1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-01-24 09:52:11 +01:00

605 lines
21 KiB
C

/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup Sensors
* @brief Acquires sensor data
* @{
*
* @file sensors.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2015.
* @brief Module to handle fetch and preprocessing of sensor data
*
* @see The GNU Public License (GPL) Version 3
*
******************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/**
* Input objects: None, takes sensor data via pios
* Output objects: @ref GyroSensor @ref AccelSensor @ref MagSensor
*
* The module executes in its own thread.
*
* UAVObjects are automatically generated by the UAVObjectGenerator from
* the object definition XML file.
*
* Modules have no API, all communication to other modules is done through UAVObjects.
* However modules may use the API exposed by shared libraries.
* See the OpenPilot wiki for more details.
* http://www.openpilot.org/OpenPilot_Application_Architecture
*
*/
#include <openpilot.h>
#include <pios_sensors.h>
#include <homelocation.h>
#include <magsensor.h>
#include <accelsensor.h>
#include <gyrosensor.h>
#include <barosensor.h>
#include <flightstatus.h>
#include <attitudesettings.h>
#include <revocalibration.h>
#include <accelgyrosettings.h>
#include <revosettings.h>
#include <mathmisc.h>
#include <taskinfo.h>
#include <pios_math.h>
#include <pios_constants.h>
#include <CoordinateConversions.h>
#include <pios_board_info.h>
#include <string.h>
// Private constants
#define STACK_SIZE_BYTES 1000
#define TASK_PRIORITY (tskIDLE_PRIORITY + 3)
#define MAX_SENSORS_PER_INSTANCE 2
#ifdef PIOS_INCLUDE_WDG
#define RELOAD_WDG() PIOS_WDG_UpdateFlag(PIOS_WDG_SENSORS)
#define REGISTER_WDG() PIOS_WDG_RegisterFlag(PIOS_WDG_SENSORS)
#else
#define RELOAD_WDG()
#define REGISTER_WDG()
#endif
static const TickType_t sensor_period_ticks = ((uint32_t)1000.0f / PIOS_SENSOR_RATE) / portTICK_RATE_MS;
// Interval in number of sample to recalculate temp bias
#define TEMP_CALIB_INTERVAL 30
// LPF
#define TEMP_DT_GYRO_ACCEL (1.0f / PIOS_SENSOR_RATE)
#define TEMP_LPF_FC_GYRO_ACCEL 5.0f
static const float temp_alpha_gyro_accel = LPF_ALPHA(TEMP_DT_GYRO_ACCEL, TEMP_LPF_FC_GYRO_ACCEL);
// Interval in number of sample to recalculate temp bias
#define BARO_TEMP_CALIB_INTERVAL 10
// LPF
#define TEMP_DT_BARO (1.0f / 120.0f)
#define TEMP_LPF_FC_BARO 5.0f
static const float temp_alpha_baro = TEMP_DT_BARO / (TEMP_DT_BARO + 1.0f / (2.0f * M_PI_F * TEMP_LPF_FC_BARO));
#define ZERO_ROT_ANGLE 0.00001f
// Private types
typedef struct {
// used to accumulate all samples in a task iteration
Vector3i32 accum[2];
int32_t temperature;
uint32_t count;
} sensor_fetch_context;
#define MAX_SENSOR_DATA_SIZE (sizeof(PIOS_SENSORS_3Axis_SensorsWithTemp) + MAX_SENSORS_PER_INSTANCE * sizeof(Vector3i16))
typedef union {
PIOS_SENSORS_3Axis_SensorsWithTemp sensorSample3Axis;
PIOS_SENSORS_1Axis_SensorsWithTemp sensorSample1Axis;
} sensor_data;
#define PIOS_INSTRUMENT_MODULE
#include <pios_instrumentation_helper.h>
