1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-01-19 04:52:12 +01:00
Richard Flay (Hyper) fbc8bc698f OP-936: Merges branch 'next' into hyper/OP-936_task-monitor-rework, fixes damage/conflicts,
and brings the callback scheduler into the fold.

+review OPReview-461
2013-05-06 19:11:14 +09:30

767 lines
30 KiB
C

/**
******************************************************************************
*
* @file vtolpathfollower.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012.
* @brief This module compared @ref PositionActual to @ref PathDesired
* and sets @ref Stabilization. It only does this when the FlightMode field
* of @ref FlightStatus is PathPlanner or RTH.
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/**
* Input object: FlightStatus
* Input object: PathDesired
* Input object: PositionActual
* Output object: StabilizationDesired
*
* This module will periodically update the value of the @ref StabilizationDesired object based on
* @ref PathDesired and @PositionActual when the Flight Mode selected in @FlightStatus is supported
* by this module. Otherwise another module (e.g. @ref ManualControlCommand) is expected to be
* writing to @ref StabilizationDesired.
*
* The module executes in its own thread in this example.
*
* Modules have no API, all communication to other modules is done through UAVObjects.
* However modules may use the API exposed by shared libraries.
* See the OpenPilot wiki for more details.
* http://www.openpilot.org/OpenPilot_Application_Architecture
*
*/
#include <openpilot.h>
#include "vtolpathfollower.h"
#include "accels.h"
#include "attitudeactual.h"
#include "hwsettings.h"
#include "pathdesired.h" // object that will be updated by the module
#include "positionactual.h"
#include "manualcontrol.h"
#include "flightstatus.h"
#include "pathstatus.h"
#include "gpsvelocity.h"
#include "gpsposition.h"
#include "homelocation.h"
#include "vtolpathfollowersettings.h"
#include "nedaccel.h"
#include "stabilizationdesired.h"
#include "stabilizationsettings.h"
#include "systemsettings.h"
#include "velocitydesired.h"
#include "velocityactual.h"
#include "taskinfo.h"
#include "paths.h"
#include "CoordinateConversions.h"
#include "cameradesired.h"
#include "poilearnsettings.h"
#include "poilocation.h"
#include "accessorydesired.h"
// Private constants
#define MAX_QUEUE_SIZE 4
#define STACK_SIZE_BYTES 1548
#define TASK_PRIORITY (tskIDLE_PRIORITY+2)
// Private types
// Private variables
static xTaskHandle pathfollowerTaskHandle;
static PathStatusData pathStatus;
static VtolPathFollowerSettingsData vtolpathfollowerSettings;
static float poiRadius;
// Private functions
static void vtolPathFollowerTask(void *parameters);
static void SettingsUpdatedCb(UAVObjEvent * ev);
static void updateNedAccel();
static void updatePOIBearing();
static void updatePathVelocity();
static void updateEndpointVelocity();
static void updateFixedAttitude(float* attitude);
static void updateVtolDesiredAttitude(bool yaw_attitude);
static float bound(float val, float min, float max);
static bool vtolpathfollower_enabled;
static void accessoryUpdated(UAVObjEvent* ev);
/**
* Initialise the module, called on startup
* \returns 0 on success or -1 if initialisation failed
*/
int32_t VtolPathFollowerStart()
{
if (vtolpathfollower_enabled) {
// Start main task
xTaskCreate(vtolPathFollowerTask, (signed char *)"VtolPathFollower", STACK_SIZE_BYTES / 4, NULL, TASK_PRIORITY, &pathfollowerTaskHandle);
PIOS_TASK_MONITOR_RegisterTask(TASKINFO_RUNNING_PATHFOLLOWER, pathfollowerTaskHandle);
}
return 0;
}
/**
* Initialise the module, called on startup
* \returns 0 on success or -1 if initialisation failed
*/
int32_t VtolPathFollowerInitialize()
{
uint8_t optionalModules[HWSETTINGS_OPTIONALMODULES_NUMELEM];
HwSettingsOptionalModulesGet(optionalModules);
if (optionalModules[HWSETTINGS_OPTIONALMODULES_VTOLPATHFOLLOWER] == HWSETTINGS_OPTIONALMODULES_ENABLED) {
VtolPathFollowerSettingsInitialize();
NedAccelInitialize();
PathDesiredInitialize();
PathStatusInitialize();
VelocityDesiredInitialize();
CameraDesiredInitialize();
AccessoryDesiredInitialize();
PoiLearnSettingsInitialize();
PoiLocationInitialize();
vtolpathfollower_enabled = true;
} else {
vtolpathfollower_enabled = false;
}
return 0;
}
MODULE_INITCALL( VtolPathFollowerInitialize, VtolPathFollowerStart)
static float northVelIntegral = 0;
static float eastVelIntegral = 0;
static float downVelIntegral = 0;
static float northPosIntegral = 0;
static float eastPosIntegral = 0;
static float downPosIntegral = 0;
static float throttleOffset = 0;
/**
* Module thread, should not return.
