e67d7fd Even more optimize FlightMode switch position calculation
This runs in a high frequency loop and should use as little of
floating point as possible. Thanks to Kenn for the idea.
2012-06-25 11:41:42 +03:00

908 lines
33 KiB
C

/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup ManualControlModule Manual Control Module
* @brief Provide manual control or allow it alter flight mode.
* @{
*
* Reads in the ManualControlCommand FlightMode setting from receiver then either
* pass the settings straght to ActuatorDesired object (manual mode) or to
* AttitudeDesired object (stabilized mode)
*
* @file manualcontrol.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief ManualControl module. Handles safety R/C link and flight mode.
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "openpilot.h"
#include "manualcontrol.h"
#include "manualcontrolsettings.h"
#include "stabilizationsettings.h"
#include "manualcontrolcommand.h"
#include "actuatordesired.h"
#include "stabilizationdesired.h"
#include "flighttelemetrystats.h"
#include "flightstatus.h"
#include "accessorydesired.h"
#include "receiveractivity.h"
#include "altitudeholddesired.h"
#include "positionactual.h"
#include "baroaltitude.h"
// Private constants
#if defined(PIOS_MANUAL_STACK_SIZE)
#define STACK_SIZE_BYTES PIOS_MANUAL_STACK_SIZE
#else
#define STACK_SIZE_BYTES 1024
#endif
#define TASK_PRIORITY (tskIDLE_PRIORITY+4)
#define UPDATE_PERIOD_MS 20
#define THROTTLE_FAILSAFE -0.1f
#define ARMED_TIME_MS 1000
#define ARMED_THRESHOLD 0.50f
//safe band to allow a bit of calibration error or trim offset (in microseconds)
#define CONNECTION_OFFSET 150
// Private types
typedef enum
{
ARM_STATE_DISARMED,
ARM_STATE_ARMING_MANUAL,
ARM_STATE_ARMED,
ARM_STATE_DISARMING_MANUAL,
ARM_STATE_DISARMING_TIMEOUT
} ArmState_t;
// Private variables
static xTaskHandle taskHandle;
static ArmState_t armState;
static portTickType lastSysTime;
// Private functions
static void updateActuatorDesired(ManualControlCommandData * cmd);
static void updateStabilizationDesired(ManualControlCommandData * cmd, ManualControlSettingsData * settings);
static void altitudeHoldDesired(ManualControlCommandData * cmd);
static void processFlightMode(ManualControlSettingsData * settings, float flightMode);
static void processArm(ManualControlCommandData * cmd, ManualControlSettingsData * settings);
static void setArmedIfChanged(uint8_t val);
static void manualControlTask(void *parameters);
static float scaleChannel(int16_t value, int16_t max, int16_t min, int16_t neutral);
static uint32_t timeDifferenceMs(portTickType start_time, portTickType end_time);
static bool okToArm(void);
static bool validInputRange(int16_t min, int16_t max, uint16_t value);
static void applyDeadband(float *value, float deadband);
#define RCVR_ACTIVITY_MONITOR_CHANNELS_PER_GROUP 12
#define RCVR_ACTIVITY_MONITOR_MIN_RANGE 10
struct rcvr_activity_fsm {
ManualControlSettingsChannelGroupsOptions group;
uint16_t prev[RCVR_ACTIVITY_MONITOR_CHANNELS_PER_GROUP];
uint8_t sample_count;
};
static struct rcvr_activity_fsm activity_fsm;
static void resetRcvrActivity(struct rcvr_activity_fsm * fsm);
static bool updateRcvrActivity(struct rcvr_activity_fsm * fsm);
#define assumptions (assumptions1 && assumptions3 && assumptions5 && assumptions7 && assumptions8 && assumptions_flightmode && assumptions_channelcount)
/**
* Module starting
*/
int32_t ManualControlStart()
{
// Start main task
xTaskCreate(manualControlTask, (signed char *)"ManualControl", STACK_SIZE_BYTES/4, NULL, TASK_PRIORITY, &taskHandle);
TaskMonitorAdd(TASKINFO_RUNNING_MANUALCONTROL, taskHandle);
PIOS_WDG_RegisterFlag(PIOS_WDG_MANUAL);
return 0;
}
/**
* Module initialization
*/
int32_t ManualControlInitialize()
{
