1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-12-11 19:24:10 +01:00
LibrePilot/flight/modules/Actuator/actuator.c
2016-05-02 20:24:03 +02:00

1087 lines
43 KiB
C

/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup ActuatorModule Actuator Module
* @brief Compute servo/motor settings based on @ref ActuatorDesired "desired actuator positions" and aircraft type.
* This is where all the mixing of channels is computed.
* @{
*
* @file actuator.c
* @author The LibrePilot Project, http://www.librepilot.org Copyright (C) 2015.
* The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief Actuator module. Drives the actuators (servos, motors etc).
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <openpilot.h>
#include "accessorydesired.h"
#include "actuator.h"
#include "actuatorsettings.h"
#include "systemsettings.h"
#include "actuatordesired.h"
#include "actuatorcommand.h"
#include "flightstatus.h"
#include <flightmodesettings.h>
#include "mixersettings.h"
#include "mixerstatus.h"
#include "cameradesired.h"
#include "hwsettings.h"
#include "manualcontrolcommand.h"
#include "taskinfo.h"
#include <systemsettings.h>
#include <sanitycheck.h>
#ifndef PIOS_EXCLUDE_ADVANCED_FEATURES
#include <vtolpathfollowersettings.h>
#endif
#undef PIOS_INCLUDE_INSTRUMENTATION
#ifdef PIOS_INCLUDE_INSTRUMENTATION
#include <pios_instrumentation.h>
static int8_t counter;
// Counter 0xAC700001 total Actuator body execution time(excluding queue waits etc).
#endif
// Private constants
#define MAX_QUEUE_SIZE 2
#if defined(PIOS_ACTUATOR_STACK_SIZE)
#define STACK_SIZE_BYTES PIOS_ACTUATOR_STACK_SIZE
#else
#define STACK_SIZE_BYTES 1312
#endif
#define TASK_PRIORITY (tskIDLE_PRIORITY + 4) // device driver
#define FAILSAFE_TIMEOUT_MS 100
#define MAX_MIX_ACTUATORS ACTUATORCOMMAND_CHANNEL_NUMELEM
#define CAMERA_BOOT_DELAY_MS 7000
#define ACTUATOR_ONESHOT_CLOCK 12000000
#define ACTUATOR_ONESHOT125_PULSE_FACTOR 1.5f
#define ACTUATOR_ONESHOT42_PULSE_FACTOR 0.5f
#define ACTUATOR_MULTISHOT_PULSE_FACTOR 0.24f
#define ACTUATOR_PWM_CLOCK 1000000
// Private types
// Private variables
static xQueueHandle queue;
static xTaskHandle taskHandle;
static FrameType_t frameType = FRAME_TYPE_MULTIROTOR;
static SystemSettingsThrustControlOptions thrustType = SYSTEMSETTINGS_THRUSTCONTROL_THROTTLE;
static bool camStabEnabled;
static uint8_t pinsMode[MAX_MIX_ACTUATORS];
// used to inform the actuator thread that actuator update rate is changed
static ActuatorSettingsData actuatorSettings;
static bool spinWhileArmed;
// used to inform the actuator thread that mixer settings are changed
static MixerSettingsData mixerSettings;
static int mixer_settings_count = 2;
// Private functions
static void actuatorTask(void *parameters);
static int16_t scaleChannel(float value, int16_t max, int16_t min, int16_t neutral);
static int16_t scaleMotor(float value, int16_t max, int16_t min, int16_t neutral, float maxMotor, float minMotor, bool armed, bool alwaysStabilizeWhenArmed, float throttleDesired);
static void setFailsafe();
static float MixerCurveFullRangeProportional(const float input, const float *curve, uint8_t elements, bool multirotor);
static float MixerCurveFullRangeAbsolute(const float input, const float *curve, uint8_t elements, bool multirotor);
static bool set_channel(uint8_t mixer_channel, uint16_t value);
static void actuator_update_rate_if_changed(bool force_update);
static void MixerSettingsUpdatedCb(UAVObjEvent *ev);
static void ActuatorSettingsUpdatedCb(UAVObjEvent *ev);
static void SettingsUpdatedCb(UAVObjEvent *ev);
float ProcessMixer(const int index, const float curve1, const float curve2,
ActuatorDesiredData *desired,
bool multirotor, bool fixedwing);
// this structure is equivalent to the UAVObjects for one mixer.
