1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-12-10 18:24:11 +01:00
LibrePilot/flight/Modules/FixedWingPathFollower/fixedwingpathfollower.c
2012-05-24 18:19:52 +02:00

575 lines
21 KiB
C

/**
******************************************************************************
*
* @file fixedwingpathfollower.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief This module compared @ref PositionActuatl to @ref ActiveWaypoint
* and sets @ref AttitudeDesired. It only does this when the FlightMode field
* of @ref ManualControlCommand is Auto.
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/**
* Input object: ActiveWaypoint
* Input object: PositionActual
* Input object: ManualControlCommand
* Output object: AttitudeDesired
*
* This module will periodically update the value of the AttitudeDesired object.
*
* The module executes in its own thread in this example.
*
* Modules have no API, all communication to other modules is done through UAVObjects.
* However modules may use the API exposed by shared libraries.
* See the OpenPilot wiki for more details.
* http://www.openpilot.org/OpenPilot_Application_Architecture
*
*/
#include "openpilot.h"
#include "paths.h"
#include "fixedwingpathfollower.h"
#include "accels.h"
#include "hwsettings.h"
#include "attitudeactual.h"
#include "pathdesired.h" // object that will be updated by the module
#include "positionactual.h"
#include "manualcontrol.h"
#include "flightstatus.h"
#include "pathstatus.h"
#include "baroairspeed.h"
#include "gpsvelocity.h"
#include "gpsposition.h"
#include "fixedwingpathfollowersettings.h"
#include "fixedwingpathfollowerstatus.h"
#include "homelocation.h"
#include "nedposition.h"
#include "stabilizationdesired.h"
#include "stabilizationsettings.h"
#include "systemsettings.h"
#include "velocitydesired.h"
#include "velocityactual.h"
#include "CoordinateConversions.h"
// Private constants
#define MAX_QUEUE_SIZE 4
#define STACK_SIZE_BYTES 1548
#define TASK_PRIORITY (tskIDLE_PRIORITY+2)
#define F_PI 3.14159265358979323846f
#define RAD2DEG (180.0f/F_PI)
#define GEE 9.81f
// Private types
// Private variables
static bool followerEnabled = false;
static xTaskHandle pathfollowerTaskHandle;
static xQueueHandle queue;
static FixedWingPathFollowerSettingsData fixedwingpathfollowerSettings;
// Private functions
static void pathfollowerTask(void *parameters);
static void SettingsUpdatedCb(UAVObjEvent * ev);
static void updatePathVelocity();
static void updateEndpointVelocity();
static void updateFixedDesiredAttitude();
static void updateFixedFixedAttitude();
static void baroAirspeedUpdatedCb(UAVObjEvent * ev);
static float bound(float val, float min, float max);
/**
* Initialise the module, called on startup
* \returns 0 on success or -1 if initialisation failed
*/
int32_t FixedWingPathFollowerStart()
{
if (followerEnabled) {
// Start main task
xTaskCreate(pathfollowerTask, (signed char *)"PathFollower", STACK_SIZE_BYTES/4, NULL, TASK_PRIORITY, &pathfollowerTaskHandle);
TaskMonitorAdd(TASKINFO_RUNNING_PATHFOLLOWER, pathfollowerTaskHandle);
}
return 0;
}
/**
* Initialise the module, called on startup
* \returns 0 on success or -1 if initialisation failed
*/
int32_t FixedWingPathFollowerInitialize()
{
HwSettingsInitialize();
uint8_t optionalModules[HWSETTINGS_OPTIONALMODULES_NUMELEM];
HwSettingsOptionalModulesGet(optionalModules);
if (optionalModules[HWSETTINGS_OPTIONALMODULES_VTOLPATHFOLLOWER] == HWSETTINGS_OPTIONALMODULES_ENABLED) {
followerEnabled = true;
FixedWingPathFollowerSettingsInitialize();
FixedWingPathFollowerStatusInitialize();
PathDesiredInitialize();
PathStatusInitialize();
VelocityDesiredInitialize();
BaroAirspeedInitialize();
} else {
followerEnabled = false;
}
return 0;
}
MODULE_INITCALL(FixedWingPathFollowerInitialize, FixedWingPathFollowerStart)
static float northVelIntegral = 0;
static float eastVelIntegral = 0;
static float downVelIntegral = 0;
static float courseIntegral = 0;
static float speedIntegral = 0;
static float accelIntegral = 0;
static float powerIntegral = 0;
static uint8_t positionHoldLast = 0;
// correct speed by measured airspeed
static float baroAirspeedBias = 0;
/**
* Module thread, should not return.