/* Check the assumptions about uavobject enum's are correct */
if(!assumptions)
return -1;
AccessoryDesiredInitialize();
ManualControlCommandInitialize();
FlightStatusInitialize();
StabilizationDesiredInitialize();
ReceiverActivityInitialize();
ManualControlSettingsInitialize();
return 0;
}
MODULE_INITCALL(ManualControlInitialize, ManualControlStart)
/**
* Module task
*/
static void manualControlTask(void *parameters)
{
ManualControlSettingsData settings;
ManualControlCommandData cmd;
FlightStatusData flightStatus;
float flightMode = 0;
uint8_t disconnected_count = 0;
uint8_t connected_count = 0;
// For now manual instantiate extra instances of Accessory Desired. In future should be done dynamically
// this includes not even registering it if not used
AccessoryDesiredCreateInstance();
AccessoryDesiredCreateInstance();
// Make sure unarmed on power up
ManualControlCommandGet(&cmd);
FlightStatusGet(&flightStatus);
flightStatus.Armed = FLIGHTSTATUS_ARMED_DISARMED;
armState = ARM_STATE_DISARMED;
/* Initialize the RcvrActivty FSM */
portTickType lastActivityTime = xTaskGetTickCount();
resetRcvrActivity(&activity_fsm);
// Main task loop
lastSysTime = xTaskGetTickCount();
while (1) {
float scaledChannel[MANUALCONTROLSETTINGS_CHANNELGROUPS_NUMELEM];
// Wait until next update
vTaskDelayUntil(&lastSysTime, UPDATE_PERIOD_MS / portTICK_RATE_MS);
PIOS_WDG_UpdateFlag(PIOS_WDG_MANUAL);
// Read settings
ManualControlSettingsGet(&settings);
/* Update channel activity monitor */
if (flightStatus.Armed == ARM_STATE_DISARMED) {
if (updateRcvrActivity(&activity_fsm)) {
/* Reset the aging timer because activity was detected */
lastActivityTime = lastSysTime;
}
}
if (timeDifferenceMs(lastActivityTime, lastSysTime) > 5000) {
resetRcvrActivity(&activity_fsm);
lastActivityTime = lastSysTime;
}
if (ManualControlCommandReadOnly()) {
FlightTelemetryStatsData flightTelemStats;
FlightTelemetryStatsGet(&flightTelemStats);
if(flightTelemStats.Status != FLIGHTTELEMETRYSTATS_STATUS_CONNECTED) {
/* trying to fly via GCS and lost connection. fall back to transmitter */
UAVObjMetadata metadata;
ManualControlCommandGetMetadata(&metadata);
UAVObjSetAccess(&metadata, ACCESS_READWRITE);
ManualControlCommandSetMetadata(&metadata);
}
}
if (!ManualControlCommandReadOnly()) {
bool valid_input_detected = true;
// Read channel values in us
for (uint8_t n = 0;
n < MANUALCONTROLSETTINGS_CHANNELGROUPS_NUMELEM && n < MANUALCONTROLCOMMAND_CHANNEL_NUMELEM;
++n) {
extern uint32_t pios_rcvr_group_map[];
if (settings.ChannelGroups[n] >= MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) {
cmd.Channel[n] = PIOS_RCVR_INVALID;
} else {
cmd.Channel[n] = PIOS_RCVR_Read(pios_rcvr_group_map[settings.ChannelGroups[n]],
settings.ChannelNumber[n]);
}
// If a channel has timed out this is not valid data and we shouldn't update anything
// until we decide to go to failsafe
if(cmd.Channel[n] == PIOS_RCVR_TIMEOUT)
valid_input_detected = false;
else
scaledChannel[n] = scaleChannel(cmd.Channel[n], settings.ChannelMax[n], settings.ChannelMin[n], settings.ChannelNeutral[n]);
}
// Check settings, if error raise alarm
if (settings.ChannelGroups[MANUALCONTROLSETTINGS_CHANNELGROUPS_ROLL] >= MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE ||
settings.ChannelGroups[MANUALCONTROLSETTINGS_CHANNELGROUPS_PITCH] >= MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE ||
settings.ChannelGroups[MANUALCONTROLSETTINGS_CHANNELGROUPS_YAW] >= MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE ||
settings.ChannelGroups[MANUALCONTROLSETTINGS_CHANNELGROUPS_THROTTLE] >= MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE ||
// Check all channel mappings are valid
cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_ROLL] == (uint16_t) PIOS_RCVR_INVALID ||
cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_PITCH] == (uint16_t) PIOS_RCVR_INVALID ||
cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_YAW] == (uint16_t) PIOS_RCVR_INVALID ||
cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_THROTTLE] == (uint16_t) PIOS_RCVR_INVALID ||
// Check the driver exists
cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_ROLL] == (uint16_t) PIOS_RCVR_NODRIVER ||
cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_PITCH] == (uint16_t) PIOS_RCVR_NODRIVER ||
cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_YAW] == (uint16_t) PIOS_RCVR_NODRIVER ||
cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_THROTTLE] == (uint16_t) PIOS_RCVR_NODRIVER ||
// Check the FlightModeNumber is valid
settings.FlightModeNumber < 1 || settings.FlightModeNumber > MANUALCONTROLSETTINGS_FLIGHTMODEPOSITION_NUMELEM ||
// Similar checks for FlightMode channel but only if more than one flight mode has been set. Otherwise don't care
((settings.FlightModeNumber > 1) && (
settings.ChannelGroups[MANUALCONTROLSETTINGS_CHANNELGROUPS_FLIGHTMODE] >= MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE ||
cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_FLIGHTMODE] == (uint16_t) PIOS_RCVR_INVALID ||
cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_FLIGHTMODE] == (uint16_t) PIOS_RCVR_NODRIVER))) {
AlarmsSet(SYSTEMALARMS_ALARM_MANUALCONTROL, SYSTEMALARMS_ALARM_CRITICAL);
cmd.Connected = MANUALCONTROLCOMMAND_CONNECTED_FALSE;
ManualControlCommandSet(&cmd);
// Need to do this here since we don't process armed status. Since this shouldn't happen in flight (changed config)
// immediately disarm
setArmedIfChanged(FLIGHTSTATUS_ARMED_DISARMED);
continue;
}
// decide if we have valid manual input or not
valid_input_detected &= validInputRange(settings.ChannelMin[MANUALCONTROLSETTINGS_CHANNELGROUPS_THROTTLE], settings.ChannelMax[MANUALCONTROLSETTINGS_CHANNELGROUPS_THROTTLE], cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_THROTTLE]) &&
validInputRange(settings.ChannelMin[MANUALCONTROLSETTINGS_CHANNELGROUPS_ROLL], settings.ChannelMax[MANUALCONTROLSETTINGS_CHANNELGROUPS_ROLL], cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_ROLL]) &&
validInputRange(settings.ChannelMin[MANUALCONTROLSETTINGS_CHANNELGROUPS_YAW], settings.ChannelMax[MANUALCONTROLSETTINGS_CHANNELGROUPS_YAW], cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_YAW]) &&
validInputRange(settings.ChannelMin[MANUALCONTROLSETTINGS_CHANNELGROUPS_PITCH], settings.ChannelMax[MANUALCONTROLSETTINGS_CHANNELGROUPS_PITCH], cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_PITCH]);
// Implement hysteresis loop on connection status
if (valid_input_detected && (++connected_count > 10)) {
cmd.Connected = MANUALCONTROLCOMMAND_CONNECTED_TRUE;
connected_count = 0;
disconnected_count = 0;
} else if (!valid_input_detected && (++disconnected_count > 10)) {
cmd.Connected = MANUALCONTROLCOMMAND_CONNECTED_FALSE;
connected_count = 0;
disconnected_count = 0;
}
if (cmd.Connected == MANUALCONTROLCOMMAND_CONNECTED_FALSE) {
cmd.Throttle = -1; // Shut down engine with no control
cmd.Roll = 0;
cmd.Yaw = 0;
cmd.Pitch = 0;
cmd.Collective = 0;
//cmd.FlightMode = MANUALCONTROLCOMMAND_FLIGHTMODE_AUTO; // don't do until AUTO implemented and functioning
// Important: Throttle < 0 will reset Stabilization coefficients among other things. Either change this,
// or leave throttle at IDLE speed or above when going into AUTO-failsafe.
AlarmsSet(SYSTEMALARMS_ALARM_MANUALCONTROL, SYSTEMALARMS_ALARM_WARNING);
AccessoryDesiredData accessory;
// Set Accessory 0
if (settings.ChannelGroups[MANUALCONTROLSETTINGS_CHANNELGROUPS_ACCESSORY0] !=
MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) {
