1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-01-09 20:46:07 +01:00
LibrePilot/flight/modules/PathPlanner/pathplanner.c

816 lines
26 KiB
C

/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup PathPlanner Path Planner Module
* @brief Executes a series of waypoints
* @{
*
* @file pathplanner.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012.
* @brief Executes a series of waypoints
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "openpilot.h"
#include "callbackinfo.h"
#include "pathplan.h"
#include "flightstatus.h"
#include "airspeedstate.h"
#include "pathaction.h"
#include "pathdesired.h"
#include "pathstatus.h"
#include "positionstate.h"
#include "velocitystate.h"
#include "waypoint.h"
#include "waypointactive.h"
#include "flightmodesettings.h"
#include <systemsettings.h>
#include "paths.h"
#include "plans.h"
#include <sanitycheck.h>
#include <vtolpathfollowersettings.h>
#include <statusvtolautotakeoff.h>
#include <statusvtolland.h>
#include <manualcontrolcommand.h>
// Private constants
#define STACK_SIZE_BYTES 1024
#define TASK_PRIORITY CALLBACK_TASK_NAVIGATION
#define MAX_QUEUE_SIZE 2
#define PATH_PLANNER_UPDATE_RATE_MS 100 // can be slow, since we listen to status updates as well
// Private types
// Private functions
static void pathPlannerTask();
static void commandUpdated(UAVObjEvent *ev);
static void statusUpdated(UAVObjEvent *ev);
static void updatePathDesired();
static void setWaypoint(uint16_t num);
static uint8_t checkPathPlan();
static uint8_t pathConditionCheck();
static uint8_t conditionNone();
static uint8_t conditionTimeOut();
static uint8_t conditionDistanceToTarget();
static uint8_t conditionLegRemaining();
static uint8_t conditionBelowError();
static uint8_t conditionAboveAltitude();
static uint8_t conditionAboveSpeed();
static uint8_t conditionPointingTowardsNext();
static uint8_t conditionPythonScript();
static uint8_t conditionImmediate();
static void SettingsUpdatedCb(__attribute__((unused)) UAVObjEvent *ev);
static void planner_setup_pathdesired_land(PathDesiredData *pathDesired);
static void planner_setup_pathdesired_takeoff(PathDesiredData *pathDesired);
static void planner_setup_pathdesired(PathDesiredData *pathDesired, bool overwrite_start_position);
// Private variables
static DelayedCallbackInfo *pathPlannerHandle;
static DelayedCallbackInfo *pathDesiredUpdaterHandle;
static WaypointActiveData waypointActive;
static WaypointData waypoint;
static PathActionData pathAction;
static bool pathplanner_active = false;
static FrameType_t frameType;
static bool mode3D;
extern FrameType_t GetCurrentFrameType();
/**
* Module initialization
*/
int32_t PathPlannerStart()
{
plan_initialize();
// when the active waypoint changes, update pathDesired
WaypointConnectCallback(commandUpdated);
WaypointActiveConnectCallback(commandUpdated);
PathActionConnectCallback(commandUpdated);
PathStatusConnectCallback(statusUpdated);
SettingsUpdatedCb(NULL);
SystemSettingsConnectCallback(&SettingsUpdatedCb);
VtolPathFollowerSettingsConnectCallback(&SettingsUpdatedCb);
// Start main task callback
PIOS_CALLBACKSCHEDULER_Dispatch(pathPlannerHandle);