*/
static void pathfollowerTask(void *parameters)
{
SystemSettingsData systemSettings;
FlightStatusData flightStatus;
PathStatusData pathStatus;
portTickType lastUpdateTime;
BaroAirspeedConnectCallback(baroAirspeedUpdatedCb);
FixedWingPathFollowerSettingsConnectCallback(SettingsUpdatedCb);
PathDesiredConnectCallback(SettingsUpdatedCb);
FixedWingPathFollowerSettingsGet(&fixedwingpathfollowerSettings);
PathDesiredGet(&pathDesired);
// Main task loop
lastUpdateTime = xTaskGetTickCount();
while (1) {
// Conditions when this runs:
// 1. Must have FixedWing type airframe
// 2. Flight mode is PositionHold and PathDesired.Mode is Endpoint OR
// FlightMode is PathPlanner and PathDesired.Mode is Endpoint or Path
SystemSettingsGet(&systemSettings);
if ( (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_FIXEDWING) &&
(systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_FIXEDWINGELEVON) &&
(systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_FIXEDWINGVTAIL) )
{
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE,SYSTEMALARMS_ALARM_WARNING);
vTaskDelay(1000);
continue;
}
// Continue collecting data if not enough time
vTaskDelayUntil(&lastUpdateTime, vtolpathfollowerSettings.UpdatePeriod / portTICK_RATE_MS);
FlightStatusGet(&flightStatus);
PathStatusGet(&pathStatus);
// Check the combinations of flightmode and pathdesired mode
switch(flightStatus.FlightMode) {
case FLIGHTSTATUS_FLIGHTMODE_POSITIONHOLD:
case FLIGHTSTATUS_FLIGHTMODE_RETURNTOBASE:
if (pathDesired.Mode == PATHDESIRED_MODE_FLYENDPOINT) {
updateEndpointVelocity();
updateVtolDesiredAttitude();
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE,SYSTEMALARMS_ALARM_OK);
} else {
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE,SYSTEMALARMS_ALARM_ERROR);
}
break;
case FLIGHTSTATUS_FLIGHTMODE_PATHPLANNER:
pathStatus.UID = pathDesired.UID;
pathStatus.Status = PATHSTATUS_STATUS_INPROGRESS;
switch(pathDesired.Mode) {
// TODO: Make updateVtolDesiredAttitude and velocity report success and update PATHSTATUS_STATUS accordingly
case PATHDESIRED_MODE_FLYENDPOINT:
updateEndpointVelocity();
updateFixedDesiredAttitude();
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE,SYSTEMALARMS_ALARM_OK);
break;
case PATHDESIRED_MODE_FLYVECTOR:
updatePathVelocity();
updateFixedDesiredAttitude();
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE,SYSTEMALARMS_ALARM_OK);
break;
case PATHDESIRED_MODE_FIXEDATTITUDE:
updateFixedAttitude(pathDesired.ModeParameters);
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE,SYSTEMALARMS_ALARM_OK);
break;
case PATHDESIRED_MODE_DISARMALARM:
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE,SYSTEMALARMS_ALARM_CRITICAL);
break;
default:
pathStatus.Status = PATHSTATUS_STATUS_CRITICAL;
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE,SYSTEMALARMS_ALARM_ERROR);
break;
}
break;
default:
// Be cleaner and get rid of global variables
northVelIntegral = 0;
eastVelIntegral = 0;
downVelIntegral = 0;
courseIntegral = 0;
speedIntegral = 0;
accelIntegral = 0;
powerIntegral = 0;
break;
}
}
}
/**
