1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-12-01 09:24:10 +01:00
LibrePilot/flight/Modules/System/systemmod.c
Mathieu Rondonneau fc1e3f574c OP-423: Split task create and module init in order to postpone task creation once the full heap is available.
Also implement some ordering (quite ugly still) in the module init and task creation order so we can decide which module to start/init first
and which module to start/init last.
This will be replaced/adapter with the uavobject list later (once it's implemented).
reserving some space for module init and task create parameters to customize module/task creation (this will be usefull once we get the list and customization from customer).

Changes have been made for OP and CC. Tested comped with CC,OP, sim_posix.
Only ran on bench with CC for couple of minutes (code increase expected but no dropping of stack which is good).

This gives task creation at the time wherethe all heap is available.
2011-06-19 22:35:40 -07:00

455 lines
13 KiB
C

/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @brief The OpenPilot Modules do the majority of the control in OpenPilot. The
* @ref SystemModule "System Module" starts all the other modules that then take care
* of all the telemetry and control algorithms and such. This is done through the @ref PIOS
* "PIOS Hardware abstraction layer" which then contains hardware specific implementations
* (currently only STM32 supported)
*
* @{
* @addtogroup SystemModule System Module
* @brief Initializes PIOS and other modules runs monitoring
* After initializing all the modules (currently selected by Makefile but in
* future controlled by configuration on SD card) runs basic monitoring and
* alarms.
* @{
*
* @file systemmod.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief System module
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "openpilot.h"
#include "systemmod.h"
#include "objectpersistence.h"
#include "flightstatus.h"
#include "systemstats.h"
#include "i2cstats.h"
#include "watchdogstatus.h"
#include "taskmonitor.h"
#include "pios_config.h"
// Private constants
#define SYSTEM_UPDATE_PERIOD_MS 1000
#define LED_BLINK_RATE_HZ 5
#ifndef IDLE_COUNTS_PER_SEC_AT_NO_LOAD
#define IDLE_COUNTS_PER_SEC_AT_NO_LOAD 995998 // calibrated by running tests/test_cpuload.c
// must be updated if the FreeRTOS or compiler
// optimisation options are changed.
#endif
#if defined(PIOS_SYSTEM_STACK_SIZE)
#define STACK_SIZE_BYTES PIOS_SYSTEM_STACK_SIZE
#else
#define STACK_SIZE_BYTES 924
#endif
#define TASK_PRIORITY (tskIDLE_PRIORITY+2)
// Private types
// Private variables
static uint32_t idleCounter;
static uint32_t idleCounterClear;
static xTaskHandle systemTaskHandle;
static int32_t stackOverflow;
// Private functions
static void objectUpdatedCb(UAVObjEvent * ev);
static void updateStats();
static void updateI2Cstats();
static void updateWDGstats();
static void updateSystemAlarms();
static void systemTask(void *parameters);
/**
* Create the module task.
* \returns 0 on success or -1 if initialization failed
*/
int32_t SystemModStart(void)
{
// Initialize vars
stackOverflow = 0;
// Create system task
xTaskCreate(systemTask, (signed char *)"System", STACK_SIZE_BYTES/4, NULL, TASK_PRIORITY, &systemTaskHandle);
// Register task
TaskMonitorAdd(TASKINFO_RUNNING_SYSTEM, systemTaskHandle);
return 0;
}
/**
* Initialize the module, called on startup.