return 0;
}
/**
* Module initialization
*/
int32_t PathPlannerInitialize()
{
PathPlanInitialize();
PathActionInitialize();
PathStatusInitialize();
PathDesiredInitialize();
PositionStateInitialize();
AirspeedStateInitialize();
VelocityStateInitialize();
WaypointInitialize();
WaypointActiveInitialize();
StatusVtolAutoTakeoffInitialize();
StatusVtolLandInitialize();
pathPlannerHandle = PIOS_CALLBACKSCHEDULER_Create(&pathPlannerTask, CALLBACK_PRIORITY_REGULAR, TASK_PRIORITY, CALLBACKINFO_RUNNING_PATHPLANNER0, STACK_SIZE_BYTES);
pathDesiredUpdaterHandle = PIOS_CALLBACKSCHEDULER_Create(&updatePathDesired, CALLBACK_PRIORITY_CRITICAL, TASK_PRIORITY, CALLBACKINFO_RUNNING_PATHPLANNER1, STACK_SIZE_BYTES);
return 0;
}
MODULE_INITCALL(PathPlannerInitialize, PathPlannerStart);
static void SettingsUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
VtolPathFollowerSettingsTreatCustomCraftAsOptions TreatCustomCraftAs;
VtolPathFollowerSettingsTreatCustomCraftAsGet(&TreatCustomCraftAs);
frameType = GetCurrentFrameType();
if (frameType == FRAME_TYPE_CUSTOM) {
switch (TreatCustomCraftAs) {
case VTOLPATHFOLLOWERSETTINGS_TREATCUSTOMCRAFTAS_FIXEDWING:
frameType = FRAME_TYPE_FIXED_WING;
break;
case VTOLPATHFOLLOWERSETTINGS_TREATCUSTOMCRAFTAS_VTOL:
frameType = FRAME_TYPE_MULTIROTOR;
break;
case VTOLPATHFOLLOWERSETTINGS_TREATCUSTOMCRAFTAS_GROUND:
frameType = FRAME_TYPE_GROUND;
break;
}
}
switch (frameType) {
case FRAME_TYPE_GROUND:
mode3D = false;
break;
default:
mode3D = true;
}
}
#define AUTOTAKEOFF_THROTTLE_LIMIT_TO_ALLOW_TAKEOFF_START 0.3f
/**
* Module task
*/
static void pathPlannerTask()
{
PIOS_CALLBACKSCHEDULER_Schedule(pathPlannerHandle, PATH_PLANNER_UPDATE_RATE_MS, CALLBACK_UPDATEMODE_SOONER);
bool endCondition = false;
// check path plan validity early to raise alarm
// even if not in guided mode
uint8_t validPathPlan = checkPathPlan();
FlightStatusData flightStatus;
FlightStatusGet(&flightStatus);
if (flightStatus.ControlChain.PathPlanner != FLIGHTSTATUS_CONTROLCHAIN_TRUE) {
pathplanner_active = false;
if (!validPathPlan) {
// unverified path plans are only a warning while we are not in pathplanner mode
// so it does not prevent arming. However manualcontrols safety check
// shall test for this warning when pathplan is on the flight mode selector
// thus a valid flight plan is a prerequirement for arming
AlarmsSet(SYSTEMALARMS_ALARM_PATHPLAN, SYSTEMALARMS_ALARM_WARNING);
} else {
AlarmsClear(SYSTEMALARMS_ALARM_PATHPLAN);
}
return;
}
PathDesiredData pathDesired;
PathDesiredGet(&pathDesired);
static uint8_t failsafeRTHset = 0;
if (!validPathPlan) {
pathplanner_active = false;
if (!failsafeRTHset) {
failsafeRTHset = 1;
plan_setup_positionHold();
}
AlarmsSet(SYSTEMALARMS_ALARM_PATHPLAN, SYSTEMALARMS_ALARM_CRITICAL);
return;
}
failsafeRTHset = 0;
AlarmsClear(SYSTEMALARMS_ALARM_PATHPLAN);
WaypointActiveGet(&waypointActive);
// with the introduction of takeoff, we allow for arming
// whilst in pathplanner mode. Previously it was just an assumption that
// a user never armed in pathplanner mode. This check allows a user to select
// pathplanner, to upload waypoints, and then arm in pathplanner.