typedef struct {
uint8_t type;
int8_t matrix[5];
} __attribute__((packed)) Mixer_t;
/**
* @brief Module initialization
* @return 0
*/
int32_t ActuatorStart()
{
// Start main task
xTaskCreate(actuatorTask, "Actuator", STACK_SIZE_BYTES / 4, NULL, TASK_PRIORITY, &taskHandle);
PIOS_TASK_MONITOR_RegisterTask(TASKINFO_RUNNING_ACTUATOR, taskHandle);
#ifdef PIOS_INCLUDE_WDG
PIOS_WDG_RegisterFlag(PIOS_WDG_ACTUATOR);
#endif
SettingsUpdatedCb(NULL);
MixerSettingsUpdatedCb(NULL);
ActuatorSettingsUpdatedCb(NULL);
return 0;
}
/**
* @brief Module initialization
* @return 0
*/
int32_t ActuatorInitialize()
{
// Register for notification of changes to ActuatorSettings
ActuatorSettingsInitialize();
ActuatorSettingsConnectCallback(ActuatorSettingsUpdatedCb);
// Register for notification of changes to MixerSettings
MixerSettingsInitialize();
MixerSettingsConnectCallback(MixerSettingsUpdatedCb);
// Listen for ActuatorDesired updates (Primary input to this module)
ActuatorDesiredInitialize();
queue = xQueueCreate(MAX_QUEUE_SIZE, sizeof(UAVObjEvent));
ActuatorDesiredConnectQueue(queue);
// Register AccessoryDesired (Secondary input to this module)
AccessoryDesiredInitialize();
// Check if CameraStab module is enabled
HwSettingsOptionalModulesData optionalModules;
HwSettingsInitialize();
HwSettingsOptionalModulesGet(&optionalModules);
camStabEnabled = (optionalModules.CameraStab == HWSETTINGS_OPTIONALMODULES_ENABLED);
// Primary output of this module
ActuatorCommandInitialize();
#ifdef DIAG_MIXERSTATUS
// UAVO only used for inspecting the internal status of the mixer during debug
MixerStatusInitialize();
#endif
#ifndef PIOS_EXCLUDE_ADVANCED_FEATURES
VtolPathFollowerSettingsInitialize();
VtolPathFollowerSettingsConnectCallback(&SettingsUpdatedCb);
#endif
SystemSettingsInitialize();
SystemSettingsConnectCallback(&SettingsUpdatedCb);
return 0;
}
MODULE_INITCALL(ActuatorInitialize, ActuatorStart);
/**
* @brief Main Actuator module task
*
* Universal matrix based mixer for VTOL, helis and fixed wing.
* Converts desired roll,pitch,yaw and throttle to servo/ESC outputs.
*
* Because of how the Throttle ranges from 0 to 1, the motors should too!
*
* Note this code depends on the UAVObjects for the mixers being all being the same
* and in sequence. If you change the object definition, make sure you check the code!
*
* @return -1 if error, 0 if success
*/
static void actuatorTask(__attribute__((unused)) void *parameters)
{
UAVObjEvent ev;
portTickType lastSysTime;
portTickType thisSysTime;
uint32_t dTMilliseconds;
ActuatorCommandData command;
ActuatorDesiredData desired;
MixerStatusData mixerStatus;
FlightModeSettingsData settings;
FlightStatusData flightStatus;
float throttleDesired;
float collectiveDesired;
#ifdef PIOS_INCLUDE_INSTRUMENTATION
counter = PIOS_Instrumentation_CreateCounter(0xAC700001);
#endif
/* Read initial values of ActuatorSettings */
ActuatorSettingsGet(&actuatorSettings);
/* Read initial values of MixerSettings */
MixerSettingsGet(&mixerSettings);
/* Force an initial configuration of the actuator update rates */
actuator_update_rate_if_changed(true);
// Go to the neutral (failsafe) values until an ActuatorDesired update is received
setFailsafe();
// Main task loop
lastSysTime = xTaskGetTickCount();
while (1) {
#ifdef PIOS_INCLUDE_WDG
PIOS_WDG_UpdateFlag(PIOS_WDG_ACTUATOR);
#endif
// Wait until the ActuatorDesired object is updated
uint8_t rc = xQueueReceive(queue, &ev, FAILSAFE_TIMEOUT_MS / portTICK_RATE_MS);
#ifdef PIOS_INCLUDE_INSTRUMENTATION
PIOS_Instrumentation_TimeStart(counter);
#endif
if (rc != pdTRUE) {
/* Update of ActuatorDesired timed out. Go to failsafe */
setFailsafe();
continue;
}
// Check how long since last update
thisSysTime = xTaskGetTickCount();
dTMilliseconds = (thisSysTime == lastSysTime) ? 1 : (thisSysTime - lastSysTime) * portTICK_RATE_MS;
lastSysTime = thisSysTime;
FlightStatusGet(&flightStatus);
FlightModeSettingsGet(&settings);
ActuatorDesiredGet(&desired);
ActuatorCommandGet(&command);
// read in throttle and collective -demultiplex thrust
switch (thrustType) {
case SYSTEMSETTINGS_THRUSTCONTROL_THROTTLE:
throttleDesired = desired.Thrust;
ManualControlCommandCollectiveGet(&collectiveDesired);
break;
case SYSTEMSETTINGS_THRUSTCONTROL_COLLECTIVE:
ManualControlCommandThrottleGet(&throttleDesired);
collectiveDesired = desired.Thrust;
break;
default:
ManualControlCommandThrottleGet(&throttleDesired);
ManualControlCommandCollectiveGet(&collectiveDesired);
}
bool armed = flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMED;
bool activeThrottle = (throttleDesired < -0.001f || throttleDesired > 0.001f); // for ground and reversible motors
bool positiveThrottle = (throttleDesired > 0.00f);
bool multirotor = (GetCurrentFrameType() == FRAME_TYPE_MULTIROTOR); // check if frame is a multirotor.
bool fixedwing = (GetCurrentFrameType() == FRAME_TYPE_FIXED_WING); // check if frame is a fixedwing.
bool alwaysArmed = settings.Arming == FLIGHTMODESETTINGS_ARMING_ALWAYSARMED;
bool alwaysStabilizeWhenArmed = flightStatus.AlwaysStabilizeWhenArmed == FLIGHTSTATUS_ALWAYSSTABILIZEWHENARMED_TRUE;
if (alwaysArmed) {
alwaysStabilizeWhenArmed = false; // Do not allow always stabilize when alwaysArmed is active. This is dangerous.
}
// safety settings
if (!armed) {
throttleDesired = 0.00f; // this also happens in scaleMotors as a per axis check
}
if ((frameType == FRAME_TYPE_GROUND && !activeThrottle) || (frameType != FRAME_TYPE_GROUND && throttleDesired <= 0.00f) || !armed) {
// throttleDesired should never be 0 or go below 0.