accessory.AccessoryVal = 0;
if(AccessoryDesiredInstSet(0, &accessory) != 0)
AlarmsSet(SYSTEMALARMS_ALARM_MANUALCONTROL, SYSTEMALARMS_ALARM_WARNING);
}
// Set Accessory 1
if (settings.ChannelGroups[MANUALCONTROLSETTINGS_CHANNELGROUPS_ACCESSORY1] !=
MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) {
accessory.AccessoryVal = 0;
if(AccessoryDesiredInstSet(1, &accessory) != 0)
AlarmsSet(SYSTEMALARMS_ALARM_MANUALCONTROL, SYSTEMALARMS_ALARM_WARNING);
}
// Set Accessory 2
if (settings.ChannelGroups[MANUALCONTROLSETTINGS_CHANNELGROUPS_ACCESSORY2] !=
MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) {
accessory.AccessoryVal = 0;
if(AccessoryDesiredInstSet(2, &accessory) != 0)
AlarmsSet(SYSTEMALARMS_ALARM_MANUALCONTROL, SYSTEMALARMS_ALARM_WARNING);
}
} else {
AlarmsClear(SYSTEMALARMS_ALARM_MANUALCONTROL);
// Scale channels to -1 -> +1 range
cmd.Roll = scaledChannel[MANUALCONTROLSETTINGS_CHANNELGROUPS_ROLL];
cmd.Pitch = scaledChannel[MANUALCONTROLSETTINGS_CHANNELGROUPS_PITCH];
cmd.Yaw = scaledChannel[MANUALCONTROLSETTINGS_CHANNELGROUPS_YAW];
cmd.Throttle = scaledChannel[MANUALCONTROLSETTINGS_CHANNELGROUPS_THROTTLE];
flightMode = scaledChannel[MANUALCONTROLSETTINGS_CHANNELGROUPS_FLIGHTMODE];
// Apply deadband for Roll/Pitch/Yaw stick inputs
if (settings.Deadband) {
applyDeadband(&cmd.Roll, settings.Deadband);
applyDeadband(&cmd.Pitch, settings.Deadband);
applyDeadband(&cmd.Yaw, settings.Deadband);
}
if(cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_COLLECTIVE] != PIOS_RCVR_INVALID &&
cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_COLLECTIVE] != PIOS_RCVR_NODRIVER &&
cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_COLLECTIVE] != PIOS_RCVR_TIMEOUT)
cmd.Collective = scaledChannel[MANUALCONTROLSETTINGS_CHANNELGROUPS_COLLECTIVE];
AccessoryDesiredData accessory;
// Set Accessory 0
if (settings.ChannelGroups[MANUALCONTROLSETTINGS_CHANNELGROUPS_ACCESSORY0] !=
MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) {
accessory.AccessoryVal = scaledChannel[MANUALCONTROLSETTINGS_CHANNELGROUPS_ACCESSORY0];
if(AccessoryDesiredInstSet(0, &accessory) != 0)
AlarmsSet(SYSTEMALARMS_ALARM_MANUALCONTROL, SYSTEMALARMS_ALARM_WARNING);
}
// Set Accessory 1
if (settings.ChannelGroups[MANUALCONTROLSETTINGS_CHANNELGROUPS_ACCESSORY1] !=
MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) {
accessory.AccessoryVal = scaledChannel[MANUALCONTROLSETTINGS_CHANNELGROUPS_ACCESSORY1];
if(AccessoryDesiredInstSet(1, &accessory) != 0)
AlarmsSet(SYSTEMALARMS_ALARM_MANUALCONTROL, SYSTEMALARMS_ALARM_WARNING);
}
// Set Accessory 2
if (settings.ChannelGroups[MANUALCONTROLSETTINGS_CHANNELGROUPS_ACCESSORY2] !=
MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) {
accessory.AccessoryVal = scaledChannel[MANUALCONTROLSETTINGS_CHANNELGROUPS_ACCESSORY2];
if(AccessoryDesiredInstSet(2, &accessory) != 0)
AlarmsSet(SYSTEMALARMS_ALARM_MANUALCONTROL, SYSTEMALARMS_ALARM_WARNING);
}
processFlightMode(&settings, flightMode);
}
// Process arming outside conditional so system will disarm when disconnected
processArm(&cmd, &settings);
// Update cmd object
ManualControlCommandSet(&cmd);
} else {
ManualControlCommandGet(&cmd); /* Under GCS control */
}
FlightStatusGet(&flightStatus);
// Depending on the mode update the Stabilization or Actuator objects
switch(PARSE_FLIGHT_MODE(flightStatus.FlightMode)) {
case FLIGHTMODE_UNDEFINED:
// This reflects a bug in the code architecture!
AlarmsSet(SYSTEMALARMS_ALARM_MANUALCONTROL, SYSTEMALARMS_ALARM_CRITICAL);
break;
case FLIGHTMODE_MANUAL:
updateActuatorDesired(&cmd);
break;
case FLIGHTMODE_STABILIZED:
updateStabilizationDesired(&cmd, &settings);
break;
case FLIGHTMODE_GUIDANCE:
switch(flightStatus.FlightMode) {