if (!flightStatus.Armed) {
return;
}
// the transition from pathplanner to another flightmode back to pathplanner
// triggers a reset back to 0 index in the waypoint list
if (pathplanner_active == false) {
pathplanner_active = true;
// This triggers callback to update variable
waypointActive.Index = 0;
WaypointActiveSet(&waypointActive);
return;
}
WaypointInstGet(waypointActive.Index, &waypoint);
PathActionInstGet(waypoint.Action, &pathAction);
PathStatusData pathStatus;
PathStatusGet(&pathStatus);
// delay next step until path follower has acknowledged the path mode
if (pathStatus.UID != pathDesired.UID) {
return;
}
// negative destinations DISABLE this feature
if (pathStatus.Status == PATHSTATUS_STATUS_CRITICAL && waypointActive.Index != pathAction.ErrorDestination && pathAction.ErrorDestination >= 0) {
setWaypoint(pathAction.ErrorDestination);
return;
}
// check start conditions
// autotakeoff requires midpoint thrust if we are in a pending takeoff situation
if (pathAction.Mode == PATHACTION_MODE_AUTOTAKEOFF) {
pathAction.EndCondition = PATHACTION_ENDCONDITION_LEGREMAINING;
if ((uint8_t)pathDesired.ModeParameters[PATHDESIRED_MODEPARAMETER_AUTOTAKEOFF_CONTROLSTATE] == STATUSVTOLAUTOTAKEOFF_CONTROLSTATE_WAITFORMIDTHROTTLE) {
ManualControlCommandData cmd;
ManualControlCommandGet(&cmd);
if (cmd.Throttle > AUTOTAKEOFF_THROTTLE_LIMIT_TO_ALLOW_TAKEOFF_START) {
pathDesired.ModeParameters[PATHDESIRED_MODEPARAMETER_AUTOTAKEOFF_CONTROLSTATE] = (float)STATUSVTOLAUTOTAKEOFF_CONTROLSTATE_INITIATE;
PathDesiredSet(&pathDesired);
}
return;
}
}
// check if condition has been met
endCondition = pathConditionCheck();
// decide what to do
switch (pathAction.Command) {
case PATHACTION_COMMAND_ONNOTCONDITIONNEXTWAYPOINT:
endCondition = !endCondition;
case PATHACTION_COMMAND_ONCONDITIONNEXTWAYPOINT:
if (endCondition) {
setWaypoint(waypointActive.Index + 1);
}
break;
case PATHACTION_COMMAND_ONNOTCONDITIONJUMPWAYPOINT:
endCondition = !endCondition;
case PATHACTION_COMMAND_ONCONDITIONJUMPWAYPOINT:
if (endCondition) {
if (pathAction.JumpDestination < 0) {
// waypoint ids <0 code relative jumps
setWaypoint(waypointActive.Index - pathAction.JumpDestination);
} else {
setWaypoint(pathAction.JumpDestination);
}
}
break;
case PATHACTION_COMMAND_IFCONDITIONJUMPWAYPOINTELSENEXTWAYPOINT:
if (endCondition) {
if (pathAction.JumpDestination < 0) {
// waypoint ids <0 code relative jumps
setWaypoint(waypointActive.Index - pathAction.JumpDestination);
} else {
setWaypoint(pathAction.JumpDestination);
}
} else {
setWaypoint(waypointActive.Index + 1);
}
break;
}
}
// callback function when waypoints changed in any way, update pathDesired
void updatePathDesired()
{
// only ever touch pathDesired if pathplanner is enabled
if (!pathplanner_active) {
return;
}
// find out current waypoint
WaypointActiveGet(&waypointActive);
WaypointInstGet(waypointActive.Index, &waypoint);
// Capture if current mode is takeoff
bool autotakeoff = (pathAction.Mode == PATHACTION_MODE_AUTOTAKEOFF);
PathActionInstGet(waypoint.Action, &pathAction);
PathDesiredData pathDesired;
switch (pathAction.Mode) {
case PATHACTION_MODE_AUTOTAKEOFF:
planner_setup_pathdesired_takeoff(&pathDesired);
break;
case PATHACTION_MODE_LAND:
planner_setup_pathdesired_land(&pathDesired);
break;
default:
planner_setup_pathdesired(&pathDesired, autotakeoff);
break;
}
PathDesiredSet(&pathDesired);
}
// safety checks for path plan integrity
static uint8_t checkPathPlan()
{
uint16_t i;
uint16_t waypointCount;
uint16_t actionCount;
uint8_t pathCrc;
PathPlanData pathPlan;
// WaypointData waypoint; // using global instead (?)