// force set all other controls to zero if throttle is cut (previously set in Stabilization)
// todo: can probably remove this
if (!(multirotor && alwaysStabilizeWhenArmed && armed)) { // we don't do this if this is a multirotor AND AlwaysStabilizeWhenArmed is true and the model is armed
if (actuatorSettings.LowThrottleZeroAxis.Roll == ACTUATORSETTINGS_LOWTHROTTLEZEROAXIS_TRUE) {
desired.Roll = 0.00f;
}
if (actuatorSettings.LowThrottleZeroAxis.Pitch == ACTUATORSETTINGS_LOWTHROTTLEZEROAXIS_TRUE) {
desired.Pitch = 0.00f;
}
if (actuatorSettings.LowThrottleZeroAxis.Yaw == ACTUATORSETTINGS_LOWTHROTTLEZEROAXIS_TRUE) {
desired.Yaw = 0.00f;
}
}
}
#ifdef DIAG_MIXERSTATUS
MixerStatusGet(&mixerStatus);
#endif
if ((mixer_settings_count < 2) && !ActuatorCommandReadOnly()) { // Nothing can fly with less than two mixers.
setFailsafe();
continue;
}
AlarmsClear(SYSTEMALARMS_ALARM_ACTUATOR);
float curve1 = 0.0f; // curve 1 is the throttle curve applied to all motors.
float curve2 = 0.0f;
// Interpolate curve 1 from throttleDesired as input.
// assume reversible motor/mixer initially. We can later reverse this. The difference is simply that -ve throttleDesired values
// map differently
curve1 = MixerCurveFullRangeProportional(throttleDesired, mixerSettings.ThrottleCurve1, MIXERSETTINGS_THROTTLECURVE1_NUMELEM, multirotor);
// The source for the secondary curve is selectable
AccessoryDesiredData accessory;
uint8_t curve2Source = mixerSettings.Curve2Source;
switch (curve2Source) {
case MIXERSETTINGS_CURVE2SOURCE_THROTTLE:
// assume reversible motor/mixer initially
curve2 = MixerCurveFullRangeProportional(throttleDesired, mixerSettings.ThrottleCurve2, MIXERSETTINGS_THROTTLECURVE2_NUMELEM, multirotor);
break;
case MIXERSETTINGS_CURVE2SOURCE_ROLL:
// Throttle curve contribution the same for +ve vs -ve roll
if (multirotor) {
curve2 = MixerCurveFullRangeProportional(desired.Roll, mixerSettings.ThrottleCurve2, MIXERSETTINGS_THROTTLECURVE2_NUMELEM, multirotor);
} else {
curve2 = MixerCurveFullRangeAbsolute(desired.Roll, mixerSettings.ThrottleCurve2, MIXERSETTINGS_THROTTLECURVE2_NUMELEM, multirotor);
}
break;
case MIXERSETTINGS_CURVE2SOURCE_PITCH:
// Throttle curve contribution the same for +ve vs -ve pitch
if (multirotor) {
curve2 = MixerCurveFullRangeProportional(desired.Pitch, mixerSettings.ThrottleCurve2,
MIXERSETTINGS_THROTTLECURVE2_NUMELEM, multirotor);
} else {
curve2 = MixerCurveFullRangeAbsolute(desired.Pitch, mixerSettings.ThrottleCurve2,
MIXERSETTINGS_THROTTLECURVE2_NUMELEM, multirotor);
}
break;
case MIXERSETTINGS_CURVE2SOURCE_YAW:
// Throttle curve contribution the same for +ve vs -ve yaw
if (multirotor) {
curve2 = MixerCurveFullRangeProportional(desired.Yaw, mixerSettings.ThrottleCurve2, MIXERSETTINGS_THROTTLECURVE2_NUMELEM, multirotor);
} else {
curve2 = MixerCurveFullRangeAbsolute(desired.Yaw, mixerSettings.ThrottleCurve2, MIXERSETTINGS_THROTTLECURVE2_NUMELEM, multirotor);
}
break;
case MIXERSETTINGS_CURVE2SOURCE_COLLECTIVE:
// assume reversible motor/mixer initially
curve2 = MixerCurveFullRangeProportional(collectiveDesired, mixerSettings.ThrottleCurve2,
MIXERSETTINGS_THROTTLECURVE2_NUMELEM, multirotor);
break;
case MIXERSETTINGS_CURVE2SOURCE_ACCESSORY0:
case MIXERSETTINGS_CURVE2SOURCE_ACCESSORY1:
case MIXERSETTINGS_CURVE2SOURCE_ACCESSORY2:
case MIXERSETTINGS_CURVE2SOURCE_ACCESSORY3:
case MIXERSETTINGS_CURVE2SOURCE_ACCESSORY4:
case MIXERSETTINGS_CURVE2SOURCE_ACCESSORY5:
if (AccessoryDesiredInstGet(mixerSettings.Curve2Source - MIXERSETTINGS_CURVE2SOURCE_ACCESSORY0, &accessory) == 0) {
// Throttle curve contribution the same for +ve vs -ve accessory....maybe not want we want.
curve2 = MixerCurveFullRangeAbsolute(accessory.AccessoryVal, mixerSettings.ThrottleCurve2, MIXERSETTINGS_THROTTLECURVE2_NUMELEM, multirotor);
} else {
curve2 = 0.0f;
}
break;
default:
curve2 = 0.0f;
break;
}
float *status = (float *)&mixerStatus; // access status objects as an array of floats
Mixer_t *mixers = (Mixer_t *)&mixerSettings.Mixer1Type;
float maxMotor = -1.0f; // highest motor value. Addition method needs this to be -1.0f, division method needs this to be 1.0f
float minMotor = 1.0f; // lowest motor value Addition method needs this to be 1.0f, division method needs this to be -1.0f
for (int ct = 0; ct < MAX_MIX_ACTUATORS; ct++) {
// During boot all camera actuators should be completely disabled (PWM pulse = 0).