* Compute desired velocity from the current position and path
*
* Takes in @ref PositionActual and compares it to @ref PathDesired
* and computes @ref VelocityDesired
*/
static void updatePathVelocity()
{
float dT = vtolpathfollowerSettings.UpdatePeriod / 1000.0f;
float downCommand;
PositionActualData positionActual;
PositionActualGet(&positionActual);
float cur[3] = {positionActual.North, positionActual.East, positionActual.Down};
struct path_status progress;
path_progress(pathDesired.Start, pathDesired.End, cur, &progress);
float groundspeed = pathDesired.StartingVelocity +
(pathDesired.EndingVelocity - pathDesired.StartingVelocity) * progress.fractional_progress;
if(progress.fractional_progress > 1)
groundspeed = pathDesired.EndingVelocity;
VelocityDesiredData velocityDesired;
velocityDesired.North = progress.path_direction[0] * groundspeed;
velocityDesired.East = progress.path_direction[1] * groundspeed;
float error_speed = progress.error * vtolpathfollowerSettings.HorizontalPosP;
float correction_velocity[2] = {progress.correction_direction[0] * error_speed,
progress.correction_direction[1] * error_speed};
// prevent div by zero
if (fabsf(correction_velocity[0])+fabsf(correction_velocity[1]) <1e-6) {
correction_velocity[0]=1e-6;
}
float total_vel = sqrtf(powf(correction_velocity[0],2) + powf(correction_velocity[1],2));
float scale = 1;
if(total_vel > vtolpathfollowerSettings.HorizontalVelMax)
scale = vtolpathfollowerSettings.HorizontalVelMax / total_vel;
if (total_vel < vtolpathfollowerSettings.HorizontalVelMin)
scale = vtolpathfollowerSettings.HorizontalVelMin / total_vel;
velocityDesired.North += progress.correction_direction[0] * error_speed * scale;
velocityDesired.East += progress.correction_direction[1] * error_speed * scale;
float altitudeSetpoint = pathDesired.Start[2] + (pathDesired.End[2] - pathDesired.Start[2]) *
bound(progress.fractional_progress,0,1);
float downError = altitudeSetpoint - positionActual.Down;
downCommand = downError * vtolpathfollowerSettings.VerticalPosP;
velocityDesired.Down = bound(downCommand,
-vtolpathfollowerSettings.VerticalVelMax,
vtolpathfollowerSettings.VerticalVelMax);
VelocityDesiredSet(&velocityDesired);
}
/**
* Compute desired velocity from the current position
*
* Takes in @ref PositionActual and compares it to @ref PositionDesired
* and computes @ref VelocityDesired
*/
void updateEndpointVelocity()
{
float dT = vtolpathfollowerSettings.UpdatePeriod / 1000.0f;
PositionActualData positionActual;
VelocityDesiredData velocityDesired;
PositionActualGet(&positionActual);
VelocityDesiredGet(&velocityDesired);
float northError;
float eastError;
float downError;
float northCommand;
float eastCommand;
float downCommand;
float northPos = 0, eastPos = 0, downPos = 0;
northPos = positionActual.North;
eastPos = positionActual.East;
downPos = positionActual.Down;
// Compute commands
northError = pathDesired.End[PATHDESIRED_END_NORTH] - positionActual.North;
northCommand = northError * vtolpathfollowerSettings.HorizontalPosP;
eastError = pathDesired.End[PATHDESIRED_END_EAST] - eastPos;