// PathActionData action; // using global instead (?)
PathPlanGet(&pathPlan);
waypointCount = pathPlan.WaypointCount;
if (waypointCount == 0) {
// an empty path plan is invalid
return false;
}
actionCount = pathPlan.PathActionCount;
// check count consistency
if (waypointCount > UAVObjGetNumInstances(WaypointHandle())) {
// PIOS_DEBUGLOG_Printf("PathPlan : waypoint count error!");
return false;
}
if (actionCount > UAVObjGetNumInstances(PathActionHandle())) {
// PIOS_DEBUGLOG_Printf("PathPlan : path action count error!");
return false;
}
// check CRC
pathCrc = 0;
for (i = 0; i < waypointCount; i++) {
pathCrc = UAVObjUpdateCRC(WaypointHandle(), i, pathCrc);
}
for (i = 0; i < actionCount; i++) {
pathCrc = UAVObjUpdateCRC(PathActionHandle(), i, pathCrc);
}
if (pathCrc != pathPlan.Crc) {
// failed crc check
// PIOS_DEBUGLOG_Printf("PathPlan : bad CRC (%d / %d)!", pathCrc, pathPlan.Crc);
return false;
}
// waypoint consistency
for (i = 0; i < waypointCount; i++) {
WaypointInstGet(i, &waypoint);
if (waypoint.Action >= actionCount) {
// path action id is out of range
return false;
}
}
// path action consistency
for (i = 0; i < actionCount; i++) {
PathActionInstGet(i, &pathAction);
if (pathAction.ErrorDestination >= waypointCount) {
// waypoint id is out of range
return false;
}
if (pathAction.JumpDestination >= waypointCount) {
// waypoint id is out of range
return false;
}
}
// path plan passed checks
return true;
}
// callback function when status changed, issue execution of state machine
void commandUpdated(__attribute__((unused)) UAVObjEvent *ev)
{
PIOS_CALLBACKSCHEDULER_Dispatch(pathDesiredUpdaterHandle);
}
// callback function when waypoints changed in any way, update pathDesired
void statusUpdated(__attribute__((unused)) UAVObjEvent *ev)
{
PIOS_CALLBACKSCHEDULER_Dispatch(pathPlannerHandle);
}
// Standard setup of a pathDesired command from the waypoint path plan
static void planner_setup_pathdesired(PathDesiredData *pathDesired, bool overwrite_start_position)
{
pathDesired->End.North = waypoint.Position.North;
pathDesired->End.East = waypoint.Position.East;
pathDesired->End.Down = waypoint.Position.Down;
pathDesired->EndingVelocity = waypoint.Velocity;
pathDesired->Mode = pathAction.Mode;
pathDesired->ModeParameters[0] = pathAction.ModeParameters[0];
pathDesired->ModeParameters[1] = pathAction.ModeParameters[1];
pathDesired->ModeParameters[2] = pathAction.ModeParameters[2];
pathDesired->ModeParameters[3] = pathAction.ModeParameters[3];
pathDesired->UID = waypointActive.Index;
if (waypointActive.Index == 0 || overwrite_start_position) {
PositionStateData positionState;
PositionStateGet(&positionState);
// First waypoint has itself as start point (used to be home position but that proved dangerous when looping)
/*pathDesired.Start[PATHDESIRED_START_NORTH] = waypoint.Position[WAYPOINT_POSITION_NORTH];
pathDesired.Start[PATHDESIRED_START_EAST] = waypoint.Position[WAYPOINT_POSITION_EAST];
pathDesired.Start[PATHDESIRED_START_DOWN] = waypoint.Position[WAYPOINT_POSITION_DOWN];*/
// note takeoff relies on the start being the current location as it merely ascends and using
// the start as assumption current NE location
pathDesired->Start.North = positionState.North;