// command.Channel[i] is reused below as a channel PWM activity flag:
// 0 - PWM disabled, >0 - PWM set to real mixer value using scaleChannel() later.
// Setting it to 1 by default means "Rescale this channel and enable PWM on its output".
command.Channel[ct] = 1;
uint8_t mixer_type = mixers[ct].type;
if (mixer_type == MIXERSETTINGS_MIXER1TYPE_DISABLED) {
// Set to minimum if disabled. This is not the same as saying PWM pulse = 0 us
status[ct] = -1;
continue;
}
if ((mixer_type == MIXERSETTINGS_MIXER1TYPE_MOTOR)) {
float nonreversible_curve1 = curve1;
float nonreversible_curve2 = curve2;
if (nonreversible_curve1 < 0.0f) {
nonreversible_curve1 = 0.0f;
}
if (nonreversible_curve2 < 0.0f) {
if (!multirotor) { // allow negative throttle if multirotor. function scaleMotors handles the sanity checks.
nonreversible_curve2 = 0.0f;
}
}
status[ct] = ProcessMixer(ct, nonreversible_curve1, nonreversible_curve2, &desired, multirotor, fixedwing);
// If not armed or motors aren't meant to spin all the time
if (!armed ||
(!spinWhileArmed && !positiveThrottle)) {
status[ct] = -1; // force min throttle
}
// If armed meant to keep spinning,
else if ((spinWhileArmed && !positiveThrottle) ||
(status[ct] < 0)) {
if (!multirotor) {
status[ct] = 0;
// allow throttle values lower than 0 if multirotor.
// Values will be scaled to 0 if they need to be in the scaleMotor function
}
}
} else if (mixer_type == MIXERSETTINGS_MIXER1TYPE_REVERSABLEMOTOR) {
status[ct] = ProcessMixer(ct, curve1, curve2, &desired, multirotor, fixedwing);
// Reversable Motors are like Motors but go to neutral instead of minimum
// If not armed or motor is inactive - no "spinwhilearmed" for this engine type
if (!armed || !activeThrottle) {
status[ct] = 0; // force neutral throttle
}
} else if (mixer_type == MIXERSETTINGS_MIXER1TYPE_SERVO) {
status[ct] = ProcessMixer(ct, curve1, curve2, &desired, multirotor, fixedwing);
} else {
status[ct] = -1;
// If an accessory channel is selected for direct bypass mode
// In this configuration the accessory channel is scaled and mapped
// directly to output. Note: THERE IS NO SAFETY CHECK HERE FOR ARMING
// these also will not be updated in failsafe mode. I'm not sure what
// the correct behavior is since it seems domain specific. I don't love
// this code
if ((mixer_type >= MIXERSETTINGS_MIXER1TYPE_ACCESSORY0) &&
(mixer_type <= MIXERSETTINGS_MIXER1TYPE_ACCESSORY5)) {
if (AccessoryDesiredInstGet(mixer_type - MIXERSETTINGS_MIXER1TYPE_ACCESSORY0, &accessory) == 0) {
status[ct] = accessory.AccessoryVal;
} else {
status[ct] = -1;
}
}
if ((mixer_type >= MIXERSETTINGS_MIXER1TYPE_CAMERAROLLORSERVO1) &&
(mixer_type <= MIXERSETTINGS_MIXER1TYPE_CAMERAYAW)) {
if (camStabEnabled) {
CameraDesiredData cameraDesired;
CameraDesiredGet(&cameraDesired);
switch (mixer_type) {
case MIXERSETTINGS_MIXER1TYPE_CAMERAROLLORSERVO1:
status[ct] = cameraDesired.RollOrServo1;
break;
case MIXERSETTINGS_MIXER1TYPE_CAMERAPITCHORSERVO2:
status[ct] = cameraDesired.PitchOrServo2;
break;
case MIXERSETTINGS_MIXER1TYPE_CAMERAYAW:
status[ct] = cameraDesired.Yaw;
break;
default:
break;
}
} else {
status[ct] = -1;
}
// Disable camera actuators for CAMERA_BOOT_DELAY_MS after boot
if (thisSysTime < (CAMERA_BOOT_DELAY_MS / portTICK_RATE_MS)) {
command.Channel[ct] = 0;
}
}
}
// If mixer type is motor we need to find which motor has the highest value and which motor has the lowest value.
// For use in function scaleMotor
if (mixers[ct].type == MIXERSETTINGS_MIXER1TYPE_MOTOR) {
if (maxMotor < status[ct]) {
maxMotor = status[ct];
}
if (minMotor > status[ct]) {
minMotor = status[ct];
}
}
}
// Set real actuator output values scaling them from mixers. All channels
// will be set except explicitly disabled (which will have PWM pulse = 0).