eastCommand = eastError * vtolpathfollowerSettings.HorizontalPosP;
// prevent div by zero
if (fabsf(northCommand)+fabsf(eastCommand) <1e-6) {
nortCommand=1e-6;
}
// Limit the maximum velocity
float total_vel = sqrtf(powf(northCommand,2) + powf(eastCommand,2));
float scale = 1;
if(total_vel > vtolpathfollowerSettings.HorizontalVelMax)
scale = vtolpathfollowerSettings.HorizontalVelMax / total_vel;
if (total_vel < vtolpathfollowerSettings.HorizontalVelMin)
scale = vtolpathfollowerSettings.HorizontalVelMin / total_vel;
velocityDesired.North = northCommand * scale;
velocityDesired.East = eastCommand * scale;
downError = pathDesired.End[PATHDESIRED_END_DOWN] - downPos;
downCommand = downError * vtolpathfollowerSettings.VerticalPosP;
velocityDesired.Down = bound(downCommand,
-vtolpathfollowerSettings.VerticalVelMax,
vtolpathfollowerSettings.VerticalVelMax);
VelocityDesiredSet(&velocityDesired);
}
/**
* Compute desired attitude from a fixed preset
*
*/
static void updateFixedAttitude(float* attitude)
{
StabilizationDesiredData stabDesired;
StabilizationDesiredGet(&stabDesired);
stabDesired.Roll = attitude[0];
stabDesired.Pitch = attitude[1];
stabDesired.Yaw = attitude[2];
stabDesired.Throttle = attitude[3];
stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_ROLL] = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_PITCH] = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_YAW] = STABILIZATIONDESIRED_STABILIZATIONMODE_RATE;
StabilizationDesiredSet(&stabDesired);
}
/**
* Compute desired attitude from the desired velocity
*
* Takes in @ref NedActual which has the acceleration in the
* NED frame as the feedback term and then compares the
* @ref VelocityActual against the @ref VelocityDesired
*/
static void updateFixedDesiredAttitude()
{
float dT = vtolpathfollowerSettings.UpdatePeriod / 1000.0f;
VelocityDesiredData velocityDesired;
VelocityActualData velocityActual;
StabilizationDesiredData stabDesired;
AttitudeActualData attitudeActual;
AccelsData accels;
FixedWingPathFollowerSettingsData fixedwingpathfollowerSettings;
StabilizationSettingsData stabSettings;
FixedWingPathFollowerStatusData fixedwingpathfollowerStatus;
float courseError;
float courseCommand;
float speedError;
float accelCommand;
float speedActual;
float speedDesired;
float accelDesired;
float accelError;
float powerError;
float powerCommand;
FixedWingPathFollowerSettingsGet(&fixedwingpathfollowerSettings);
FixedWingPathFollowerStatusGet(&fixedwingpathfollowerStatus);
VelocityActualGet(&velocityActual);
VelocityDesiredGet(&velocityDesired);
StabilizationDesiredGet(&stabDesired);
VelocityDesiredGet(&velocityDesired);
AttitudeActualGet(&attitudeActual);
AccelsGet(&accels);
StabilizationSettingsGet(&stabSettings);
// current speed - lacking forward airspeed we use groundspeed :(
speedActual = sqrtf(velocityActual.East*velocityActual.East + velocityActual.North*velocityActual.North + velocityActual.Down*velocityActual.Down ) + baroAirspeedBias;
// Compute desired roll command
courseError = RAD2DEG * (atan2f(velocityDesired.East,velocityDesired.North) - atan2f(velocityActual.East,velocityActual.North));