pathDesired->Start.East = positionState.East;
pathDesired->Start.Down = positionState.Down;
pathDesired->StartingVelocity = pathDesired->EndingVelocity;
} else {
// Get previous waypoint as start point
WaypointData waypointPrev;
WaypointInstGet(waypointActive.Index - 1, &waypointPrev);
pathDesired->Start.North = waypointPrev.Position.North;
pathDesired->Start.East = waypointPrev.Position.East;
pathDesired->Start.Down = waypointPrev.Position.Down;
pathDesired->StartingVelocity = waypointPrev.Velocity;
}
}
#define AUTOTAKEOFF_TO_INCREMENTAL_HEIGHT_MIN 2.0f
#define AUTOTAKEOFF_TO_INCREMENTAL_HEIGHT_MAX 50.0f
static void planner_setup_pathdesired_takeoff(PathDesiredData *pathDesired)
{
PositionStateData positionState;
PositionStateGet(&positionState);
float velocity_down;
float autotakeoff_height;
FlightModeSettingsAutoTakeOffVelocityGet(&velocity_down);
FlightModeSettingsAutoTakeOffHeightGet(&autotakeoff_height);
autotakeoff_height = fabsf(autotakeoff_height);
if (autotakeoff_height < AUTOTAKEOFF_TO_INCREMENTAL_HEIGHT_MIN) {
autotakeoff_height = AUTOTAKEOFF_TO_INCREMENTAL_HEIGHT_MIN;
} else if (autotakeoff_height > AUTOTAKEOFF_TO_INCREMENTAL_HEIGHT_MAX) {
autotakeoff_height = AUTOTAKEOFF_TO_INCREMENTAL_HEIGHT_MAX;
}
pathDesired->Start.North = positionState.North;
pathDesired->Start.East = positionState.East;
pathDesired->Start.Down = positionState.Down;
pathDesired->ModeParameters[PATHDESIRED_MODEPARAMETER_AUTOTAKEOFF_NORTH] = 0.0f;
pathDesired->ModeParameters[PATHDESIRED_MODEPARAMETER_AUTOTAKEOFF_EAST] = 0.0f;
pathDesired->ModeParameters[PATHDESIRED_MODEPARAMETER_AUTOTAKEOFF_DOWN] = -velocity_down;
// initially halt takeoff.
pathDesired->ModeParameters[PATHDESIRED_MODEPARAMETER_AUTOTAKEOFF_CONTROLSTATE] = (float)STATUSVTOLAUTOTAKEOFF_CONTROLSTATE_WAITFORMIDTHROTTLE;
pathDesired->End.North = positionState.North;
pathDesired->End.East = positionState.East;
pathDesired->End.Down = positionState.Down - autotakeoff_height;
pathDesired->StartingVelocity = 0.0f;
pathDesired->EndingVelocity = 0.0f;
pathDesired->Mode = PATHDESIRED_MODE_AUTOTAKEOFF;
pathDesired->UID = waypointActive.Index;
}
static void planner_setup_pathdesired_land(PathDesiredData *pathDesired)
{
PositionStateData positionState;
PositionStateGet(&positionState);
float velocity_down;
FlightModeSettingsLandingVelocityGet(&velocity_down);
pathDesired->Start.North = positionState.North;
pathDesired->Start.East = positionState.East;
pathDesired->Start.Down = positionState.Down;
pathDesired->ModeParameters[PATHDESIRED_MODEPARAMETER_LAND_VELOCITYVECTOR_NORTH] = 0.0f;
pathDesired->ModeParameters[PATHDESIRED_MODEPARAMETER_LAND_VELOCITYVECTOR_EAST] = 0.0f;
pathDesired->ModeParameters[PATHDESIRED_MODEPARAMETER_LAND_VELOCITYVECTOR_DOWN] = velocity_down;
pathDesired->End.North = positionState.North;
pathDesired->End.East = positionState.East;
pathDesired->End.Down = positionState.Down;
pathDesired->StartingVelocity = 0.0f;
pathDesired->EndingVelocity = 0.0f;
pathDesired->Mode = PATHDESIRED_MODE_LAND;
pathDesired->ModeParameters[PATHDESIRED_MODEPARAMETER_LAND_OPTIONS] = (float)PATHDESIRED_MODEPARAMETER_LAND_OPTION_HORIZONTAL_PH;
}
// helper function to go to a specific waypoint
static void setWaypoint(uint16_t num)
{
PathPlanData pathPlan;
PathPlanGet(&pathPlan);