for (int i = 0; i < MAX_MIX_ACTUATORS; i++) {
if (command.Channel[i]) {
if (mixers[i].type == MIXERSETTINGS_MIXER1TYPE_MOTOR) { // If mixer is for a motor we need to find the highest value of all motors
command.Channel[i] = scaleMotor(status[i],
actuatorSettings.ChannelMax[i],
actuatorSettings.ChannelMin[i],
actuatorSettings.ChannelNeutral[i],
maxMotor,
minMotor,
armed,
alwaysStabilizeWhenArmed,
throttleDesired);
} else { // else we scale the channel
command.Channel[i] = scaleChannel(status[i],
actuatorSettings.ChannelMax[i],
actuatorSettings.ChannelMin[i],
actuatorSettings.ChannelNeutral[i]);
}
}
}
// Store update time
command.UpdateTime = dTMilliseconds;
if (command.UpdateTime > command.MaxUpdateTime) {
command.MaxUpdateTime = command.UpdateTime;
}
// Update output object
ActuatorCommandSet(&command);
// Update in case read only (eg. during servo configuration)
ActuatorCommandGet(&command);
#ifdef DIAG_MIXERSTATUS
MixerStatusSet(&mixerStatus);
#endif
// Update servo outputs
bool success = true;
for (int n = 0; n < ACTUATORCOMMAND_CHANNEL_NUMELEM; ++n) {
success &= set_channel(n, command.Channel[n]);
}
PIOS_Servo_Update();
if (!success) {
command.NumFailedUpdates++;
ActuatorCommandSet(&command);
AlarmsSet(SYSTEMALARMS_ALARM_ACTUATOR, SYSTEMALARMS_ALARM_CRITICAL);
}
#ifdef PIOS_INCLUDE_INSTRUMENTATION
PIOS_Instrumentation_TimeEnd(counter);
#endif
}
}
/**
* Process mixing for one actuator
*/
float ProcessMixer(const int index, const float curve1, const float curve2,
ActuatorDesiredData *desired, bool multirotor, bool fixedwing)
{
const Mixer_t *mixers = (Mixer_t *)&mixerSettings.Mixer1Type; // pointer to array of mixers in UAVObjects
const Mixer_t *mixer = &mixers[index];
float differential = 1.0f;
// Apply differential only for fixedwing and Roll servos
if (fixedwing && (mixerSettings.FirstRollServo > 0) &&
(mixer->type == MIXERSETTINGS_MIXER1TYPE_SERVO) &&
(mixer->matrix[MIXERSETTINGS_MIXER1VECTOR_ROLL] != 0)) {
// Positive differential
if (mixerSettings.RollDifferential > 0) {
// Check for first Roll servo (should be left aileron or elevon) and Roll desired (positive/negative)
if (((index == mixerSettings.FirstRollServo - 1) && (desired->Roll > 0.0f))
|| ((index != mixerSettings.FirstRollServo - 1) && (desired->Roll < 0.0f))) {
differential -= (mixerSettings.RollDifferential * 0.01f);
}
} else if (mixerSettings.RollDifferential < 0) {
if (((index == mixerSettings.FirstRollServo - 1) && (desired->Roll < 0.0f))
|| ((index != mixerSettings.FirstRollServo - 1) && (desired->Roll > 0.0f))) {
differential -= (-mixerSettings.RollDifferential * 0.01f);
}
}
}
float result = ((((float)mixer->matrix[MIXERSETTINGS_MIXER1VECTOR_THROTTLECURVE1]) * curve1) +
(((float)mixer->matrix[MIXERSETTINGS_MIXER1VECTOR_THROTTLECURVE2]) * curve2) +
(((float)mixer->matrix[MIXERSETTINGS_MIXER1VECTOR_ROLL]) * desired->Roll * differential) +
(((float)mixer->matrix[MIXERSETTINGS_MIXER1VECTOR_PITCH]) * desired->Pitch) +
(((float)mixer->matrix[MIXERSETTINGS_MIXER1VECTOR_YAW]) * desired->Yaw)) / 128.0f;
if (mixer->type == MIXERSETTINGS_MIXER1TYPE_MOTOR) {
if (!multirotor) { // we allow negative throttle with a multirotor
if (result < 0.0f) { // zero throttle
result = 0.0f;
}
}
}
return result;
}
/**
* Interpolate a throttle curve
* Full range input (-1 to 1) for yaw, roll, pitch
* Output range (-1 to 1) reversible motor/throttle curve
*
* Input of -1 -> -lookup(1)
* Input of 0 -> lookup(0)
* Input of 1 -> lookup(1)
*/
static float MixerCurveFullRangeProportional(const float input, const float *curve, uint8_t elements, bool multirotor)
{
float unsigned_value = MixerCurveFullRangeAbsolute(input, curve, elements, multirotor);
if (input < 0.0f) {
return -unsigned_value;
} else {
return unsigned_value;
}
}
/**
* Interpolate a throttle curve
* Full range input (-1 to 1) for yaw, roll, pitch
* Output range (0 to 1) non-reversible motor/throttle curve
*
* Input of -1 -> lookup(1)
* Input of 0 -> lookup(0)
* Input of 1 -> lookup(1)
*/
static float MixerCurveFullRangeAbsolute(const float input, const float *curve, uint8_t elements, bool multirotor)
{
float abs_input = fabsf(input);
float scale = abs_input * (float)(elements - 1);
int idx1 = scale;
scale -= (float)idx1; // remainder
if (curve[0] < -1) {
return abs_input;
}
int idx2 = idx1 + 1;
if (idx2 >= elements) {
idx2 = elements - 1; // clamp to highest entry in table
if (idx1 >= elements) {
if (multirotor) {
// if multirotor frame we can return throttle values higher than 100%.