if (courseError<-180.0f) courseError+=360.0f;
if (courseError>180.0f) courseError-=360.0f;
courseIntegral = bound(courseIntegral + courseError * dT * fixedwingpathfollowerSettings.CoursePI[GUIDANCESETTINGS_COURSEPI_KI],
-fixedwingpathfollowerSettings.CoursePI[GUIDANCESETTINGS_COURSEPI_ILIMIT],
fixedwingpathfollowerSettings.CoursePI[GUIDANCESETTINGS_COURSEPI_ILIMIT]);
courseCommand = (courseError * fixedwingpathfollowerSettings.CoursePI[GUIDANCESETTINGS_COURSEPI_KP] +
courseIntegral);
fixedwingpathfollowerStatus.E[GUIDANCESTATUS_E_COURSE] = courseError;
fixedwingpathfollowerStatus.A[GUIDANCESTATUS_A_COURSE] = courseIntegral;
fixedwingpathfollowerStatus.C[GUIDANCESTATUS_C_COURSE] = courseCommand;
stabDesired.Roll = bound( fixedwingpathfollowerSettings.RollLimit[GUIDANCESETTINGS_ROLLLIMIT_NEUTRAL] +
courseCommand,
fixedwingpathfollowerSettings.RollLimit[GUIDANCESETTINGS_ROLLLIMIT_MIN],
fixedwingpathfollowerSettings.RollLimit[GUIDANCESETTINGS_ROLLLIMIT_MAX] );
// Compute desired yaw command
// TODO implement raw control mode for yaw and base on Accels.X
stabDesired.Yaw = 0;
// Compute desired speed command TODO: make cruise speed a variable
speedDesired = fixedwingpathfollowerSettings.CruiseSpeed;
speedError = speedDesired - speedActual;
accelDesired = bound( speedError * fixedwingpathfollowerSettings.SpeedP[GUIDANCESETTINGS_SPEEDP_KP],
-fixedwingpathfollowerSettings.SpeedP[GUIDANCESETTINGS_SPEEDP_MAX],
fixedwingpathfollowerSettings.SpeedP[GUIDANCESETTINGS_SPEEDP_MAX]);
fixedwingpathfollowerStatus.E[GUIDANCESTATUS_E_SPEED] = speedError;
fixedwingpathfollowerStatus.A[GUIDANCESTATUS_A_SPEED] = 0.0f;
fixedwingpathfollowerStatus.C[GUIDANCESTATUS_C_SPEED] = accelDesired;
accelError = accelDesired - accels.x;
accelIntegral = bound(accelIntegral + accelError * dT * fixedwingpathfollowerSettings.AccelPI[GUIDANCESETTINGS_ACCELPI_KI],
-fixedwingpathfollowerSettings.AccelPI[GUIDANCESETTINGS_ACCELPI_ILIMIT],
fixedwingpathfollowerSettings.AccelPI[GUIDANCESETTINGS_ACCELPI_ILIMIT]);
accelCommand = (accelError * fixedwingpathfollowerSettings.AccelPI[GUIDANCESETTINGS_ACCELPI_KP] +
accelIntegral);
fixedwingpathfollowerStatus.E[GUIDANCESTATUS_E_ACCEL] = accelError;
fixedwingpathfollowerStatus.A[GUIDANCESTATUS_A_ACCEL] = accelIntegral;
fixedwingpathfollowerStatus.C[GUIDANCESTATUS_C_ACCEL] = accelCommand;
stabDesired.Pitch = bound(fixedwingpathfollowerSettings.PitchLimit[GUIDANCESETTINGS_PITCHLIMIT_NEUTRAL] +
-accelCommand,
fixedwingpathfollowerSettings.PitchLimit[GUIDANCESETTINGS_PITCHLIMIT_MIN],
fixedwingpathfollowerSettings.PitchLimit[GUIDANCESETTINGS_PITCHLIMIT_MAX]);
// Compute desired power command
powerError = -( velocityDesired.Down - velocityActual.Down ) * fixedwingpathfollowerSettings.ClimbRateBoostFactor + speedError;
powerIntegral = bound(powerIntegral + powerError * dT * fixedwingpathfollowerSettings.PowerPI[GUIDANCESETTINGS_POWERPI_KI],
-fixedwingpathfollowerSettings.PowerPI[GUIDANCESETTINGS_POWERPI_ILIMIT],
fixedwingpathfollowerSettings.PowerPI[GUIDANCESETTINGS_POWERPI_ILIMIT]);