// here it is assumed that the path plan has been validated (waypoint count is consistent)
if (num >= pathPlan.WaypointCount) {
// path plans wrap around
num = 0;
}
waypointActive.Index = num;
WaypointActiveSet(&waypointActive);
}
// execute the appropriate condition and report result
static uint8_t pathConditionCheck()
{
// i thought about a lookup table, but a switch is safer considering there could be invalid EndCondition ID's
switch (pathAction.EndCondition) {
case PATHACTION_ENDCONDITION_NONE:
return conditionNone();
break;
case PATHACTION_ENDCONDITION_TIMEOUT:
return conditionTimeOut();
break;
case PATHACTION_ENDCONDITION_DISTANCETOTARGET:
return conditionDistanceToTarget();
break;
case PATHACTION_ENDCONDITION_LEGREMAINING:
return conditionLegRemaining();
break;
case PATHACTION_ENDCONDITION_BELOWERROR:
return conditionBelowError();
break;
case PATHACTION_ENDCONDITION_ABOVEALTITUDE:
return conditionAboveAltitude();
break;
case PATHACTION_ENDCONDITION_ABOVESPEED:
return conditionAboveSpeed();
break;
case PATHACTION_ENDCONDITION_POINTINGTOWARDSNEXT:
return conditionPointingTowardsNext();
break;
case PATHACTION_ENDCONDITION_PYTHONSCRIPT:
return conditionPythonScript();
break;
case PATHACTION_ENDCONDITION_IMMEDIATE:
return conditionImmediate();
break;
default:
// invalid endconditions are always true to prevent freezes
return true;
break;
}
}
/* the None condition is always false */
static uint8_t conditionNone()
{
return false;
}
/**
* the Timeout condition measures time this waypoint is active
* Parameter 0: timeout in seconds
*/
static uint8_t conditionTimeOut()
{
static uint16_t toWaypoint;
static uint32_t toStarttime;
// reset timer if waypoint changed
if (waypointActive.Index != toWaypoint) {
toWaypoint = waypointActive.Index;
toStarttime = PIOS_DELAY_GetRaw();
}
if (PIOS_DELAY_DiffuS(toStarttime) >= 1e6f * pathAction.ConditionParameters[0]) {
// make sure we reinitialize even if the same waypoint comes twice
toWaypoint = 0xFFFF;
return true;
}
return false;
}
/**
* the DistanceToTarget measures distance to a waypoint
* returns true if closer
* Parameter 0: distance in meters
* Parameter 1: flag: 0=2d 1=3d
*/
static uint8_t conditionDistanceToTarget()
{
float distance;
PositionStateData positionState;
PositionStateGet(&positionState);
if (pathAction.ConditionParameters[1] > 0.5f) {
distance = sqrtf(powf(waypoint.Position.North - positionState.North, 2)
+ powf(waypoint.Position.East - positionState.East, 2)
+ powf(waypoint.Position.Down - positionState.Down, 2));
} else {
distance = sqrtf(powf(waypoint.Position.North - positionState.North, 2)
+ powf(waypoint.Position.East - positionState.East, 2));
}
if (distance <= pathAction.ConditionParameters[0]) {
return true;
}
return false;
}
/**
* the LegRemaining measures how far the pathfollower got on a linear path segment
* returns true if closer to destination (path more complete)
* Parameter 0: relative distance (0= complete, 1= just starting)
*/
static uint8_t conditionLegRemaining()
{
PathStatusData pathStatus;
PathStatusGet(&pathStatus);
if (pathStatus.fractional_progress >= (1.0f - pathAction.ConditionParameters[0])) {
return true;
}
return false;
}
/**
* the BelowError measures the error on a path segment