PERF_DEFINE_COUNTER(counterAccelSamples);
PERF_DEFINE_COUNTER(counterAccelPeriod);
PERF_DEFINE_COUNTER(counterMagPeriod);
PERF_DEFINE_COUNTER(counterBaroPeriod);
PERF_DEFINE_COUNTER(counterSensorPeriod);
PERF_DEFINE_COUNTER(counterSensorResets);
// Private functions
static void SensorsTask(void *parameters);
static void settingsUpdatedCb(UAVObjEvent *objEv);
static void accumulateSamples(sensor_fetch_context *sensor_context, sensor_data *sample);
static void processSamples3d(sensor_fetch_context *sensor_context, const PIOS_SENSORS_Instance *sensor);
static void processSamples1d(PIOS_SENSORS_1Axis_SensorsWithTemp *sample, const PIOS_SENSORS_Instance *sensor);
static void clearContext(sensor_fetch_context *sensor_context);
static void handleAccel(float *samples, float temperature);
static void handleGyro(float *samples, float temperature);
static void handleMag(float *samples, float temperature);
static void handleBaro(float sample, float temperature);
static void updateAccelTempBias(float temperature);
static void updateGyroTempBias(float temperature);
static void updateBaroTempBias(float temperature);
// Private variables
static sensor_data *source_data;
static xTaskHandle sensorsTaskHandle;
RevoCalibrationData cal;
AccelGyroSettingsData agcal;
// These values are initialized by settings but can be updated by the attitude algorithm
static float mag_bias[3] = { 0, 0, 0 };
static float mag_transform[3][3] = {
{ 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 }
};
// Variables used to handle accel/gyro temperature bias
static volatile bool gyro_temp_calibrated = false;
static volatile bool accel_temp_calibrated = false;
static float accel_temperature = NAN;
static float gyro_temperature = NAN;
static float accel_temp_bias[3] = { 0 };
static float gyro_temp_bias[3] = { 0 };
static uint8_t accel_temp_calibration_count = 0;
static uint8_t gyro_temp_calibration_count = 0;
static float R[3][3] = {
{ 0 }
};
// Variables used to handle baro temperature bias
static RevoSettingsBaroTempCorrectionPolynomialData baroCorrection;
static RevoSettingsBaroTempCorrectionExtentData baroCorrectionExtent;
static volatile bool baro_temp_correction_enabled;
static float baro_temp_bias = 0;
static float baro_temperature = NAN;
static uint8_t baro_temp_calibration_count = 0;
static int8_t rotate = 0;
/**
* Initialise the module. Called before the start function
* \returns 0 on success or -1 if initialisation failed
*/
int32_t SensorsInitialize(void)
{
source_data = (sensor_data *)pios_malloc(MAX_SENSOR_DATA_SIZE);
GyroSensorInitialize();
AccelSensorInitialize();
MagSensorInitialize();
BaroSensorInitialize();
RevoCalibrationInitialize();
RevoSettingsInitialize();
AttitudeSettingsInitialize();
AccelGyroSettingsInitialize();
rotate = 0;
RevoSettingsConnectCallback(&settingsUpdatedCb);
RevoCalibrationConnectCallback(&settingsUpdatedCb);
AttitudeSettingsConnectCallback(&settingsUpdatedCb);
AccelGyroSettingsConnectCallback(&settingsUpdatedCb);
return 0;
}
/**
* Start the task. Expects all objects to be initialized by this point.
