mirror of
https://bitbucket.org/librepilot/librepilot.git
synced 2025-01-23 08:52:10 +01:00
e91bc28667
They caused stack usage increase with -fstrict-aliasing as stack slots are not reused when dealing with unions. It has now been added the cast_struct_to_array macro in pios_struct_helper.h to handle such case where it is useful to access those homogeneous structs as arrays +review OPReview-552
564 lines
21 KiB
C
564 lines
21 KiB
C
/**
|
|
******************************************************************************
|
|
* @addtogroup OpenPilotModules OpenPilot Modules
|
|
* @{
|
|
* @addtogroup StabilizationModule Stabilization Module
|
|
* @brief Stabilization PID loops in an airframe type independent manner
|
|
* @note This object updates the @ref ActuatorDesired "Actuator Desired" based on the
|
|
* PID loops on the @ref AttitudeDesired "Attitude Desired" and @ref AttitudeState "Attitude State"
|
|
* @{
|
|
*
|
|
* @file stabilization.c
|
|
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
|
|
* @brief Attitude stabilization module.
|
|
*
|
|
* @see The GNU Public License (GPL) Version 3
|
|
*
|
|
*****************************************************************************/
|
|
/*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#include <openpilot.h>
|
|
#include <pios_struct_helper.h>
|
|
#include "stabilization.h"
|
|
#include "stabilizationsettings.h"
|
|
#include "actuatordesired.h"
|
|
#include "ratedesired.h"
|
|
#include "relaytuning.h"
|
|
#include "relaytuningsettings.h"
|
|
#include "stabilizationdesired.h"
|
|
#include "attitudestate.h"
|
|
#include "airspeedstate.h"
|
|
#include "gyrostate.h"
|
|
#include "flightstatus.h"
|
|
#include "manualcontrol.h" // Just to get a macro
|
|
#include "taskinfo.h"
|
|
|
|
// Math libraries
|
|
#include "CoordinateConversions.h"
|
|
#include "pid.h"
|
|
#include "sin_lookup.h"
|
|
|
|
// Includes for various stabilization algorithms
|
|
#include "relay_tuning.h"
|
|
#include "virtualflybar.h"
|
|
|
|
// Includes for various stabilization algorithms
|
|
#include "relay_tuning.h"
|
|
|
|
// Private constants
|
|
#define MAX_QUEUE_SIZE 1
|
|
|
|
#if defined(PIOS_STABILIZATION_STACK_SIZE)
|
|
#define STACK_SIZE_BYTES PIOS_STABILIZATION_STACK_SIZE
|
|
#else
|
|
#define STACK_SIZE_BYTES 724
|
|
#endif
|
|
|
|
#define TASK_PRIORITY (tskIDLE_PRIORITY + 4)
|
|
#define FAILSAFE_TIMEOUT_MS 30
|
|
|
|
enum { PID_RATE_ROLL, PID_RATE_PITCH, PID_RATE_YAW, PID_ROLL, PID_PITCH, PID_YAW, PID_MAX };
|
|
|
|
|
|
// Private variables
|
|
static xTaskHandle taskHandle;
|
|
static StabilizationSettingsData settings;
|
|
static xQueueHandle queue;
|
|
float gyro_alpha = 0;
|
|
float axis_lock_accum[3] = { 0, 0, 0 };
|
|
uint8_t max_axis_lock = 0;
|
|
uint8_t max_axislock_rate = 0;
|
|
float weak_leveling_kp = 0;
|
|
uint8_t weak_leveling_max = 0;
|
|
bool lowThrottleZeroIntegral;
|
|
bool lowThrottleZeroAxis[MAX_AXES];
|
|
float vbar_decay = 0.991f;
|
|
struct pid pids[PID_MAX];
|
|
|
|
// Private functions
|
|
static void stabilizationTask(void *parameters);
|
|
static float bound(float val, float range);
|
|
static void ZeroPids(void);
|
|
static void SettingsUpdatedCb(UAVObjEvent *ev);
|
|
|
|
/**
|
|
* Module initialization
|
|
*/
|
|
int32_t StabilizationStart()
|
|
{
|
|
// Initialize variables
|
|
// Create object queue
|
|
queue = xQueueCreate(MAX_QUEUE_SIZE, sizeof(UAVObjEvent));
|
|
|
|
// Listen for updates.