* \returns 0 on success or -1 if initialization failed
*/
int32_t SystemModInitialize(void)
{
SystemModStart();
return 0;
}
module_initcall(SystemModInitialize, 0, 0, 0, MODULE_EXEC_FIRST_FLAG);
/**
* System task, periodically executes every SYSTEM_UPDATE_PERIOD_MS
*/
static void systemTask(void *parameters)
{
portTickType lastSysTime;
/* create all modules thread */
MODULE_TASKCREATE_ALL();
// Initialize vars
idleCounter = 0;
idleCounterClear = 0;
lastSysTime = xTaskGetTickCount();
// Listen for SettingPersistance object updates, connect a callback function
ObjectPersistenceConnectCallback(&objectUpdatedCb);
// Main system loop
while (1) {
// Update the system statistics
updateStats();
// Update the system alarms
updateSystemAlarms();
updateI2Cstats();
updateWDGstats();
// Update the task status object
TaskMonitorUpdateAll();
// Flash the heartbeat LED
PIOS_LED_Toggle(LED1);
// Turn on the error LED if an alarm is set
#if (PIOS_LED_NUM > 1)
if (AlarmsHasWarnings()) {
PIOS_LED_On(LED2);
} else {
PIOS_LED_Off(LED2);
}
#endif
FlightStatusData flightStatus;
FlightStatusGet(&flightStatus);
// Wait until next period
if(flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMED) {
vTaskDelayUntil(&lastSysTime, SYSTEM_UPDATE_PERIOD_MS / portTICK_RATE_MS / (LED_BLINK_RATE_HZ * 2) );
} else {
vTaskDelayUntil(&lastSysTime, SYSTEM_UPDATE_PERIOD_MS / portTICK_RATE_MS);
}
}
}
/**
* Function called in response to object updates
*/
static void objectUpdatedCb(UAVObjEvent * ev)
{
ObjectPersistenceData objper;
UAVObjHandle obj;
// If the object updated was the ObjectPersistence execute requested action
if (ev->obj == ObjectPersistenceHandle()) {
// Get object data
ObjectPersistenceGet(&objper);
int retval = -1;
// Execute action
if (objper.Operation == OBJECTPERSISTENCE_OPERATION_LOAD) {
if (objper.Selection == OBJECTPERSISTENCE_SELECTION_SINGLEOBJECT) {
// Get selected object
obj = UAVObjGetByID(objper.ObjectID);
if (obj == 0) {
return;
}
// Load selected instance
retval = UAVObjLoad(obj, objper.InstanceID);
} else if (objper.Selection == OBJECTPERSISTENCE_SELECTION_ALLSETTINGS
|| objper.Selection == OBJECTPERSISTENCE_SELECTION_ALLOBJECTS) {
retval = UAVObjLoadSettings();
} else if (objper.Selection == OBJECTPERSISTENCE_SELECTION_ALLMETAOBJECTS
|| objper.Selection == OBJECTPERSISTENCE_SELECTION_ALLOBJECTS) {
retval = UAVObjLoadMetaobjects();
}
} else if (objper.Operation == OBJECTPERSISTENCE_OPERATION_SAVE) {
if (objper.Selection == OBJECTPERSISTENCE_SELECTION_SINGLEOBJECT) {
// Get selected object
obj = UAVObjGetByID(objper.ObjectID);
if (obj == 0) {
return;
}
// Save selected instance
retval = UAVObjSave(obj, objper.InstanceID);
} else if (objper.Selection == OBJECTPERSISTENCE_SELECTION_ALLSETTINGS
|| objper.Selection == OBJECTPERSISTENCE_SELECTION_ALLOBJECTS) {
retval = UAVObjSaveSettings();
} else if (objper.Selection == OBJECTPERSISTENCE_SELECTION_ALLMETAOBJECTS
|| objper.Selection == OBJECTPERSISTENCE_SELECTION_ALLOBJECTS) {
retval = UAVObjSaveMetaobjects();
}
} else if (objper.Operation == OBJECTPERSISTENCE_OPERATION_DELETE) {
if (objper.Selection == OBJECTPERSISTENCE_SELECTION_SINGLEOBJECT) {