* \returns 0 on success or -1 if initialisation failed
*/
int32_t SensorsStart(void)
{
// Start main task
xTaskCreate(SensorsTask, "Sensors", STACK_SIZE_BYTES / 4, NULL, TASK_PRIORITY, &sensorsTaskHandle);
PIOS_TASK_MONITOR_RegisterTask(TASKINFO_RUNNING_SENSORS, sensorsTaskHandle);
REGISTER_WDG();
return 0;
}
MODULE_INITCALL(SensorsInitialize, SensorsStart);
int32_t accel_test;
int32_t gyro_test;
int32_t mag_test;
// int32_t pressure_test;
/**
* The sensor task. This polls the gyros at 500 Hz and pumps that data to
* stabilization and to the attitude loop
*
*/
uint32_t sensor_dt_us;
static void SensorsTask(__attribute__((unused)) void *parameters)
{
portTickType lastSysTime;
sensor_fetch_context sensor_context;
bool error = false;
const PIOS_SENSORS_Instance *sensors_list = PIOS_SENSORS_GetList();
PIOS_SENSORS_Instance *sensor;
AlarmsClear(SYSTEMALARMS_ALARM_SENSORS);
settingsUpdatedCb(NULL);
// Performance counters
PERF_INIT_COUNTER(counterAccelSamples, 0x53000001);
PERF_INIT_COUNTER(counterAccelPeriod, 0x53000002);
PERF_INIT_COUNTER(counterMagPeriod, 0x53000003);
PERF_INIT_COUNTER(counterBaroPeriod, 0x53000004);
PERF_INIT_COUNTER(counterSensorPeriod, 0x53000005);
PERF_INIT_COUNTER(counterSensorResets, 0x53000006);
// Test sensors
bool sensors_test = true;
uint8_t count = 0;
LL_FOREACH((PIOS_SENSORS_Instance *)sensors_list, sensor) {
sensors_test &= PIOS_SENSORS_Test(sensor);
count++;
}
PIOS_Assert(count);
RELOAD_WDG();
if (!sensors_test) {
AlarmsSet(SYSTEMALARMS_ALARM_SENSORS, SYSTEMALARMS_ALARM_CRITICAL);
while (1) {
vTaskDelay(10);
}
}
// Main task loop
lastSysTime = xTaskGetTickCount();
uint32_t reset_counter = 0;
while (1) {
// TODO: add timeouts to the sensor reads and set an error if the fail
if (error) {
RELOAD_WDG();
lastSysTime = xTaskGetTickCount();
vTaskDelayUntil(&lastSysTime, sensor_period_ticks);
AlarmsSet(SYSTEMALARMS_ALARM_SENSORS, SYSTEMALARMS_ALARM_CRITICAL);
error = false;
} else {
AlarmsClear(SYSTEMALARMS_ALARM_SENSORS);
}
// reset the fetch context
clearContext(&sensor_context);
LL_FOREACH((PIOS_SENSORS_Instance *)sensors_list, sensor) {
// we will wait on the sensor that's marked as primary( that means the sensor with higher sample rate)
bool is_primary = (sensor->type & PIOS_SENSORS_TYPE_3AXIS_ACCEL);
if (!sensor->driver->is_polled) {
const QueueHandle_t queue = PIOS_SENSORS_GetQueue(sensor);
while (xQueueReceive(queue,
(void *)source_data,
(is_primary && !sensor_context.count) ? sensor_period_ticks : 0) == pdTRUE) {
accumulateSamples(&sensor_context, source_data);
}
if (sensor_context.count) {
processSamples3d(&sensor_context, sensor);
clearContext(&sensor_context);
} else if (is_primary) {
PIOS_SENSOR_Reset(sensor);
reset_counter++;
PERF_TRACK_VALUE(counterSensorResets, reset_counter);
error = true;
}
} else {
if (PIOS_SENSORS_Poll(sensor)) {
PIOS_SENSOR_Fetch(sensor, (void *)source_data, MAX_SENSORS_PER_INSTANCE);
if (sensor->type & PIOS_SENSORS_TYPE_3D) {
accumulateSamples(&sensor_context, source_data);
processSamples3d(&sensor_context, sensor);
} else {