*/
static void vtolPathFollowerTask(__attribute__((unused)) void *parameters)
{
SystemSettingsData systemSettings;
FlightStatusData flightStatus;
portTickType lastUpdateTime;
VtolPathFollowerSettingsConnectCallback(SettingsUpdatedCb);
AccessoryDesiredConnectCallback(accessoryUpdated);
VtolPathFollowerSettingsGet(&vtolpathfollowerSettings);
// Main task loop
lastUpdateTime = xTaskGetTickCount();
while (1) {
// Conditions when this runs:
// 1. Must have VTOL type airframe
// 2. Flight mode is PositionHold and PathDesired.Mode is Endpoint OR
// FlightMode is PathPlanner and PathDesired.Mode is Endpoint or Path
SystemSettingsGet(&systemSettings);
if ((systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_VTOL) && (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_QUADP)
&& (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_OCTOCOAXX) && (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_QUADX)
&& (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_HEXA) && (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_HEXAX)
&& (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_HEXACOAX) && (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_OCTO)
&& (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_OCTOV) && (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_OCTOCOAXP)
&& (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_TRI)) {
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_WARNING);
vTaskDelay(1000);
continue;
}
// Continue collecting data if not enough time
vTaskDelayUntil(&lastUpdateTime, vtolpathfollowerSettings.UpdatePeriod / portTICK_RATE_MS);
// Convert the accels into the NED frame
updateNedAccel();
FlightStatusGet(&flightStatus);
PathStatusGet(&pathStatus);
PathDesiredData pathDesired;
PathDesiredGet(&pathDesired);
// Check the combinations of flightmode and pathdesired mode
switch (flightStatus.FlightMode) {
case FLIGHTSTATUS_FLIGHTMODE_LAND:
case FLIGHTSTATUS_FLIGHTMODE_POSITIONHOLD:
case FLIGHTSTATUS_FLIGHTMODE_RETURNTOBASE:
if (pathDesired.Mode == PATHDESIRED_MODE_FLYENDPOINT) {
updateEndpointVelocity();
updateVtolDesiredAttitude(false);
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_OK);
} else {
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_ERROR);
}
break;
case FLIGHTSTATUS_FLIGHTMODE_PATHPLANNER:
pathStatus.UID = pathDesired.UID;
pathStatus.Status = PATHSTATUS_STATUS_INPROGRESS;
switch (pathDesired.Mode) {
// TODO: Make updateVtolDesiredAttitude and velocity report success and update PATHSTATUS_STATUS accordingly
case PATHDESIRED_MODE_FLYENDPOINT:
case PATHDESIRED_MODE_FLYVECTOR:
case PATHDESIRED_MODE_FLYCIRCLERIGHT:
case PATHDESIRED_MODE_FLYCIRCLELEFT:
updatePathVelocity();
updateVtolDesiredAttitude(false);
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_OK);
break;
case PATHDESIRED_MODE_FIXEDATTITUDE:
updateFixedAttitude(pathDesired.ModeParameters);
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_OK);
break;
case PATHDESIRED_MODE_DISARMALARM:
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_CRITICAL);
break;
default:
pathStatus.Status = PATHSTATUS_STATUS_CRITICAL;
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_ERROR);
break;
}