case FLIGHTSTATUS_FLIGHTMODE_ALTITUDEHOLD:
altitudeHoldDesired(&cmd);
break;
default:
AlarmsSet(SYSTEMALARMS_ALARM_MANUALCONTROL, SYSTEMALARMS_ALARM_CRITICAL);
}
break;
}
}
}
static void resetRcvrActivity(struct rcvr_activity_fsm * fsm)
{
ReceiverActivityData data;
bool updated = false;
/* Clear all channel activity flags */
ReceiverActivityGet(&data);
if (data.ActiveGroup != RECEIVERACTIVITY_ACTIVEGROUP_NONE &&
data.ActiveChannel != 255) {
data.ActiveGroup = RECEIVERACTIVITY_ACTIVEGROUP_NONE;
data.ActiveChannel = 255;
updated = true;
}
if (updated) {
ReceiverActivitySet(&data);
}
/* Reset the FSM state */
fsm->group = 0;
fsm->sample_count = 0;
}
static void updateRcvrActivitySample(uint32_t rcvr_id, uint16_t samples[], uint8_t max_channels) {
for (uint8_t channel = 1; channel <= max_channels; channel++) {
// Subtract 1 because channels are 1 indexed
samples[channel - 1] = PIOS_RCVR_Read(rcvr_id, channel);
}
}
static bool updateRcvrActivityCompare(uint32_t rcvr_id, struct rcvr_activity_fsm * fsm)
{
bool activity_updated = false;
/* Compare the current value to the previous sampled value */
for (uint8_t channel = 1;
channel <= RCVR_ACTIVITY_MONITOR_CHANNELS_PER_GROUP;
channel++) {
uint16_t delta;
uint16_t prev = fsm->prev[channel - 1]; // Subtract 1 because channels are 1 indexed
uint16_t curr = PIOS_RCVR_Read(rcvr_id, channel);
if (curr > prev) {
delta = curr - prev;
} else {
delta = prev - curr;
}
if (delta > RCVR_ACTIVITY_MONITOR_MIN_RANGE) {
/* Mark this channel as active */
ReceiverActivityActiveGroupOptions group;
/* Don't assume manualcontrolsettings and receiveractivity are in the same order. */
switch (fsm->group) {
case MANUALCONTROLSETTINGS_CHANNELGROUPS_PWM:
group = RECEIVERACTIVITY_ACTIVEGROUP_PWM;
break;
case MANUALCONTROLSETTINGS_CHANNELGROUPS_PPM:
group = RECEIVERACTIVITY_ACTIVEGROUP_PPM;
break;
case MANUALCONTROLSETTINGS_CHANNELGROUPS_DSMMAINPORT:
group = RECEIVERACTIVITY_ACTIVEGROUP_DSMMAINPORT;
break;
case MANUALCONTROLSETTINGS_CHANNELGROUPS_DSMFLEXIPORT:
group = RECEIVERACTIVITY_ACTIVEGROUP_DSMFLEXIPORT;
break;
case MANUALCONTROLSETTINGS_CHANNELGROUPS_SBUS:
group = RECEIVERACTIVITY_ACTIVEGROUP_SBUS;
break;
case MANUALCONTROLSETTINGS_CHANNELGROUPS_GCS:
group = RECEIVERACTIVITY_ACTIVEGROUP_GCS;
break;
default:
PIOS_Assert(0);
break;
}
ReceiverActivityActiveGroupSet((uint8_t*)&group);
ReceiverActivityActiveChannelSet(&channel);
activity_updated = true;
}
}
return (activity_updated);
}
static bool updateRcvrActivity(struct rcvr_activity_fsm * fsm)
{
bool activity_updated = false;
if (fsm->group >= MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) {
/* We're out of range, reset things */
resetRcvrActivity(fsm);
}
extern uint32_t pios_rcvr_group_map[];
if (!pios_rcvr_group_map[fsm->group]) {
/* Unbound group, skip it */
goto group_completed;
}
if (fsm->sample_count == 0) {
/* Take a sample of each channel in this group */
updateRcvrActivitySample(pios_rcvr_group_map[fsm->group],
fsm->prev,
NELEMENTS(fsm->prev));
fsm->sample_count++;
return (false);
}
/* Compare with previous sample */
activity_updated = updateRcvrActivityCompare(pios_rcvr_group_map[fsm->group], fsm);
group_completed:
/* Reset the sample counter */
fsm->sample_count = 0;
/* Find the next active group, but limit search so we can't loop forever here */
for (uint8_t i = 0; i < MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE; i++) {
/* Move to the next group */
fsm->group++;
if (fsm->group >= MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) {
/* Wrap back to the first group */
fsm->group = 0;
}
if (pios_rcvr_group_map[fsm->group]) {
/*
* Found an active group, take a sample here to avoid an
* extra 20ms delay in the main thread so we can speed up
* this algorithm.