processSamples1d(&source_data->sensorSample1Axis, sensor);
}
clearContext(&sensor_context);
}
}
}
PERF_MEASURE_PERIOD(counterSensorPeriod);
RELOAD_WDG();
vTaskDelayUntil(&lastSysTime, sensor_period_ticks);
}
}
static void clearContext(sensor_fetch_context *sensor_context)
{
// clear the context once it has finished
for (uint32_t i = 0; i < MAX_SENSORS_PER_INSTANCE; i++) {
sensor_context->accum[i].x = 0;
sensor_context->accum[i].y = 0;
sensor_context->accum[i].z = 0;
}
sensor_context->temperature = 0;
sensor_context->count = 0;
}
static void accumulateSamples(sensor_fetch_context *sensor_context, sensor_data *sample)
{
for (uint32_t i = 0; (i < MAX_SENSORS_PER_INSTANCE) && (i < sample->sensorSample3Axis.count); i++) {
sensor_context->accum[i].x += sample->sensorSample3Axis.sample[i].x;
sensor_context->accum[i].y += sample->sensorSample3Axis.sample[i].y;
sensor_context->accum[i].z += sample->sensorSample3Axis.sample[i].z;
}
sensor_context->temperature += sample->sensorSample3Axis.temperature;
sensor_context->count++;
}
static void processSamples3d(sensor_fetch_context *sensor_context, const PIOS_SENSORS_Instance *sensor)
{
float samples[3];
float temperature;
float scales[MAX_SENSORS_PER_INSTANCE];
PIOS_SENSORS_GetScales(sensor, scales, MAX_SENSORS_PER_INSTANCE);
float inv_count = 1.0f / (float)sensor_context->count;
if ((sensor->type & PIOS_SENSORS_TYPE_3AXIS_ACCEL) ||
(sensor->type == PIOS_SENSORS_TYPE_3AXIS_MAG)) {
float t = inv_count * scales[0];
samples[0] = ((float)sensor_context->accum[0].x * t);
samples[1] = ((float)sensor_context->accum[0].y * t);
samples[2] = ((float)sensor_context->accum[0].z * t);
temperature = (float)sensor_context->temperature * inv_count * 0.01f;
if (sensor->type == PIOS_SENSORS_TYPE_3AXIS_MAG) {
handleMag(samples, temperature);
PERF_MEASURE_PERIOD(counterMagPeriod);
return;
} else {
PERF_TRACK_VALUE(counterAccelSamples, sensor_context->count);
PERF_MEASURE_PERIOD(counterAccelPeriod);
handleAccel(samples, temperature);
}
}
if (sensor->type & PIOS_SENSORS_TYPE_3AXIS_GYRO) {
uint8_t index = 0;
if (sensor->type == PIOS_SENSORS_TYPE_3AXIS_GYRO_ACCEL) {
index = 1;
}
float t = inv_count * scales[index];
samples[0] = ((float)sensor_context->accum[index].x * t);
samples[1] = ((float)sensor_context->accum[index].y * t);
samples[2] = ((float)sensor_context->accum[index].z * t);
temperature = (float)sensor_context->temperature * inv_count * 0.01f;
handleGyro(samples, temperature);
return;
}
}
static void processSamples1d(PIOS_SENSORS_1Axis_SensorsWithTemp *sample, const PIOS_SENSORS_Instance *sensor)
{
switch (sensor->type) {
case PIOS_SENSORS_TYPE_1AXIS_BARO:
PERF_MEASURE_PERIOD(counterBaroPeriod);
handleBaro(sample->sample, sample->temperature);
return;
default:
PIOS_Assert(0);
}
}
static void handleAccel(float *samples, float temperature)
{
AccelSensorData accelSensorData;
updateAccelTempBias(temperature);
float accels_out[3] = { (samples[0] - agcal.accel_bias.X) * agcal.accel_scale.X - accel_temp_bias[0],
(samples[1] - agcal.accel_bias.Y) * agcal.accel_scale.Y - accel_temp_bias[1],