PathStatusSet(&pathStatus);
break;
case FLIGHTSTATUS_FLIGHTMODE_POI:
if (pathDesired.Mode == PATHDESIRED_MODE_FLYENDPOINT) {
updateEndpointVelocity();
updateVtolDesiredAttitude(true);
updatePOIBearing();
} else {
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_ERROR);
}
break;
default:
// Be cleaner and get rid of global variables
northVelIntegral = 0;
eastVelIntegral = 0;
downVelIntegral = 0;
northPosIntegral = 0;
eastPosIntegral = 0;
downPosIntegral = 0;
// Track throttle before engaging this mode. Cheap system ident
StabilizationDesiredData stabDesired;
StabilizationDesiredGet(&stabDesired);
throttleOffset = stabDesired.Throttle;
break;
}
AlarmsClear(SYSTEMALARMS_ALARM_GUIDANCE);
}
}
/**
* Compute bearing and elevation between current position and POI
*/
static void updatePOIBearing()
{
const float DEADBAND_HIGH = 0.10f;
const float DEADBAND_LOW = -0.10f;
float dT = vtolpathfollowerSettings.UpdatePeriod / 1000.0f;
PathDesiredData pathDesired;
PathDesiredGet(&pathDesired);
PositionActualData positionActual;
PositionActualGet(&positionActual);
CameraDesiredData cameraDesired;
CameraDesiredGet(&cameraDesired);
StabilizationDesiredData stabDesired;
StabilizationDesiredGet(&stabDesired);
PoiLocationData poi;
PoiLocationGet(&poi);
float dLoc[3];
float yaw = 0;
/*float elevation = 0;*/
dLoc[0] = positionActual.North - poi.North;
dLoc[1] = positionActual.East - poi.East;
dLoc[2] = positionActual.Down - poi.Down;
if (dLoc[1] < 0) {
yaw = RAD2DEG(atan2f(dLoc[1],dLoc[0])) + 180.0f;
} else {
yaw = RAD2DEG(atan2f(dLoc[1],dLoc[0])) - 180.0f;
}
// distance
float distance = sqrtf(powf(dLoc[0], 2.0f) + powf(dLoc[1], 2.0f));
ManualControlCommandData manualControlData;
ManualControlCommandGet(&manualControlData);
float changeRadius = 0;
// Move closer or further, radially
if (manualControlData.Pitch > DEADBAND_HIGH) {
changeRadius = (manualControlData.Pitch - DEADBAND_HIGH) * dT * 100.0f;
} else if (manualControlData.Pitch < DEADBAND_LOW) {
changeRadius = (manualControlData.Pitch - DEADBAND_LOW) * dT * 100.0f;
}
// move along circular path
float pathAngle = 0;
if (manualControlData.Roll > DEADBAND_HIGH) {
pathAngle = -(manualControlData.Roll - DEADBAND_HIGH) * dT * 300.0f;
} else if (manualControlData.Roll < DEADBAND_LOW) {
pathAngle = -(manualControlData.Roll - DEADBAND_LOW) * dT * 300.0f;
} else if (manualControlData.Roll >= DEADBAND_LOW && manualControlData.Roll <= DEADBAND_HIGH) {
// change radius only when not circling
poiRadius = distance + changeRadius;
}
// don't try to move any closer
if (poiRadius >= 3.0f || changeRadius > 0) {
if (fabsf(pathAngle) > 0.0f || fabsf(changeRadius) > 0.0f) {
pathDesired.End[PATHDESIRED_END_NORTH] = poi.North + (poiRadius * cosf(DEG2RAD(pathAngle + yaw - 180.0f)));
pathDesired.End[PATHDESIRED_END_EAST] = poi.East + (poiRadius * sinf(DEG2RAD(pathAngle + yaw - 180.0f)));
pathDesired.StartingVelocity = 1.0f;
pathDesired.EndingVelocity = 0.0f;
pathDesired.Mode = PATHDESIRED_MODE_FLYENDPOINT;
PathDesiredSet(&pathDesired);
}
}
//not above
if (distance >= 3.0f) {
//You can feed this into camerastabilization
/*elevation = RAD2DEG(atan2f(dLoc[2],distance));*/
stabDesired.Yaw = yaw + (pathAngle / 2.0f);
stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_YAW] = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
//cameraDesired.Yaw=yaw;
//cameraDesired.PitchOrServo2=elevation;
CameraDesiredSet(&cameraDesired);
StabilizationDesiredSet(&stabDesired);
}
}
/**
* Compute desired velocity from the current position and path
*
* Takes in @ref PositionActual and compares it to @ref PathDesired
* and computes @ref VelocityDesired
*/
static void updatePathVelocity()
{
float dT = vtolpathfollowerSettings.UpdatePeriod / 1000.0f;
float downCommand;
PathDesiredData pathDesired;
PathDesiredGet(&pathDesired);
PositionActualData positionActual;
PositionActualGet(&positionActual);
float cur[3] =
{ positionActual.North, positionActual.East, positionActual.Down };
struct path_status progress;
path_progress(pathDesired.Start, pathDesired.End, cur, &progress, pathDesired.Mode);
float groundspeed;
switch (pathDesired.Mode) {
case PATHDESIRED_MODE_FLYCIRCLERIGHT:
case PATHDESIRED_MODE_DRIVECIRCLERIGHT:
case PATHDESIRED_MODE_FLYCIRCLELEFT:
case PATHDESIRED_MODE_DRIVECIRCLELEFT:
groundspeed = pathDesired.EndingVelocity;
break;
case PATHDESIRED_MODE_FLYENDPOINT:
case PATHDESIRED_MODE_DRIVEENDPOINT:
groundspeed = pathDesired.EndingVelocity - pathDesired.EndingVelocity * bound(progress.fractional_progress, 0, 1);
if (progress.fractional_progress > 1)
groundspeed = 0;
break;
case PATHDESIRED_MODE_FLYVECTOR:
case PATHDESIRED_MODE_DRIVEVECTOR:
default:
groundspeed = pathDesired.StartingVelocity
+ (pathDesired.EndingVelocity - pathDesired.StartingVelocity) * bound(progress.fractional_progress, 0, 1);
if (progress.fractional_progress > 1)
groundspeed = 0;
break;
}
VelocityDesiredData velocityDesired;
velocityDesired.North = progress.path_direction[0] * groundspeed;
velocityDesired.East = progress.path_direction[1] * groundspeed;
float error_speed = progress.error * vtolpathfollowerSettings.HorizontalPosPI[VTOLPATHFOLLOWERSETTINGS_HORIZONTALPOSPI_KP];
float correction_velocity[2] =
{ progress.correction_direction[0] * error_speed, progress.correction_direction[1] * error_speed };
float total_vel = sqrtf(powf(correction_velocity[0], 2) + powf(correction_velocity[1], 2));
float scale = 1;
if (total_vel > vtolpathfollowerSettings.HorizontalVelMax)
scale = vtolpathfollowerSettings.HorizontalVelMax / total_vel;
velocityDesired.North += progress.correction_direction[0] * error_speed * scale;
velocityDesired.East += progress.correction_direction[1] * error_speed * scale;
float altitudeSetpoint = pathDesired.Start[2] + (pathDesired.End[2] - pathDesired.Start[2]) * bound(progress.fractional_progress, 0, 1);
float downError = altitudeSetpoint - positionActual.Down;
downPosIntegral = bound(downPosIntegral + downError * dT * vtolpathfollowerSettings.VerticalPosPI[VTOLPATHFOLLOWERSETTINGS_VERTICALPOSPI_KI],
-vtolpathfollowerSettings.VerticalPosPI[VTOLPATHFOLLOWERSETTINGS_VERTICALPOSPI_ILIMIT],
vtolpathfollowerSettings.VerticalPosPI[VTOLPATHFOLLOWERSETTINGS_VERTICALPOSPI_ILIMIT]);
downCommand = (downError * vtolpathfollowerSettings.VerticalPosPI[VTOLPATHFOLLOWERSETTINGS_VERTICALPOSPI_KP] + downPosIntegral);
velocityDesired.Down = bound(downCommand, -vtolpathfollowerSettings.VerticalVelMax, vtolpathfollowerSettings.VerticalVelMax);