*/
updateRcvrActivitySample(pios_rcvr_group_map[fsm->group],
fsm->prev,
NELEMENTS(fsm->prev));
fsm->sample_count++;
break;
}
}
return (activity_updated);
}
static void updateActuatorDesired(ManualControlCommandData * cmd)
{
ActuatorDesiredData actuator;
ActuatorDesiredGet(&actuator);
actuator.Roll = cmd->Roll;
actuator.Pitch = cmd->Pitch;
actuator.Yaw = cmd->Yaw;
actuator.Throttle = (cmd->Throttle < 0) ? -1 : cmd->Throttle;
ActuatorDesiredSet(&actuator);
}
static void updateStabilizationDesired(ManualControlCommandData * cmd, ManualControlSettingsData * settings)
{
StabilizationDesiredData stabilization;
StabilizationDesiredGet(&stabilization);
StabilizationSettingsData stabSettings;
StabilizationSettingsGet(&stabSettings);
uint8_t * stab_settings;
FlightStatusData flightStatus;
FlightStatusGet(&flightStatus);
switch(flightStatus.FlightMode) {
case FLIGHTSTATUS_FLIGHTMODE_STABILIZED1:
stab_settings = settings->Stabilization1Settings;
break;
case FLIGHTSTATUS_FLIGHTMODE_STABILIZED2:
stab_settings = settings->Stabilization2Settings;
break;
case FLIGHTSTATUS_FLIGHTMODE_STABILIZED3:
stab_settings = settings->Stabilization3Settings;
break;
default:
// Major error, this should not occur because only enter this block when one of these is true
AlarmsSet(SYSTEMALARMS_ALARM_MANUALCONTROL, SYSTEMALARMS_ALARM_CRITICAL);
return;
}
// TOOD: Add assumption about order of stabilization desired and manual control stabilization mode fields having same order
stabilization.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_ROLL] = stab_settings[0];
stabilization.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_PITCH] = stab_settings[1];
stabilization.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_YAW] = stab_settings[2];
stabilization.Roll = (stab_settings[0] == STABILIZATIONDESIRED_STABILIZATIONMODE_NONE) ? cmd->Roll :
(stab_settings[0] == STABILIZATIONDESIRED_STABILIZATIONMODE_RATE) ? cmd->Roll * stabSettings.ManualRate[STABILIZATIONSETTINGS_MANUALRATE_ROLL] :
(stab_settings[0] == STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING) ? cmd->Roll * stabSettings.ManualRate[STABILIZATIONSETTINGS_MANUALRATE_ROLL] :
(stab_settings[0] == STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE) ? cmd->Roll * stabSettings.RollMax :
(stab_settings[0] == STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK) ? cmd->Roll * stabSettings.ManualRate[STABILIZATIONSETTINGS_MANUALRATE_ROLL] :
(stab_settings[0] == STABILIZATIONDESIRED_STABILIZATIONMODE_VIRTUALBAR) ? cmd->Roll :
0; // this is an invalid mode
;
stabilization.Pitch = (stab_settings[1] == STABILIZATIONDESIRED_STABILIZATIONMODE_NONE) ? cmd->Pitch :
(stab_settings[1] == STABILIZATIONDESIRED_STABILIZATIONMODE_RATE) ? cmd->Pitch * stabSettings.ManualRate[STABILIZATIONSETTINGS_MANUALRATE_PITCH] :
(stab_settings[1] == STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING) ? cmd->Pitch * stabSettings.ManualRate[STABILIZATIONSETTINGS_MANUALRATE_PITCH] :
(stab_settings[1] == STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE) ? cmd->Pitch * stabSettings.PitchMax :
(stab_settings[1] == STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK) ? cmd->Pitch * stabSettings.ManualRate[STABILIZATIONSETTINGS_MANUALRATE_PITCH] :
(stab_settings[1] == STABILIZATIONDESIRED_STABILIZATIONMODE_VIRTUALBAR) ? cmd->Pitch :
0; // this is an invalid mode
stabilization.Yaw = (stab_settings[2] == STABILIZATIONDESIRED_STABILIZATIONMODE_NONE) ? cmd->Yaw :
(stab_settings[2] == STABILIZATIONDESIRED_STABILIZATIONMODE_RATE) ? cmd->Yaw * stabSettings.ManualRate[STABILIZATIONSETTINGS_MANUALRATE_YAW] :
(stab_settings[2] == STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING) ? cmd->Yaw * stabSettings.ManualRate[STABILIZATIONSETTINGS_MANUALRATE_YAW] :
(stab_settings[2] == STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE) ? cmd->Yaw * stabSettings.YawMax :
(stab_settings[2] == STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK) ? cmd->Yaw * stabSettings.ManualRate[STABILIZATIONSETTINGS_MANUALRATE_YAW] :
(stab_settings[2] == STABILIZATIONDESIRED_STABILIZATIONMODE_VIRTUALBAR) ? cmd->Yaw :
0; // this is an invalid mode