(samples[2] - agcal.accel_bias.Z) * agcal.accel_scale.Z - accel_temp_bias[2] };
rot_mult(R, accels_out, samples);
accelSensorData.x = samples[0];
accelSensorData.y = samples[1];
accelSensorData.z = samples[2];
accelSensorData.temperature = temperature;
AccelSensorSet(&accelSensorData);
}
static void handleGyro(float *samples, float temperature)
{
GyroSensorData gyroSensorData;
updateGyroTempBias(temperature);
float gyros_out[3] = { samples[0] * agcal.gyro_scale.X - agcal.gyro_bias.X - gyro_temp_bias[0],
samples[1] * agcal.gyro_scale.Y - agcal.gyro_bias.Y - gyro_temp_bias[1],
samples[2] * agcal.gyro_scale.Z - agcal.gyro_bias.Z - gyro_temp_bias[2] };
rot_mult(R, gyros_out, samples);
gyroSensorData.temperature = temperature;
gyroSensorData.x = samples[0];
gyroSensorData.y = samples[1];
gyroSensorData.z = samples[2];
GyroSensorSet(&gyroSensorData);
}
static void handleMag(float *samples, float temperature)
{
MagSensorData mag;
float mags[3] = { (float)samples[0] - mag_bias[0],
(float)samples[1] - mag_bias[1],
(float)samples[2] - mag_bias[2] };
rot_mult(mag_transform, mags, samples);
mag.x = samples[0];
mag.y = samples[1];
mag.z = samples[2];
mag.temperature = temperature;
MagSensorSet(&mag);
}
static void handleBaro(float sample, float temperature)
{
updateBaroTempBias(temperature);
sample -= baro_temp_bias;
float altitude = 44330.0f * (1.0f - powf((sample) / PIOS_CONST_MKS_STD_ATMOSPHERE_F, (1.0f / 5.255f)));
if (!isnan(altitude)) {
BaroSensorData data;
data.Altitude = altitude;
data.Temperature = temperature;
data.Pressure = sample;
// Update the BasoSensor UAVObject
BaroSensorSet(&data);
}
}
static void updateAccelTempBias(float temperature)
{
if (isnan(accel_temperature)) {
accel_temperature = temperature;
}
accel_temperature = temp_alpha_gyro_accel * (temperature - accel_temperature) + accel_temperature;
if ((accel_temp_calibrated) && !accel_temp_calibration_count) {
accel_temp_calibration_count = TEMP_CALIB_INTERVAL;
if (accel_temp_calibrated) {
float ctemp = boundf(accel_temperature,
agcal.temp_calibrated_extent.max,
agcal.temp_calibrated_extent.min);
accel_temp_bias[0] = agcal.accel_temp_coeff.X * ctemp;
accel_temp_bias[1] = agcal.accel_temp_coeff.Y * ctemp;
accel_temp_bias[2] = agcal.accel_temp_coeff.Z * ctemp;
}
}
accel_temp_calibration_count--;
}
static void updateGyroTempBias(float temperature)
{
if (isnan(gyro_temperature)) {
gyro_temperature = temperature;
}
gyro_temperature = temp_alpha_gyro_accel * (temperature - gyro_temperature) + gyro_temperature;
if (gyro_temp_calibrated && !gyro_temp_calibration_count) {
gyro_temp_calibration_count = TEMP_CALIB_INTERVAL;
if (gyro_temp_calibrated) {
float ctemp = boundf(gyro_temperature, agcal.temp_calibrated_extent.max, agcal.temp_calibrated_extent.min);
gyro_temp_bias[0] = (agcal.gyro_temp_coeff.X + agcal.gyro_temp_coeff.X2 * ctemp) * ctemp;
gyro_temp_bias[1] = (agcal.gyro_temp_coeff.Y + agcal.gyro_temp_coeff.Y2 * ctemp) * ctemp;
gyro_temp_bias[2] = (agcal.gyro_temp_coeff.Z + agcal.gyro_temp_coeff.Z2 * ctemp) * ctemp;