// update pathstatus
pathStatus.error = progress.error;
pathStatus.fractional_progress = progress.fractional_progress;
VelocityDesiredSet(&velocityDesired);
}
/**
* Compute desired velocity from the current position
*
* Takes in @ref PositionActual and compares it to @ref PositionDesired
* and computes @ref VelocityDesired
*/
void updateEndpointVelocity()
{
float dT = vtolpathfollowerSettings.UpdatePeriod / 1000.0f;
PathDesiredData pathDesired;
PathDesiredGet(&pathDesired);
PositionActualData positionActual;
VelocityDesiredData velocityDesired;
PositionActualGet(&positionActual);
VelocityDesiredGet(&velocityDesired);
float northError;
float eastError;
float downError;
float northCommand;
float eastCommand;
float downCommand;
float northPos = 0, eastPos = 0, downPos = 0;
switch (vtolpathfollowerSettings.PositionSource) {
case VTOLPATHFOLLOWERSETTINGS_POSITIONSOURCE_EKF:
northPos = positionActual.North;
eastPos = positionActual.East;
downPos = positionActual.Down;
break;
case VTOLPATHFOLLOWERSETTINGS_POSITIONSOURCE_GPSPOS:
{
// this used to work with the NEDposition UAVObject
// however this UAVObject has been removed
GPSPositionData gpsPosition;
GPSPositionGet(&gpsPosition);
HomeLocationData homeLocation;
HomeLocationGet(&homeLocation);
float lat = DEG2RAD(homeLocation.Latitude / 10.0e6f);
float alt = homeLocation.Altitude;
float T[3] = { alt+6.378137E6f,
cosf(lat)*(alt+6.378137E6f),
-1.0f};
float NED[3] = {T[0] * (DEG2RAD((gpsPosition.Latitude - homeLocation.Latitude) / 10.0e6f)),
T[1] * (DEG2RAD((gpsPosition.Longitude - homeLocation.Longitude) / 10.0e6f)),
T[2] * ((gpsPosition.Altitude + gpsPosition.GeoidSeparation - homeLocation.Altitude))};
northPos = NED[0];
eastPos = NED[1];
downPos = NED[2];
}
break;
default:
PIOS_Assert(0);
break;
}
// Compute desired north command
northError = pathDesired.End[PATHDESIRED_END_NORTH] - northPos;
northPosIntegral = bound(northPosIntegral + northError * dT * vtolpathfollowerSettings.HorizontalPosPI[VTOLPATHFOLLOWERSETTINGS_HORIZONTALPOSPI_KI],
-vtolpathfollowerSettings.HorizontalPosPI[VTOLPATHFOLLOWERSETTINGS_HORIZONTALPOSPI_ILIMIT],
vtolpathfollowerSettings.HorizontalPosPI[VTOLPATHFOLLOWERSETTINGS_HORIZONTALPOSPI_ILIMIT]);
northCommand = (northError * vtolpathfollowerSettings.HorizontalPosPI[VTOLPATHFOLLOWERSETTINGS_HORIZONTALPOSPI_KP] + northPosIntegral);
eastError = pathDesired.End[PATHDESIRED_END_EAST] - eastPos;
eastPosIntegral = bound(eastPosIntegral + eastError * dT * vtolpathfollowerSettings.HorizontalPosPI[VTOLPATHFOLLOWERSETTINGS_HORIZONTALPOSPI_KI],
-vtolpathfollowerSettings.HorizontalPosPI[VTOLPATHFOLLOWERSETTINGS_HORIZONTALPOSPI_ILIMIT],
vtolpathfollowerSettings.HorizontalPosPI[VTOLPATHFOLLOWERSETTINGS_HORIZONTALPOSPI_ILIMIT]);
eastCommand = (eastError * vtolpathfollowerSettings.HorizontalPosPI[VTOLPATHFOLLOWERSETTINGS_HORIZONTALPOSPI_KP] + eastPosIntegral);
// Limit the maximum velocity
float total_vel = sqrtf(powf(northCommand, 2) + powf(eastCommand, 2));
float scale = 1;
if (total_vel > vtolpathfollowerSettings.HorizontalVelMax)
scale = vtolpathfollowerSettings.HorizontalVelMax / total_vel;
velocityDesired.North = northCommand * scale;