// Get selected object
obj = UAVObjGetByID(objper.ObjectID);
if (obj == 0) {
return;
}
// Delete selected instance
retval = UAVObjDelete(obj, objper.InstanceID);
} else if (objper.Selection == OBJECTPERSISTENCE_SELECTION_ALLSETTINGS
|| objper.Selection == OBJECTPERSISTENCE_SELECTION_ALLOBJECTS) {
retval = UAVObjDeleteSettings();
} else if (objper.Selection == OBJECTPERSISTENCE_SELECTION_ALLMETAOBJECTS
|| objper.Selection == OBJECTPERSISTENCE_SELECTION_ALLOBJECTS) {
retval = UAVObjDeleteMetaobjects();
}
}
if(retval == 0) {
objper.Operation = OBJECTPERSISTENCE_OPERATION_COMPLETED;
ObjectPersistenceSet(&objper);
}
}
}
/**
* Called periodically to update the I2C statistics
*/
#if defined(ARCH_POSIX) || defined(ARCH_WIN32)
static void updateI2Cstats() {} //Posix and win32 don't have I2C
#else
static void updateI2Cstats()
{
#if defined(PIOS_INCLUDE_I2C)
I2CStatsData i2cStats;
I2CStatsGet(&i2cStats);
struct pios_i2c_fault_history history;
PIOS_I2C_GetDiagnostics(&history, &i2cStats.event_errors);
for(uint8_t i = 0; (i < I2C_LOG_DEPTH) && (i < I2CSTATS_EVENT_LOG_NUMELEM); i++) {
i2cStats.evirq_log[i] = history.evirq[i];
i2cStats.erirq_log[i] = history.erirq[i];
i2cStats.event_log[i] = history.event[i];
i2cStats.state_log[i] = history.state[i];
}
i2cStats.last_error_type = history.type;
I2CStatsSet(&i2cStats);
#endif
}
#endif
static void updateWDGstats()
{
WatchdogStatusData watchdogStatus;
watchdogStatus.BootupFlags = PIOS_WDG_GetBootupFlags();
watchdogStatus.ActiveFlags = PIOS_WDG_GetActiveFlags();
WatchdogStatusSet(&watchdogStatus);
}
/**
* Called periodically to update the system stats
*/
static uint16_t GetFreeIrqStackSize(void)
{
uint32_t i = 0x200;
#if !defined(ARCH_POSIX) && !defined(ARCH_WIN32) && defined(CHECK_IRQ_STACK)
extern uint32_t _irq_stack_top;
extern uint32_t _irq_stack_end;
uint32_t pattern = 0x0000A5A5;
uint32_t *ptr = &_irq_stack_end;
#if 1 /* the ugly way accurate but takes more time, useful for debugging */
uint32_t stack_size = (((uint32_t)&_irq_stack_top - (uint32_t)&_irq_stack_end) & ~3 ) / 4;
for (i=0; i< stack_size; i++)
{
if (ptr[i] != pattern)
{
i=i*4;
break;
}
}
#else /* faster way but not accurate */
if (*(volatile uint32_t *)((uint32_t)ptr + IRQSTACK_LIMIT_CRITICAL) != pattern)
{
i = IRQSTACK_LIMIT_CRITICAL - 1;
}
else if (*(volatile uint32_t *)((uint32_t)ptr + IRQSTACK_LIMIT_WARNING) != pattern)
{
i = IRQSTACK_LIMIT_WARNING - 1;
}
else
{
i = IRQSTACK_LIMIT_WARNING;
}
#endif
#endif
return i;
}
/**
* Called periodically to update the system stats
*/
static void updateStats()
{
static portTickType lastTickCount = 0;
SystemStatsData stats;
// Get stats and update
SystemStatsGet(&stats);
stats.FlightTime = xTaskGetTickCount() * portTICK_RATE_MS;
#if defined(ARCH_POSIX) || defined(ARCH_WIN32)
// POSIX port of FreeRTOS doesn't have xPortGetFreeHeapSize()
stats.HeapRemaining = 10240;
#else
stats.HeapRemaining = xPortGetFreeHeapSize();
#endif
// Get Irq stack status
stats.IRQStackRemaining = GetFreeIrqStackSize();
// When idleCounterClear was not reset by the idle-task, it means the idle-task did not run