// Since the we don't have elements in the curve higher than 100% we return
// the last element multiplied by the throttle float
if (input < 2.0f) { // this limits positive throttle to 200% of max value in table (Maybe this is too much allowance)
return curve[idx2] * input;
} else {
return curve[idx2] * 2.0f; // return 200% of max value in table
}
}
idx1 = elements - 1;
}
}
float unsigned_value = curve[idx1] * (1.0f - scale) + curve[idx2] * scale;
return unsigned_value;
}
/**
* Convert channel from -1/+1 to servo pulse duration in microseconds
*/
static int16_t scaleChannel(float value, int16_t max, int16_t min, int16_t neutral)
{
int16_t valueScaled;
// Scale
if (value >= 0.0f) {
valueScaled = (int16_t)(value * ((float)(max - neutral))) + neutral;
} else {
valueScaled = (int16_t)(value * ((float)(neutral - min))) + neutral;
}
if (max > min) {
if (valueScaled > max) {
valueScaled = max;
}
if (valueScaled < min) {
valueScaled = min;
}
} else {
if (valueScaled < max) {
valueScaled = max;
}
if (valueScaled > min) {
valueScaled = min;
}
}
return valueScaled;
}
/**
* Move and compress all motor outputs so that none goes below neutral,
* and all motors are below or equal to max.
*/
static inline int16_t scaleMotorMoveAndCompress(float valueMotor, int16_t max, int16_t neutral, float maxMotor, float minMotor)
{
// The valueMotor parameter is the desired motor value somewhere in the
// [minMotor, maxMotor] range, which is [< -1.00, > 1.00].
//
// Before converting valueMotor to the [neutral, max] range, we scale
// valueMotor to a value in the [0.0f, 1.0f] range.
//
// This is done by, first, conceptually moving all three values valueMotor,
// minMotor, and maxMotor, equally so that the [minMotor, maxMotor] range,
// are contained or overlaps with the [0.0f, 1.0f] range.
//
// Then if the [minMotor, maxMotor] range is larger than 1.0f, the values
// are compressed enough to shrink the [minMotor + move, maxMotor + move]
// range to fit within the [0.0f, 1.0f] range.
// First move the values so that the source range [minMotor, maxMotor]
// covers the target range [0.0f, 1.0f] as much as possible.
float moveValue = 0.0f;
if (minMotor <= 0.0f) {
// Negative minMotor always adjust to 0.
moveValue = -minMotor;
} else if (maxMotor > 1.0f) {
// A too large maxMotor value adjust the range down towards, but not past, the minMotor value.
float beyondMax = maxMotor - 1.0f;
moveValue = -(beyondMax < minMotor ? beyondMax : minMotor);
}
// Then calculate the compress value, if the source range is greater than 1.0f.
float compressValue = 1.0f;
float rangeMotor = maxMotor - minMotor;
if (rangeMotor > 1.0f) {
compressValue = rangeMotor;
}
// Combine the movement and compression, to get the value within [0.0f, 1.0f]
float movedAndCompressedValue = (valueMotor + moveValue) / compressValue;
// And last, convert the value into the [neutral, max] range.
int16_t valueScaled = movedAndCompressedValue * ((float)(max - neutral)) + neutral;
if (valueScaled > max) {
valueScaled = max; // clamp to max value only after scaling is done.
}
PIOS_Assert(valueScaled >= neutral);
return valueScaled;
}
/**
* Constrain motor values to keep any one motor value from going too far out of range of another motor
*/
static int16_t scaleMotor(float value, int16_t max, int16_t min, int16_t neutral, float maxMotor, float minMotor, bool armed, bool alwaysStabilizeWhenArmed, float throttleDesired)
{
int16_t valueScaled;
if (max > min) {
valueScaled = scaleMotorMoveAndCompress(value, max, neutral, maxMotor, minMotor);
} else {
// not sure what to do about reversed polarity right now. Why would anyone do this?
valueScaled = scaleChannel(value, max, min, neutral);
}
// I've added the bool alwaysStabilizeWhenArmed to this function. Right now we command the motors at min or a range between neutral and max.
// NEVER should a motor be command at between min and neutral. I don't like the idea of stabilization ever commanding a motor to min, but we give people the option
// This prevents motors startup sync issues causing possible ESC failures.
// safety checks
if (!armed) {
// if not armed return min EVERYTIME!
valueScaled = min;
} else if (!alwaysStabilizeWhenArmed && (throttleDesired <= 0.0f) && spinWhileArmed) {
// all motors idle is alwaysStabilizeWhenArmed is false, throttle is less than or equal to neutral and spin while armed
// stabilize when armed?