velocityDesired.East = eastCommand * scale;
downError = pathDesired.End[PATHDESIRED_END_DOWN] - downPos;
downPosIntegral = bound(downPosIntegral + downError * dT * vtolpathfollowerSettings.VerticalPosPI[VTOLPATHFOLLOWERSETTINGS_VERTICALPOSPI_KI],
-vtolpathfollowerSettings.VerticalPosPI[VTOLPATHFOLLOWERSETTINGS_VERTICALPOSPI_ILIMIT],
vtolpathfollowerSettings.VerticalPosPI[VTOLPATHFOLLOWERSETTINGS_VERTICALPOSPI_ILIMIT]);
downCommand = (downError * vtolpathfollowerSettings.VerticalPosPI[VTOLPATHFOLLOWERSETTINGS_VERTICALPOSPI_KP] + downPosIntegral);
velocityDesired.Down = bound(downCommand, -vtolpathfollowerSettings.VerticalVelMax, vtolpathfollowerSettings.VerticalVelMax);
VelocityDesiredSet(&velocityDesired);
}
/**
* Compute desired attitude from a fixed preset
*
*/
static void updateFixedAttitude(float* attitude)
{
StabilizationDesiredData stabDesired;
StabilizationDesiredGet(&stabDesired);
stabDesired.Roll = attitude[0];
stabDesired.Pitch = attitude[1];
stabDesired.Yaw = attitude[2];
stabDesired.Throttle = attitude[3];
stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_ROLL] = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_PITCH] = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_YAW] = STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK;
StabilizationDesiredSet(&stabDesired);
}
/**
* Compute desired attitude from the desired velocity
*
* Takes in @ref NedActual which has the acceleration in the
* NED frame as the feedback term and then compares the
* @ref VelocityActual against the @ref VelocityDesired
*/
static void updateVtolDesiredAttitude(bool yaw_attitude)
{
float dT = vtolpathfollowerSettings.UpdatePeriod / 1000.0f;
VelocityDesiredData velocityDesired;
VelocityActualData velocityActual;
StabilizationDesiredData stabDesired;
AttitudeActualData attitudeActual;
NedAccelData nedAccel;
VtolPathFollowerSettingsData vtolpathfollowerSettings;
StabilizationSettingsData stabSettings;
SystemSettingsData systemSettings;
float northError;
float northCommand;
float eastError;
float eastCommand;
float downError;
float downCommand;
SystemSettingsGet(&systemSettings);
VtolPathFollowerSettingsGet(&vtolpathfollowerSettings);
VelocityActualGet(&velocityActual);
VelocityDesiredGet(&velocityDesired);
StabilizationDesiredGet(&stabDesired);
VelocityDesiredGet(&velocityDesired);
AttitudeActualGet(&attitudeActual);
StabilizationSettingsGet(&stabSettings);
NedAccelGet(&nedAccel);
float northVel = 0, eastVel = 0, downVel = 0;
switch (vtolpathfollowerSettings.VelocitySource) {
case VTOLPATHFOLLOWERSETTINGS_VELOCITYSOURCE_EKF:
northVel = velocityActual.North;
eastVel = velocityActual.East;
downVel = velocityActual.Down;
break;
case VTOLPATHFOLLOWERSETTINGS_VELOCITYSOURCE_NEDVEL:
{
GPSVelocityData gpsVelocity;
GPSVelocityGet(&gpsVelocity);
northVel = gpsVelocity.North;
eastVel = gpsVelocity.East;
downVel = gpsVelocity.Down;
}
break;
case VTOLPATHFOLLOWERSETTINGS_VELOCITYSOURCE_GPSPOS:
{
GPSPositionData gpsPosition;
GPSPositionGet(&gpsPosition);
northVel = gpsPosition.Groundspeed * cosf(DEG2RAD(gpsPosition.Heading));
eastVel = gpsPosition.Groundspeed * sinf(DEG2RAD(gpsPosition.Heading));
downVel = velocityActual.Down;
