1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-12-11 19:24:10 +01:00
LibrePilot/flight/OpenPilot/Modules/Guidance/guidance.c
corvus e44045f422 OP-165 : Guidance Module
Creating GuidanceModule together with PositionDesired UAVObject (as discussed),
so dschin and me can work on it :-)
Will compile and (on sim_posix) execute, but PID logic is yet untested and preliminary.



git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@1722 ebee16cc-31ac-478f-84a7-5cbb03baadba
2010-09-22 22:16:48 +00:00

281 lines
11 KiB
C

/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup GuidanceModule Guidance Module
* @brief Guidance PID loops in an airframe type independent manner
* @note This object updates the @ref AttitudeDesired "Attitude Desired" based on the
* PID loops on the craft position, speed and course
* @{
*
* @file guidance.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief Attitude guidance module.
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "openpilot.h"
#include "guidance.h"
#include "guidancesettings.h"
#include "attitudedesired.h"
#include "positiondesired.h"
#include "positionactual.h"
#include "attitudeactual.h"
#include "manualcontrolcommand.h"
#include "systemsettings.h"
// Private constants
#define STACK_SIZE configMINIMAL_STACK_SIZE
#define TASK_PRIORITY (tskIDLE_PRIORITY+4)
#define LATERAL_INTEGRAL_LIMIT 0.5
#define COURSE_INTEGRAL_LIMIT 0.5
#define ENERGY_INTEGRAL_LIMIT 0.5
#define SPEED_INTEGRAL_LIMIT 0.5
#define DEG2RAD ( M_PI / 180.0 )
#define GEE 9.81
// Private types
// Private variables
static xTaskHandle taskHandle;
// Private functions
static void guidanceTask(void* parameters);
static float bound(float val, float min, float max);
static float angleDifference(float val);
/**
* Module initialization
*/
int32_t GuidanceInitialize()
{
// Initialize variables
// Start main task
xTaskCreate(guidanceTask, (signed char*)"Guidance", STACK_SIZE, NULL, TASK_PRIORITY, &taskHandle);
return 0;
}
/**
* Module task
*/
static void guidanceTask(void* parameters)
{
GuidanceSettingsData guidanceSettings;
AttitudeDesiredData attitudeDesired;
AttitudeActualData attitudeActual;
PositionActualData positionActual;
PositionDesiredData positionDesired;
ManualControlCommandData manualControl;
SystemSettingsData systemSettings;
portTickType lastSysTime;
// declarations...
float lateralError, lateralErrorLast, lateralDerivative, lateralIntegralLimit, lateralIntegral;
float courseError, courseErrorLast, courseDerivative, courseIntegralLimit, courseIntegral;
float speedError, speedErrorLast, speedDerivative, speedIntegralLimit, speedIntegral;
float energyError, energyErrorLast, energyDerivative, energyIntegralLimit, energyIntegral;
float sinAlpha, cosAlpha;
// Initialize
lateralIntegral = 0.0;
courseIntegral = 0.0;
speedIntegral = 0.0;
energyIntegral = 0.0;
lateralErrorLast = 0.0;
courseErrorLast = 0.0;
speedErrorLast = 0.0;
energyErrorLast = 0.0;
// Main task loop
lastSysTime = xTaskGetTickCount();
while (1)
{
// Read settings and other objects
GuidanceSettingsGet(&guidanceSettings);
SystemSettingsGet(&systemSettings);
ManualControlCommandGet(&manualControl);
PositionDesiredGet(&positionDesired);
PositionActualGet(&positionActual);
AttitudeActualGet(&attitudeActual);
// lateral PID Loop
// error is the distance between the current position and the imaginary line going through PositionDesired.NED
// at PositionDesired.Heading degrees course
sinAlpha = sin(positionDesired.Heading);
cosAlpha = cos(positionDesired.Heading);
lateralError = (
- sinAlpha * ( positionDesired.NED[0] - positionActual.NED[0] )
+ cosAlpha * ( positionDesired.NED[1] - positionActual.NED[1] )
) / ( sinAlpha*sinAlpha + cosAlpha*cosAlpha );
lateralDerivative = lateralError - lateralErrorLast;
lateralErrorLast = lateralError;
lateralIntegralLimit = LATERAL_INTEGRAL_LIMIT / guidanceSettings.LateralKi;
lateralIntegral = bound(lateralIntegral+lateralError*guidanceSettings.UpdatePeriod,
-lateralIntegralLimit,lateralIntegralLimit);
attitudeDesired.Yaw = angleDifference( bound( ( guidanceSettings.LateralKp*lateralError +
guidanceSettings.LateralKi*lateralIntegral +