if (idleCounterClear) {
idleCounter = 0;
}
portTickType now = xTaskGetTickCount();
if (now > lastTickCount) {
uint32_t dT = (xTaskGetTickCount() - lastTickCount) * portTICK_RATE_MS; // in ms
stats.CPULoad =
100 - (uint8_t) round(100.0 * ((float)idleCounter / ((float)dT / 1000.0)) / (float)IDLE_COUNTS_PER_SEC_AT_NO_LOAD);
} //else: TickCount has wrapped, do not calc now
lastTickCount = now;
idleCounterClear = 1;
#if defined(PIOS_INCLUDE_ADC) && defined(PIOS_ADC_USE_TEMP_SENSOR)
float temp_voltage = 3.3 * PIOS_ADC_PinGet(0) / ((1 << 12) - 1);
const float STM32_TEMP_V25 = 1.43; /* V */
const float STM32_TEMP_AVG_SLOPE = 4.3; /* mV/C */
stats.CPUTemp = (temp_voltage-STM32_TEMP_V25) * 1000 / STM32_TEMP_AVG_SLOPE + 25;
#endif
SystemStatsSet(&stats);
}
/**
* Update system alarms
*/
static void updateSystemAlarms()
{
SystemStatsData stats;
UAVObjStats objStats;
EventStats evStats;
SystemStatsGet(&stats);
// Check heap
if (stats.HeapRemaining < HEAP_LIMIT_CRITICAL) {
AlarmsSet(SYSTEMALARMS_ALARM_OUTOFMEMORY, SYSTEMALARMS_ALARM_CRITICAL);
} else if (stats.HeapRemaining < HEAP_LIMIT_WARNING) {
AlarmsSet(SYSTEMALARMS_ALARM_OUTOFMEMORY, SYSTEMALARMS_ALARM_WARNING);
} else {
AlarmsClear(SYSTEMALARMS_ALARM_OUTOFMEMORY);
}
#if !defined(ARCH_POSIX) && !defined(ARCH_WIN32) && defined(CHECK_IRQ_STACK)
// Check IRQ stack
if (stats.IRQStackRemaining < IRQSTACK_LIMIT_CRITICAL) {
AlarmsSet(SYSTEMALARMS_ALARM_OUTOFMEMORY, SYSTEMALARMS_ALARM_CRITICAL);
} else if (stats.IRQStackRemaining < IRQSTACK_LIMIT_WARNING) {
AlarmsSet(SYSTEMALARMS_ALARM_OUTOFMEMORY, SYSTEMALARMS_ALARM_WARNING);
} else {
AlarmsClear(SYSTEMALARMS_ALARM_OUTOFMEMORY);
}
#endif
// Check CPU load
if (stats.CPULoad > CPULOAD_LIMIT_CRITICAL) {
AlarmsSet(SYSTEMALARMS_ALARM_CPUOVERLOAD, SYSTEMALARMS_ALARM_CRITICAL);
} else if (stats.CPULoad > CPULOAD_LIMIT_WARNING) {
AlarmsSet(SYSTEMALARMS_ALARM_CPUOVERLOAD, SYSTEMALARMS_ALARM_WARNING);
} else {
AlarmsClear(SYSTEMALARMS_ALARM_CPUOVERLOAD);
}
// Check for stack overflow
if (stackOverflow == 1) {
AlarmsSet(SYSTEMALARMS_ALARM_STACKOVERFLOW, SYSTEMALARMS_ALARM_CRITICAL);
} else {
AlarmsClear(SYSTEMALARMS_ALARM_STACKOVERFLOW);
}
#if defined(PIOS_INCLUDE_SDCARD)
// Check for SD card
if (PIOS_SDCARD_IsMounted() == 0) {
AlarmsSet(SYSTEMALARMS_ALARM_SDCARD, SYSTEMALARMS_ALARM_ERROR);
} else {
AlarmsClear(SYSTEMALARMS_ALARM_SDCARD);
}
#endif
// Check for event errors
UAVObjGetStats(&objStats);
EventGetStats(&evStats);
UAVObjClearStats();
EventClearStats();
if (objStats.eventErrors > 0 || evStats.eventErrors > 0) {
AlarmsSet(SYSTEMALARMS_ALARM_EVENTSYSTEM, SYSTEMALARMS_ALARM_WARNING);
} else {
AlarmsClear(SYSTEMALARMS_ALARM_EVENTSYSTEM);
}
}
/**
* Called by the RTOS when the CPU is idle, used to measure the CPU idle time.
*/
void vApplicationIdleHook(void)
{
// Called when the scheduler has no tasks to run
if (idleCounterClear == 0) {
++idleCounter;
} else {
idleCounter = 0;
idleCounterClear = 0;
}
}
/**
* Called by the RTOS when a stack overflow is detected.
*/
void vApplicationStackOverflowHook(xTaskHandle * pxTask, signed portCHAR * pcTaskName)
{
stackOverflow = 1;
}
/**
* @}
* @}
*/