}
break;
default:
PIOS_Assert(0);
break;
}
// Testing code - refactor into manual control command
ManualControlCommandData manualControlData;
ManualControlCommandGet(&manualControlData);
// Compute desired north command
northError = velocityDesired.North - northVel;
northVelIntegral = bound(northVelIntegral + northError * dT * vtolpathfollowerSettings.HorizontalVelPID[VTOLPATHFOLLOWERSETTINGS_HORIZONTALVELPID_KI],
-vtolpathfollowerSettings.HorizontalVelPID[VTOLPATHFOLLOWERSETTINGS_HORIZONTALVELPID_ILIMIT],
vtolpathfollowerSettings.HorizontalVelPID[VTOLPATHFOLLOWERSETTINGS_HORIZONTALVELPID_ILIMIT]);
northCommand = (northError * vtolpathfollowerSettings.HorizontalVelPID[VTOLPATHFOLLOWERSETTINGS_HORIZONTALVELPID_KP] + northVelIntegral
- nedAccel.North * vtolpathfollowerSettings.HorizontalVelPID[VTOLPATHFOLLOWERSETTINGS_HORIZONTALVELPID_KD]
+ velocityDesired.North * vtolpathfollowerSettings.VelocityFeedforward);
// Compute desired east command
eastError = velocityDesired.East - eastVel;
eastVelIntegral = bound(eastVelIntegral + eastError * dT * vtolpathfollowerSettings.HorizontalVelPID[VTOLPATHFOLLOWERSETTINGS_HORIZONTALVELPID_KI],
-vtolpathfollowerSettings.HorizontalVelPID[VTOLPATHFOLLOWERSETTINGS_HORIZONTALVELPID_ILIMIT],
vtolpathfollowerSettings.HorizontalVelPID[VTOLPATHFOLLOWERSETTINGS_HORIZONTALVELPID_ILIMIT]);
eastCommand = (eastError * vtolpathfollowerSettings.HorizontalVelPID[VTOLPATHFOLLOWERSETTINGS_HORIZONTALVELPID_KP] + eastVelIntegral
- nedAccel.East * vtolpathfollowerSettings.HorizontalVelPID[VTOLPATHFOLLOWERSETTINGS_HORIZONTALVELPID_KD]
+ velocityDesired.East * vtolpathfollowerSettings.VelocityFeedforward);
// Compute desired down command
downError = velocityDesired.Down - downVel;
// Must flip this sign
downError = -downError;
downVelIntegral = bound(downVelIntegral + downError * dT * vtolpathfollowerSettings.VerticalVelPID[VTOLPATHFOLLOWERSETTINGS_VERTICALVELPID_KI],
-vtolpathfollowerSettings.VerticalVelPID[VTOLPATHFOLLOWERSETTINGS_VERTICALVELPID_ILIMIT],
vtolpathfollowerSettings.VerticalVelPID[VTOLPATHFOLLOWERSETTINGS_VERTICALVELPID_ILIMIT]);
downCommand = (downError * vtolpathfollowerSettings.VerticalVelPID[VTOLPATHFOLLOWERSETTINGS_VERTICALVELPID_KP] + downVelIntegral
- nedAccel.Down * vtolpathfollowerSettings.VerticalVelPID[VTOLPATHFOLLOWERSETTINGS_VERTICALVELPID_KD]);
stabDesired.Throttle = bound(downCommand + throttleOffset, 0, 1);
// Project the north and east command signals into the pitch and roll based on yaw. For this to behave well the
// craft should move similarly for 5 deg roll versus 5 deg pitch
stabDesired.Pitch = bound(-northCommand * cosf(DEG2RAD(attitudeActual.Yaw)) +
-eastCommand * sinf(DEG2RAD(attitudeActual.Yaw)),
-vtolpathfollowerSettings.MaxRollPitch, vtolpathfollowerSettings.MaxRollPitch);
stabDesired.Roll = bound(-northCommand * sinf(DEG2RAD(attitudeActual.Yaw)) +
eastCommand * cosf(DEG2RAD(attitudeActual.Yaw)),
-vtolpathfollowerSettings.MaxRollPitch, vtolpathfollowerSettings.MaxRollPitch);
if (vtolpathfollowerSettings.ThrottleControl == VTOLPATHFOLLOWERSETTINGS_THROTTLECONTROL_FALSE) {
// For now override throttle with manual control. Disable at your risk, quad goes to China.