}
}
gyro_temp_calibration_count--;
}
static void updateBaroTempBias(float temperature)
{
if (isnan(baro_temperature)) {
baro_temperature = temperature;
}
baro_temperature = temp_alpha_baro * (temperature - baro_temperature) + baro_temperature;
if (baro_temp_correction_enabled && !baro_temp_calibration_count) {
baro_temp_calibration_count = BARO_TEMP_CALIB_INTERVAL;
// pressure bias = A + B*t + C*t^2 + D * t^3
// in case the temperature is outside of the calibrated range, uses the nearest extremes
float ctemp = boundf(baro_temperature, baroCorrectionExtent.max, baroCorrectionExtent.min);
baro_temp_bias = baroCorrection.a + ((baroCorrection.d * ctemp + baroCorrection.c) * ctemp + baroCorrection.b) * ctemp;
}
baro_temp_calibration_count--;
}
/**
* Locally cache some variables from the AtttitudeSettings object
*/
static void settingsUpdatedCb(__attribute__((unused)) UAVObjEvent *objEv)
{
RevoCalibrationGet(&cal);
AccelGyroSettingsGet(&agcal);
mag_bias[0] = cal.mag_bias.X;
mag_bias[1] = cal.mag_bias.Y;
mag_bias[2] = cal.mag_bias.Z;
accel_temp_calibrated = (agcal.temp_calibrated_extent.max - agcal.temp_calibrated_extent.min > .1f) &&
(fabsf(agcal.accel_temp_coeff.X) > 1e-9f || fabsf(agcal.accel_temp_coeff.Y) > 1e-9f || fabsf(agcal.accel_temp_coeff.Z) > 1e-9f);
gyro_temp_calibrated = (agcal.temp_calibrated_extent.max - agcal.temp_calibrated_extent.min > .1f) &&
(fabsf(agcal.gyro_temp_coeff.X) > 1e-9f || fabsf(agcal.gyro_temp_coeff.Y) > 1e-9f ||
fabsf(agcal.gyro_temp_coeff.Z) > 1e-9f || fabsf(agcal.gyro_temp_coeff.Z2) > 1e-9f);
AttitudeSettingsData attitudeSettings;
AttitudeSettingsGet(&attitudeSettings);
// Indicates not to expend cycles on rotation
if (fabsf(attitudeSettings.BoardRotation.Roll) < ZERO_ROT_ANGLE
&& fabsf(attitudeSettings.BoardRotation.Pitch) < ZERO_ROT_ANGLE &&
fabsf(attitudeSettings.BoardRotation.Yaw) < ZERO_ROT_ANGLE) {
rotate = 0;
} else {
rotate = 1;
}
const float rpy[3] = { attitudeSettings.BoardRotation.Roll,
attitudeSettings.BoardRotation.Pitch,
attitudeSettings.BoardRotation.Yaw };
float rotationQuat[4];
RPY2Quaternion(rpy, rotationQuat);
if (fabsf(attitudeSettings.BoardLevelTrim.Roll) > ZERO_ROT_ANGLE ||
fabsf(attitudeSettings.BoardLevelTrim.Pitch) > ZERO_ROT_ANGLE) {
float trimQuat[4];
float sumQuat[4];
rotate = 1;
const float trimRpy[3] = { attitudeSettings.BoardLevelTrim.Roll, attitudeSettings.BoardLevelTrim.Pitch, 0.0f };
RPY2Quaternion(trimRpy, trimQuat);
quat_mult(rotationQuat, trimQuat, sumQuat);
Quaternion2R(sumQuat, R);
} else {
Quaternion2R(rotationQuat, R);
}
matrix_mult_3x3f((float(*)[3])RevoCalibrationmag_transformToArray(cal.mag_transform), R, mag_transform);
RevoSettingsBaroTempCorrectionPolynomialGet(&baroCorrection);
RevoSettingsBaroTempCorrectionExtentGet(&baroCorrectionExtent);
baro_temp_correction_enabled =
(baroCorrectionExtent.max - baroCorrectionExtent.min > 0.1f &&
(fabsf(baroCorrection.a) > 1e-9f ||
fabsf(baroCorrection.b) > 1e-9f ||
fabsf(baroCorrection.c) > 1e-9f ||
fabsf(baroCorrection.d) > 1e-9f));
}
/**
* @}
* @}
*/