guidanceSettings.LateralKd*lateralDerivative
),-90,90
) + positionDesired.Heading
);
if (attitudeDesired.Yaw<0) attitudeDesired.Yaw+=360;
// course PID Loop
// very straighforward
courseError = angleDifference( attitudeDesired.Yaw - positionActual.Heading );
courseDerivative = courseError - courseErrorLast;
courseErrorLast = courseError;
courseIntegralLimit = COURSE_INTEGRAL_LIMIT / guidanceSettings.CourseKi;
courseIntegral = bound(courseIntegral+courseError*guidanceSettings.UpdatePeriod,
-courseIntegralLimit,courseIntegralLimit);
attitudeDesired.Roll = bound( ( guidanceSettings.CourseKp*courseError +
guidanceSettings.CourseKi*courseIntegral +
guidanceSettings.CourseKd*courseDerivative
),-guidanceSettings.RollMax,guidanceSettings.RollMax
);
// speed PID loop
// since desired value is given as groundspeed, but our limits affect airspeed, translation is necessary
// we assume a constant (wind) offset between the two
// (this is not completely correct since there might be an air pressure dependent linear relationship, too
// but this puts only a linear multiplication factor on our error)
speedError = bound(
positionDesired.Groundspeed +
(positionActual.Airspeed-positionActual.Groundspeed)
,guidanceSettings.SpeedMin,guidanceSettings.SpeedMax
) - positionActual.Airspeed;
speedDerivative = speedError - speedErrorLast;
speedErrorLast = speedError;
speedIntegralLimit = SPEED_INTEGRAL_LIMIT / guidanceSettings.SpeedKi;
speedIntegral = bound(speedIntegral+speedError*guidanceSettings.UpdatePeriod,
-speedIntegralLimit,speedIntegralLimit);
attitudeDesired.Pitch = bound( -( guidanceSettings.SpeedKp*speedError +
guidanceSettings.SpeedKi*speedIntegral +
guidanceSettings.SpeedKd*speedDerivative
),guidanceSettings.PitchMin,guidanceSettings.PitchMax
);
// energy PID loop - flight energy = mass_factor*(speed^2+g*altitude) - using mass_factor=1
// the desired energy is calculated from the desired airspeed (which has been calculated above)
// and the desired altitude
energyError = (
( speedError + positionActual.Airspeed ) * ( speedError + positionActual.Airspeed )
+ GEE * -positionDesired.NED[3]
) - (
positionActual.Airspeed * positionActual.Airspeed + positionActual.Climbrate * positionActual.Climbrate
+ GEE * -positionActual.NED[3]
);
energyDerivative = energyError - energyErrorLast;
energyErrorLast = energyError;
energyIntegralLimit = SPEED_INTEGRAL_LIMIT / guidanceSettings.EnergyKi;
energyIntegral = bound(energyIntegral+energyError*guidanceSettings.UpdatePeriod,
-energyIntegralLimit,energyIntegralLimit);
attitudeDesired.Throttle = bound( ( guidanceSettings.EnergyKp*energyError +
guidanceSettings.EnergyKi*energyIntegral +
guidanceSettings.EnergyKd*energyDerivative
),guidanceSettings.ThrottleMin,guidanceSettings.ThrottleMax
);
// adapt roll in case of negative pitch demand
if (attitudeDesired.Pitch < attitudeActual.Pitch) {
if (attitudeDesired.Pitch <= attitudeActual.Pitch - guidanceSettings.PitchRollEpsilon) {
// in case of heavy push, reverse roll
attitudeDesired.Roll = -attitudeDesired.Roll;
} else {
// otherwise linear interpolation between Roll and -Roll
attitudeDesired.Roll -= 2.0 * attitudeDesired.Roll *
( attitudeActual.Pitch - attitudeDesired.Pitch )
/ guidanceSettings.PitchRollEpsilon;
}
}
// Write actuator desired (if not in manual mode)
if ( manualControl.FlightMode == MANUALCONTROLCOMMAND_FLIGHTMODE_AUTO )
{
AttitudeDesiredSet(&attitudeDesired);
}
else
{
lateralIntegral = 0.0;
courseIntegral = 0.0;
speedIntegral = 0.0;
energyIntegral = 0.0;
lateralErrorLast = 0.0;
courseErrorLast = 0.0;
speedErrorLast = 0.0;
energyErrorLast = 0.0;
}
// Clear alarms
AlarmsClear(SYSTEMALARMS_ALARM_GUIDANCE);
// Wait until next update
vTaskDelayUntil(&lastSysTime, guidanceSettings.UpdatePeriod / portTICK_RATE_MS );
}
}
/**
* Bound input value between limits
*/
static float bound(float val, float min, float max)
{
if ( val < min )
{
val = min;
}
else if ( val > max )
{
val = max;
}
return val;
}
/**
* Fix result of angular differences
*/
static float angleDifference(float val)
{
while ( val < -180.0 )
{
val += 360.0;
}
while ( val > 180.0 )
{
val -= 360.0;
}
return val;
}
/**
* @}
* @}
*/