ManualControlCommandData manualControl;
ManualControlCommandGet(&manualControl);
stabDesired.Throttle = manualControl.Throttle;
}
stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_ROLL] = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_PITCH] = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
if (yaw_attitude) {
stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_YAW] = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
} else {
stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_YAW] = STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK;
stabDesired.Yaw = stabSettings.MaximumRate[STABILIZATIONSETTINGS_MAXIMUMRATE_YAW] * manualControlData.Yaw;
}
StabilizationDesiredSet(&stabDesired);
}
/**
* Keep a running filtered version of the acceleration in the NED frame
*/
static void updateNedAccel()
{
float accel[3];
float q[4];
float Rbe[3][3];
float accel_ned[3];
// Collect downsampled attitude data
AccelsData accels;
AccelsGet(&accels);
accel[0] = accels.x;
accel[1] = accels.y;
accel[2] = accels.z;
//rotate avg accels into earth frame and store it
AttitudeActualData attitudeActual;
AttitudeActualGet(&attitudeActual);
q[0] = attitudeActual.q1;
q[1] = attitudeActual.q2;
q[2] = attitudeActual.q3;
q[3] = attitudeActual.q4;
Quaternion2R(q, Rbe);
for (uint8_t i = 0; i < 3; i++) {
accel_ned[i] = 0;
for (uint8_t j = 0; j < 3; j++)
accel_ned[i] += Rbe[j][i] * accel[j];
}
accel_ned[2] += 9.81f;
NedAccelData accelData;
NedAccelGet(&accelData);
accelData.North = accel_ned[0];
accelData.East = accel_ned[1];
accelData.Down = accel_ned[2];
NedAccelSet(&accelData);
}
/**
* Bound input value between limits
*/
static float bound(float val, float min, float max)
{
if (val < min) {
val = min;
} else if (val > max) {
val = max;
}
return val;
}
static void SettingsUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
VtolPathFollowerSettingsGet(&vtolpathfollowerSettings);
}
static void accessoryUpdated(UAVObjEvent* ev)
{
if (ev->obj != AccessoryDesiredHandle())
return;
AccessoryDesiredData accessory;
PoiLearnSettingsData poiLearn;
PoiLearnSettingsGet(&poiLearn);
if (poiLearn.Input != POILEARNSETTINGS_INPUT_NONE) {
if (AccessoryDesiredInstGet(poiLearn.Input - POILEARNSETTINGS_INPUT_ACCESSORY0, &accessory) == 0) {
if (accessory.AccessoryVal < -0.5f) {
PositionActualData positionActual;
PositionActualGet(&positionActual);
PoiLocationData poi;
PoiLocationGet(&poi);
poi.North = positionActual.North;
poi.East = positionActual.East;
poi.Down = positionActual.Down;
PoiLocationSet(&poi);
}
}
}
}