valueScaled = neutral;
} else if (!spinWhileArmed && (throttleDesired <= 0.0f)) {
// soft disarm
valueScaled = min;
}
return valueScaled;
}
/**
* Set actuator output to the neutral values (failsafe)
*/
static void setFailsafe()
{
/* grab only the parts that we are going to use */
int16_t Channel[ACTUATORCOMMAND_CHANNEL_NUMELEM];
ActuatorCommandChannelGet(Channel);
const Mixer_t *mixers = (Mixer_t *)&mixerSettings.Mixer1Type; // pointer to array of mixers in UAVObjects
// Reset ActuatorCommand to safe values
for (int n = 0; n < ACTUATORCOMMAND_CHANNEL_NUMELEM; ++n) {
if (mixers[n].type == MIXERSETTINGS_MIXER1TYPE_MOTOR) {
Channel[n] = actuatorSettings.ChannelMin[n];
} else if (mixers[n].type == MIXERSETTINGS_MIXER1TYPE_SERVO || mixers[n].type == MIXERSETTINGS_MIXER1TYPE_REVERSABLEMOTOR) {
// reversible motors need calibration wizard that allows channel neutral to be the 0 velocity point
Channel[n] = actuatorSettings.ChannelNeutral[n];
} else {
Channel[n] = 0;
}
}
// Set alarm
AlarmsSet(SYSTEMALARMS_ALARM_ACTUATOR, SYSTEMALARMS_ALARM_CRITICAL);
// Update servo outputs
for (int n = 0; n < ACTUATORCOMMAND_CHANNEL_NUMELEM; ++n) {
set_channel(n, Channel[n]);
}
// Send the updated command
PIOS_Servo_Update();
// Update output object's parts that we changed
ActuatorCommandChannelSet(Channel);
}
/**
* determine buzzer or blink sequence
**/
typedef enum { BUZZ_BUZZER = 0, BUZZ_ARMING = 1, BUZZ_INFO = 2, BUZZ_MAX = 3 } buzzertype;
static inline bool buzzerState(buzzertype type)
{
// This is for buzzers that take a PWM input
static uint32_t tune[BUZZ_MAX] = { 0 };
static uint32_t tunestate[BUZZ_MAX] = { 0 };
uint32_t newTune = 0;
if (type == BUZZ_BUZZER) {
// Decide what tune to play
if (AlarmsGet(SYSTEMALARMS_ALARM_BATTERY) > SYSTEMALARMS_ALARM_WARNING) {
newTune = 0b11110110110000; // pause, short, short, short, long
} else if (AlarmsGet(SYSTEMALARMS_ALARM_GPS) >= SYSTEMALARMS_ALARM_WARNING) {
newTune = 0x80000000; // pause, short
} else {
newTune = 0;
}
} else { // BUZZ_ARMING || BUZZ_INFO
uint8_t arming;
FlightStatusArmedGet(&arming);
// base idle tune
newTune = 0x80000000; // 0b1000...
// Merge the error pattern for InfoLed
if (type == BUZZ_INFO) {
if (AlarmsGet(SYSTEMALARMS_ALARM_BATTERY) > SYSTEMALARMS_ALARM_WARNING) {
newTune |= 0b00000000001111111011111110000000;
} else if (AlarmsGet(SYSTEMALARMS_ALARM_GPS) >= SYSTEMALARMS_ALARM_WARNING) {
newTune |= 0b00000000000000110110110000000000;
}
}
// fast double blink pattern if armed
if (arming == FLIGHTSTATUS_ARMED_ARMED) {
newTune |= 0xA0000000; // 0b101000...
}
}
// Do we need to change tune?
if (newTune != tune[type]) {
tune[type] = newTune;
// resynchronize all tunes on change, so they stay in sync
for (int i = 0; i < BUZZ_MAX; i++) {
tunestate[i] = tune[i];
}
}
// Play tune
bool buzzOn = false;
static portTickType lastSysTime = 0;
portTickType thisSysTime = xTaskGetTickCount();
portTickType dT = 0;
// For now, only look at the battery alarm, because functions like AlarmsHasCritical() can block for some time; to be discussed
if (tune[type]) {
if (thisSysTime > lastSysTime) {
dT = thisSysTime - lastSysTime;
} else {
lastSysTime = 0; // avoid the case where SysTimeMax-lastSysTime <80
}
buzzOn = (tunestate[type] & 1);
if (dT > 80) {
// Go to next bit in alarm_seq_state
for (int i = 0; i < BUZZ_MAX; i++) {
tunestate[i] >>= 1;
if (tunestate[i] == 0) { // All done, re-start the tune
tunestate[i] = tune[i];
}
}
lastSysTime = thisSysTime;
}
}
return buzzOn;
}
#if defined(ARCH_POSIX) || defined(ARCH_WIN32)
static bool set_channel(uint8_t mixer_channel, uint16_t value)
{
return true;
}
#else
static bool set_channel(uint8_t mixer_channel, uint16_t value)
{
switch (actuatorSettings.ChannelType[mixer_channel]) {
case ACTUATORSETTINGS_CHANNELTYPE_PWMALARMBUZZER:
PIOS_Servo_Set(actuatorSettings.ChannelAddr[mixer_channel],
buzzerState(BUZZ_BUZZER) ? actuatorSettings.ChannelMax[mixer_channel] : actuatorSettings.ChannelMin[mixer_channel]);
return true;
case ACTUATORSETTINGS_CHANNELTYPE_ARMINGLED:
PIOS_Servo_Set(actuatorSettings.ChannelAddr[mixer_channel],
buzzerState(BUZZ_ARMING) ? actuatorSettings.ChannelMax[mixer_channel] : actuatorSettings.ChannelMin[mixer_channel]);
return true;
case ACTUATORSETTINGS_CHANNELTYPE_INFOLED:
PIOS_Servo_Set(actuatorSettings.ChannelAddr[mixer_channel],
buzzerState(BUZZ_INFO) ? actuatorSettings.ChannelMax[mixer_channel] : actuatorSettings.ChannelMin[mixer_channel]);
return true;
case ACTUATORSETTINGS_CHANNELTYPE_PWM:
{