* returns true if error is below margin
* Parameter 0: error margin (in m)
*/
static uint8_t conditionBelowError()
{
PathDesiredData pathDesired;
PositionStateData positionState;
PathDesiredGet(&pathDesired);
PositionStateGet(&positionState);
float cur[3] = { positionState.North, positionState.East, positionState.Down };
struct path_status progress;
path_progress(&pathDesired,
cur, &progress, mode3D);
if (progress.error <= pathAction.ConditionParameters[0]) {
return true;
}
return false;
}
/**
* the AboveAltitude measures the flight altitude relative to home position
* returns true if above critical altitude
* WARNING! Altitudes are always negative (down coordinate)
* Parameter 0: altitude in meters (negative!)
*/
static uint8_t conditionAboveAltitude()
{
PositionStateData positionState;
PositionStateGet(&positionState);
if (positionState.Down <= pathAction.ConditionParameters[0]) {
return true;
}
return false;
}
/**
* the AboveSpeed measures the movement speed (3d)
* returns true if above critical speed
* Parameter 0: speed in m/s
* Parameter 1: flag: 0=groundspeed 1=airspeed
*/
static uint8_t conditionAboveSpeed()
{
VelocityStateData velocityState;
VelocityStateGet(&velocityState);
float velocity = sqrtf(velocityState.North * velocityState.North + velocityState.East * velocityState.East + velocityState.Down * velocityState.Down);
// use airspeed if requested and available
if (pathAction.ConditionParameters[1] > 0.5f) {
AirspeedStateData airspeed;
AirspeedStateGet(&airspeed);
velocity = airspeed.CalibratedAirspeed;
}
if (velocity >= pathAction.ConditionParameters[0]) {
return true;
}
return false;
}
/**
* the PointingTowardsNext measures the horizontal movement vector direction relative to the next waypoint
* regardless whether this waypoint will ever be active (Command could jump to another one on true)
* This is useful for curve segments where the craft should stop circling when facing a certain way (usually the next waypoint)
* returns true if within a certain angular margin
* Parameter 0: degrees variation allowed
*/
static uint8_t conditionPointingTowardsNext()
{
uint16_t nextWaypointId = waypointActive.Index + 1;
if (nextWaypointId >= UAVObjGetNumInstances(WaypointHandle())) {
nextWaypointId = 0;
}
WaypointData nextWaypoint;
WaypointInstGet(nextWaypointId, &nextWaypoint);
float angle1 = atan2f((nextWaypoint.Position.North - waypoint.Position.North), (nextWaypoint.Position.East - waypoint.Position.East));
VelocityStateData velocity;
VelocityStateGet(&velocity);
float angle2 = atan2f(velocity.North, velocity.East);
// calculate the absolute angular difference
angle1 = fabsf(RAD2DEG(angle1 - angle2));
while (angle1 > 360) {
angle1 -= 360;
}
if (angle1 <= pathAction.ConditionParameters[0]) {
return true;
}
return false;
}
/**
* the PythonScript is supposed to read the output of a PyMite program running at the same time
* and return based on its output, likely read out through some to be defined UAVObject
* TODO XXX NOT YET IMPLEMENTED
* returns always true until implemented
* Parameter 0-3: defined by user script
*/
static uint8_t conditionPythonScript()
{
return true;
}
/* the immediate condition is always true */
static uint8_t conditionImmediate()
{
return true;
}
/**
* @}
* @}
*/