stabilization.Throttle = (cmd->Throttle < 0) ? -1 : cmd->Throttle;
StabilizationDesiredSet(&stabilization);
}
#if defined(REVOLUTION)
// TODO: Need compile flag to exclude this from copter control
static void altitudeHoldDesired(ManualControlCommandData * cmd)
{
const float DEADBAND_HIGH = 0.55;
const float DEADBAND_LOW = 0.45;
static portTickType lastSysTime;
static bool zeroed = false;
portTickType thisSysTime;
float dT;
AltitudeHoldDesiredData altitudeHoldDesired;
AltitudeHoldDesiredGet(&altitudeHoldDesired);
StabilizationSettingsData stabSettings;
StabilizationSettingsGet(&stabSettings);
thisSysTime = xTaskGetTickCount();
dT = (thisSysTime - lastSysTime) / portTICK_RATE_MS / 1000.0f;
lastSysTime = thisSysTime;
altitudeHoldDesired.Roll = cmd->Roll * stabSettings.RollMax;
altitudeHoldDesired.Pitch = cmd->Pitch * stabSettings.PitchMax;
altitudeHoldDesired.Yaw = cmd->Yaw * stabSettings.ManualRate[STABILIZATIONSETTINGS_MANUALRATE_YAW];
float currentDown;
PositionActualDownGet(&currentDown);
if(dT > 1) {
// After not being in this mode for a while init at current height
altitudeHoldDesired.Altitude = 0;
zeroed = false;
} else if (cmd->Throttle > DEADBAND_HIGH && zeroed)
altitudeHoldDesired.Altitude += (cmd->Throttle - DEADBAND_HIGH) * dT;
else if (cmd->Throttle < DEADBAND_LOW && zeroed)
altitudeHoldDesired.Altitude += (cmd->Throttle - DEADBAND_LOW) * dT;
else if (cmd->Throttle >= DEADBAND_LOW && cmd->Throttle <= DEADBAND_HIGH) // Require the stick to enter the dead band before they can move height
zeroed = true;
AltitudeHoldDesiredSet(&altitudeHoldDesired);
}
#else
static void altitudeHoldDesired(ManualControlCommandData * cmd)
{
AlarmsSet(SYSTEMALARMS_ALARM_MANUALCONTROL, SYSTEMALARMS_ALARM_ERROR);
}
#endif
/**
* Convert channel from servo pulse duration (microseconds) to scaled -1/+1 range.
*/
static float scaleChannel(int16_t value, int16_t max, int16_t min, int16_t neutral)
{
float valueScaled;
// Scale
if ((max > min && value >= neutral) || (min > max && value <= neutral))
{
if (max != neutral)
valueScaled = (float)(value - neutral) / (float)(max - neutral);
else
valueScaled = 0;
}
else
{
if (min != neutral)
valueScaled = (float)(value - neutral) / (float)(neutral - min);
else
valueScaled = 0;
}
// Bound
if (valueScaled > 1.0) valueScaled = 1.0;
else
if (valueScaled < -1.0) valueScaled = -1.0;
return valueScaled;
}
static uint32_t timeDifferenceMs(portTickType start_time, portTickType end_time) {
if(end_time > start_time)
return (end_time - start_time) * portTICK_RATE_MS;
return ((((portTICK_RATE_MS) -1) - start_time) + end_time) * portTICK_RATE_MS;
}
/**
* @brief Determine if the aircraft is safe to arm
* @returns True if safe to arm, false otherwise
*/
static bool okToArm(void)
{
// read alarms
SystemAlarmsData alarms;
SystemAlarmsGet(&alarms);
// Check each alarm
for (int i = 0; i < SYSTEMALARMS_ALARM_NUMELEM; i++)
{
if (alarms.Alarm[i] >= SYSTEMALARMS_ALARM_ERROR)
{ // found an alarm thats set
if (i == SYSTEMALARMS_ALARM_GPS || i == SYSTEMALARMS_ALARM_TELEMETRY)
continue;
return false;
}
}
return true;
}
/**
* @brief Update the flightStatus object only if value changed. Reduces callbacks
* @param[in] val The new value
*/
static void setArmedIfChanged(uint8_t val) {
FlightStatusData flightStatus;
FlightStatusGet(&flightStatus);
if(flightStatus.Armed != val) {
flightStatus.Armed = val;
FlightStatusSet(&flightStatus);
}
}
/**
* @brief Process the inputs and determine whether to arm or not
* @param[out] cmd The structure to set the armed in
* @param[in] settings Settings indicating the necessary position
*/
static void processArm(ManualControlCommandData * cmd, ManualControlSettingsData * settings)
{
bool lowThrottle = cmd->Throttle <= 0;
if (settings->Arming == MANUALCONTROLSETTINGS_ARMING_ALWAYSDISARMED) {
// In this configuration we always disarm
setArmedIfChanged(FLIGHTSTATUS_ARMED_DISARMED);
} else {
// Not really needed since this function not called when disconnected
if (cmd->Connected == MANUALCONTROLCOMMAND_CONNECTED_FALSE)
lowThrottle = true;
// The throttle is not low, in case we where arming or disarming, abort
if (!lowThrottle) {
switch(armState) {
case ARM_STATE_DISARMING_MANUAL:
case ARM_STATE_DISARMING_TIMEOUT:
armState = ARM_STATE_ARMED;
break;
case ARM_STATE_ARMING_MANUAL:
armState = ARM_STATE_DISARMED;
break;
default:
// Nothing needs to be done in the other states
break;
}
return;
}
// The rest of these cases throttle is low
if (settings->Arming == MANUALCONTROLSETTINGS_ARMING_ALWAYSARMED) {
// In this configuration, we go into armed state as soon as the throttle is low, never disarm
setArmedIfChanged(FLIGHTSTATUS_ARMED_ARMED);
return;
}
// When the configuration is not "Always armed" and no "Always disarmed",
// the state will not be changed when the throttle is not low
static portTickType armedDisarmStart;
float armingInputLevel = 0;
// Calc channel see assumptions7
int8_t sign = ((settings->Arming-MANUALCONTROLSETTINGS_ARMING_ROLLLEFT)%2) ? -1 : 1;
switch ( (settings->Arming-MANUALCONTROLSETTINGS_ARMING_ROLLLEFT)/2 ) {
case ARMING_CHANNEL_ROLL: armingInputLevel = sign * cmd->Roll; break;
case ARMING_CHANNEL_PITCH: armingInputLevel = sign * cmd->Pitch; break;
case ARMING_CHANNEL_YAW: armingInputLevel = sign * cmd->Yaw; break;
}
bool manualArm = false;
bool manualDisarm = false;
if (armingInputLevel <= -ARMED_THRESHOLD)
manualArm = true;
else if (armingInputLevel >= +ARMED_THRESHOLD)
manualDisarm = true;
switch(armState) {
case ARM_STATE_DISARMED:
setArmedIfChanged(FLIGHTSTATUS_ARMED_DISARMED);
// only allow arming if it's OK too
if (manualArm && okToArm()) {
armedDisarmStart = lastSysTime;
armState = ARM_STATE_ARMING_MANUAL;
}
break;
case ARM_STATE_ARMING_MANUAL:
setArmedIfChanged(FLIGHTSTATUS_ARMED_ARMING);
if (manualArm && (timeDifferenceMs(armedDisarmStart, lastSysTime) > ARMED_TIME_MS))
armState = ARM_STATE_ARMED;
else if (!manualArm)
armState = ARM_STATE_DISARMED;
break;
case ARM_STATE_ARMED:
// When we get here, the throttle is low,
// we go immediately to disarming due to timeout, also when the disarming mechanism is not enabled
armedDisarmStart = lastSysTime;
armState = ARM_STATE_DISARMING_TIMEOUT;
setArmedIfChanged(FLIGHTSTATUS_ARMED_ARMED);
break;
case ARM_STATE_DISARMING_TIMEOUT:
// We get here when armed while throttle low, even when the arming timeout is not enabled
if ((settings->ArmedTimeout != 0) && (timeDifferenceMs(armedDisarmStart, lastSysTime) > settings->ArmedTimeout))
armState = ARM_STATE_DISARMED;
// Switch to disarming due to manual control when needed
if (manualDisarm) {
armedDisarmStart = lastSysTime;
armState = ARM_STATE_DISARMING_MANUAL;
}
break;
case ARM_STATE_DISARMING_MANUAL:
if (manualDisarm &&(timeDifferenceMs(armedDisarmStart, lastSysTime) > ARMED_TIME_MS))
armState = ARM_STATE_DISARMED;
else if (!manualDisarm)
armState = ARM_STATE_ARMED;
break;
} // End Switch
}
}
/**
* @brief Determine which of N positions the flight mode switch is in and set flight mode accordingly
* @param[out] cmd Pointer to the command structure to set the flight mode in
* @param[in] settings The settings which indicate which position is which mode
* @param[in] flightMode the value of the switch position
*/
static void processFlightMode(ManualControlSettingsData *settings, float flightMode)
{
FlightStatusData flightStatus;
FlightStatusGet(&flightStatus);
// Convert flightMode value into the switch position in the range [0..N-1]
uint8_t pos = ((int16_t)(flightMode * 256.0f) + 256) * settings->FlightModeNumber >> 9;
if (pos >= settings->FlightModeNumber)
pos = settings->FlightModeNumber - 1;
uint8_t newMode = settings->FlightModePosition[pos];
if (flightStatus.FlightMode != newMode) {
flightStatus.FlightMode = newMode;
FlightStatusSet(&flightStatus);
}
}
/**
* @brief Determine if the manual input value is within acceptable limits
* @returns return TRUE if so, otherwise return FALSE
*/
bool validInputRange(int16_t min, int16_t max, uint16_t value)
{
if (min > max)
{
int16_t tmp = min;
min = max;
max = tmp;
}
return (value >= min - CONNECTION_OFFSET && value <= max + CONNECTION_OFFSET);
}
/**
* @brief Apply deadband to Roll/Pitch/Yaw channels
*/
static void applyDeadband(float *value, float deadband)
{
if (fabs(*value) < deadband)
*value = 0.0f;
else
if (*value > 0.0f)
*value -= deadband;
else
*value += deadband;
}
/**
* @}
* @}
*/