uint8_t mode = pinsMode[actuatorSettings.ChannelAddr[mixer_channel]];
switch (mode) {
case ACTUATORSETTINGS_BANKMODE_ONESHOT125:
// Remap 1000-2000 range to 125-250µs
PIOS_Servo_Set(actuatorSettings.ChannelAddr[mixer_channel], value * ACTUATOR_ONESHOT125_PULSE_FACTOR);
break;
case ACTUATORSETTINGS_BANKMODE_ONESHOT42:
// Remap 1000-2000 range to 41,666-83,333µs
PIOS_Servo_Set(actuatorSettings.ChannelAddr[mixer_channel], value * ACTUATOR_ONESHOT42_PULSE_FACTOR);
break;
case ACTUATORSETTINGS_BANKMODE_MULTISHOT:
// Remap 1000-2000 range to 5-25µs
PIOS_Servo_Set(actuatorSettings.ChannelAddr[mixer_channel], (value * ACTUATOR_MULTISHOT_PULSE_FACTOR) - 180);
break;
default:
PIOS_Servo_Set(actuatorSettings.ChannelAddr[mixer_channel], value);
break;
}
return true;
}
#if defined(PIOS_INCLUDE_I2C_ESC)
case ACTUATORSETTINGS_CHANNELTYPE_MK:
return PIOS_SetMKSpeed(actuatorSettings->ChannelAddr[mixer_channel], value);
case ACTUATORSETTINGS_CHANNELTYPE_ASTEC4:
return PIOS_SetAstec4Speed(actuatorSettings->ChannelAddr[mixer_channel], value);
#endif
default:
return false;
}
return false;
}
#endif /* if defined(ARCH_POSIX) || defined(ARCH_WIN32) */
/**
* @brief Update the servo update rate
*/
static void actuator_update_rate_if_changed(bool force_update)
{
static uint16_t prevBankUpdateFreq[ACTUATORSETTINGS_BANKUPDATEFREQ_NUMELEM];
static uint8_t prevBankMode[ACTUATORSETTINGS_BANKMODE_NUMELEM];
bool updateMode = force_update || (memcmp(prevBankMode, actuatorSettings.BankMode, sizeof(prevBankMode)) != 0);
bool updateFreq = force_update || (memcmp(prevBankUpdateFreq, actuatorSettings.BankUpdateFreq, sizeof(prevBankUpdateFreq)) != 0);
// check if any setting is changed
if (updateMode || updateFreq) {
/* Something has changed, apply the settings to HW */
uint16_t freq[ACTUATORSETTINGS_BANKUPDATEFREQ_NUMELEM];
uint32_t clock[ACTUATORSETTINGS_BANKUPDATEFREQ_NUMELEM] = { 0 };
for (uint8_t i = 0; i < ACTUATORSETTINGS_BANKMODE_NUMELEM; i++) {
if (force_update || (actuatorSettings.BankMode[i] != prevBankMode[i])) {
PIOS_Servo_SetBankMode(i,
actuatorSettings.BankMode[i] ==
ACTUATORSETTINGS_BANKMODE_PWM ?
PIOS_SERVO_BANK_MODE_PWM :
PIOS_SERVO_BANK_MODE_SINGLE_PULSE
);
}
switch (actuatorSettings.BankMode[i]) {
case ACTUATORSETTINGS_BANKMODE_ONESHOT125:
case ACTUATORSETTINGS_BANKMODE_ONESHOT42:
case ACTUATORSETTINGS_BANKMODE_MULTISHOT:
freq[i] = 100; // Value must be small enough so CCr isn't update until the PIOS_Servo_Update is triggered
clock[i] = ACTUATOR_ONESHOT_CLOCK; // Setup an 12MHz timer clock
break;
case ACTUATORSETTINGS_BANKMODE_PWMSYNC:
freq[i] = 100;
clock[i] = ACTUATOR_PWM_CLOCK;
break;
default: // PWM
freq[i] = actuatorSettings.BankUpdateFreq[i];
clock[i] = ACTUATOR_PWM_CLOCK;
break;
}
}
memcpy(prevBankMode,
actuatorSettings.BankMode,
sizeof(prevBankMode));
PIOS_Servo_SetHz(freq, clock, ACTUATORSETTINGS_BANKUPDATEFREQ_NUMELEM);
memcpy(prevBankUpdateFreq,
actuatorSettings.BankUpdateFreq,
sizeof(prevBankUpdateFreq));
// retrieve mode from related bank
for (uint8_t i = 0; i < MAX_MIX_ACTUATORS; i++) {
uint8_t bank = PIOS_Servo_GetPinBank(i);
pinsMode[i] = actuatorSettings.BankMode[bank];
}
}
}
static void ActuatorSettingsUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
ActuatorSettingsGet(&actuatorSettings);
spinWhileArmed = actuatorSettings.MotorsSpinWhileArmed == ACTUATORSETTINGS_MOTORSSPINWHILEARMED_TRUE;
if (frameType == FRAME_TYPE_GROUND) {
spinWhileArmed = false;
}
actuator_update_rate_if_changed(false);
}
static void MixerSettingsUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
MixerSettingsGet(&mixerSettings);
mixer_settings_count = 0;
Mixer_t *mixers = (Mixer_t *)&mixerSettings.Mixer1Type;
for (int ct = 0; ct < MAX_MIX_ACTUATORS; ct++) {
if (mixers[ct].type != MIXERSETTINGS_MIXER1TYPE_DISABLED) {
mixer_settings_count++;
}
}
}
static void SettingsUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
frameType = GetCurrentFrameType();
#ifndef PIOS_EXCLUDE_ADVANCED_FEATURES
uint8_t TreatCustomCraftAs;
VtolPathFollowerSettingsTreatCustomCraftAsGet(&TreatCustomCraftAs);
if (frameType == FRAME_TYPE_CUSTOM) {
switch (TreatCustomCraftAs) {
case VTOLPATHFOLLOWERSETTINGS_TREATCUSTOMCRAFTAS_FIXEDWING:
frameType = FRAME_TYPE_FIXED_WING;
break;
case VTOLPATHFOLLOWERSETTINGS_TREATCUSTOMCRAFTAS_VTOL:
frameType = FRAME_TYPE_MULTIROTOR;
break;
case VTOLPATHFOLLOWERSETTINGS_TREATCUSTOMCRAFTAS_GROUND:
frameType = FRAME_TYPE_GROUND;
break;
}
}
#endif
SystemSettingsThrustControlGet(&thrustType);
}
/**
* @}
* @}
*/