powerCommand = (powerError * fixedwingpathfollowerSettings.PowerPI[GUIDANCESETTINGS_POWERPI_KP] +
powerIntegral) + fixedwingpathfollowerSettings.ThrottleLimit[GUIDANCESETTINGS_THROTTLELIMIT_NEUTRAL];
// prevent integral running out of bounds
if ( powerCommand > fixedwingpathfollowerSettings.ThrottleLimit[GUIDANCESETTINGS_THROTTLELIMIT_MAX]) {
powerIntegral = bound(
powerIntegral -
( powerCommand
- fixedwingpathfollowerSettings.ThrottleLimit[GUIDANCESETTINGS_THROTTLELIMIT_MAX]),
-fixedwingpathfollowerSettings.PowerPI[GUIDANCESETTINGS_POWERPI_ILIMIT],
fixedwingpathfollowerSettings.PowerPI[GUIDANCESETTINGS_POWERPI_ILIMIT]);
powerCommand = fixedwingpathfollowerSettings.ThrottleLimit[GUIDANCESETTINGS_THROTTLELIMIT_MAX];
}
if ( powerCommand < fixedwingpathfollowerSettings.ThrottleLimit[GUIDANCESETTINGS_THROTTLELIMIT_MIN]) {
powerIntegral = bound(
powerIntegral -
( powerCommand
- fixedwingpathfollowerSettings.ThrottleLimit[GUIDANCESETTINGS_THROTTLELIMIT_MIN]),
-fixedwingpathfollowerSettings.PowerPI[GUIDANCESETTINGS_POWERPI_ILIMIT],
fixedwingpathfollowerSettings.PowerPI[GUIDANCESETTINGS_POWERPI_ILIMIT]);
powerCommand = fixedwingpathfollowerSettings.ThrottleLimit[GUIDANCESETTINGS_THROTTLELIMIT_MIN];
}
fixedwingpathfollowerStatus.E[GUIDANCESTATUS_E_POWER] = powerError;
fixedwingpathfollowerStatus.A[GUIDANCESTATUS_A_POWER] = powerIntegral;
fixedwingpathfollowerStatus.C[GUIDANCESTATUS_C_POWER] = powerCommand;
// set throttle
stabDesired.Throttle = powerCommand;
if(fixedwingpathfollowerSettings.ThrottleControl == GUIDANCESETTINGS_THROTTLECONTROL_FALSE) {
// For now override throttle with manual control. Disable at your risk, quad goes to China.
ManualControlCommandData manualControl;
ManualControlCommandGet(&manualControl);
stabDesired.Throttle = manualControl.Throttle;
}
//printf("Cycle: speed Error: %f\n powerError: %f\n accelCommand: %f\n powerCommand: %f\n\n",speedError,powerError,accelCommand,powerCommand);
stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_ROLL] = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_PITCH] = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_YAW] = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
StabilizationDesiredSet(&stabDesired);
FixedWingPathFollowerStatusSet(&fixedwingpathfollowerStatus);
}
/**
* Bound input value between limits
*/
static float bound(float val, float min, float max)
{
if (val < min) {
val = min;
} else if (val > max) {
val = max;
}
return val;
}
static void SettingsUpdatedCb(UAVObjEvent * ev)
{
VtolPathFollowerSettingsGet(&vtolpathfollowerSettings);
PathDesiredGet(&pathDesired);
}
static void baroAirspeedUpdatedCb(UAVObjEvent * ev)
{
BaroAirspeedData baroAirspeed;
VelocityActualData velocityActual;
BaroAirspeedGet(&baroAirspeed);
if (baroAirspeed.Connected != BAROAIRSPEED_CONNECTED_TRUE) {
baroAirspeedBias = 0;
} else {
VelocityActualGet(&velocityActual);
float speed = sqrtf(velocityActual.East*velocityActual.East + velocityActual.North*velocityActual.North + velocityActual.Down*velocityActual.Down );
baroAirspeedBias = baroAirspeed.Airspeed - speed;
}
}