|
|
// AttitudeStateConnectQueue(queue);
|
|
GyroStateConnectQueue(queue);
|
|
|
|
StabilizationSettingsConnectCallback(SettingsUpdatedCb);
|
|
SettingsUpdatedCb(StabilizationSettingsHandle());
|
|
|
|
// Start main task
|
|
xTaskCreate(stabilizationTask, (signed char *)"Stabilization", STACK_SIZE_BYTES / 4, NULL, TASK_PRIORITY, &taskHandle);
|
|
PIOS_TASK_MONITOR_RegisterTask(TASKINFO_RUNNING_STABILIZATION, taskHandle);
|
|
#ifdef PIOS_INCLUDE_WDG
|
|
PIOS_WDG_RegisterFlag(PIOS_WDG_STABILIZATION);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Module initialization
|
|
*/
|
|
int32_t StabilizationInitialize()
|
|
{
|
|
// Initialize variables
|
|
StabilizationSettingsInitialize();
|
|
ActuatorDesiredInitialize();
|
|
#ifdef DIAG_RATEDESIRED
|
|
RateDesiredInitialize();
|
|
#endif
|
|
#ifdef REVOLUTION
|
|
AirspeedStateInitialize();
|
|
#endif
|
|
// Code required for relay tuning
|
|
sin_lookup_initalize();
|
|
RelayTuningSettingsInitialize();
|
|
RelayTuningInitialize();
|
|
|
|
return 0;
|
|
}
|
|
|
|
MODULE_INITCALL(StabilizationInitialize, StabilizationStart);
|
|
|
|
/**
|
|
* Module task
|
|
*/
|
|
static void stabilizationTask(__attribute__((unused)) void *parameters)
|
|
{
|
|
UAVObjEvent ev;
|
|
|
|
uint32_t timeval = PIOS_DELAY_GetRaw();
|
|
|
|
ActuatorDesiredData actuatorDesired;
|
|
StabilizationDesiredData stabDesired;
|
|
RateDesiredData rateDesired;
|
|
AttitudeStateData attitudeState;
|
|
GyroStateData gyroStateData;
|
|
FlightStatusData flightStatus;
|
|
|
|
#ifdef REVOLUTION
|
|
AirspeedStateData airspeedState;
|
|
#endif
|
|
|
|
SettingsUpdatedCb((UAVObjEvent *)NULL);
|
|
|
|
// Main task loop
|
|
ZeroPids();
|
|
while (1) {
|
|
float dT;
|
|
|
|
#ifdef PIOS_INCLUDE_WDG
|
|
PIOS_WDG_UpdateFlag(PIOS_WDG_STABILIZATION);
|
|
#endif
|
|
|
|
// Wait until the AttitudeRaw object is updated, if a timeout then go to failsafe
|
|
if (xQueueReceive(queue, &ev, FAILSAFE_TIMEOUT_MS / portTICK_RATE_MS) != pdTRUE) {
|
|
AlarmsSet(SYSTEMALARMS_ALARM_STABILIZATION, SYSTEMALARMS_ALARM_WARNING);
|
|
continue;
|
|
}
|
|
|
|
dT = PIOS_DELAY_DiffuS(timeval) * 1.0e-6f;
|
|
timeval = PIOS_DELAY_GetRaw();
|
|
|
|
FlightStatusGet(&flightStatus);
|
|
StabilizationDesiredGet(&stabDesired);
|
|
AttitudeStateGet(&attitudeState);
|
|
GyroStateGet(&gyroStateData);
|
|
#ifdef DIAG_RATEDESIRED
|
|
RateDesiredGet(&rateDesired);
|
|
#endif
|
|
#ifdef REVOLUTION
|
|
float speedScaleFactor;
|
|
// Scale PID coefficients based on current airspeed estimation - needed for fixed wing planes
|
|
AirspeedStateGet(&airspeedState);
|
|
if (settings.ScaleToAirspeed < 0.1f || airspeedState.CalibratedAirspeed < 0.1f) {
|
|
// feature has been turned off
|
|
speedScaleFactor = 1.0f;
|
|
} else {
|
|
// scale the factor to be 1.0 at the specified airspeed (for example 10m/s) but scaled by 1/speed^2
|
|
speedScaleFactor = (settings.ScaleToAirspeed * settings.ScaleToAirspeed) / (airspeedState.CalibratedAirspeed * airspeedState.CalibratedAirspeed);
|
|
if (speedScaleFactor < settings.ScaleToAirspeedLimits.Min) {
|
|
speedScaleFactor = settings.ScaleToAirspeedLimits.Min;
|
|
}
|
|
if (speedScaleFactor > settings.ScaleToAirspeedLimits.Max) {
|
|
speedScaleFactor = settings.ScaleToAirspeedLimits.Max;
|
|
}
|
|
}
|
|
#else
|
|
const float speedScaleFactor = 1.0f;
|
|
#endif
|
|
|
|
#if defined(PIOS_QUATERNION_STABILIZATION)
|
|
// Quaternion calculation of error in each axis. Uses more memory.
|
|
float rpy_desired[3];
|
|
float q_desired[4];
|
|
float q_error[4];
|
|
float local_error[3];
|
|
|
|
// Essentially zero errors for anything in rate or none
|
|
if (stabDesired.StabilizationMode.Roll == STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE) {
|
|
rpy_desired[0] = stabDesired.Roll;
|
|
} else {
|
|
rpy_desired[0] = attitudeState.Roll;
|
|
}
|
|
|
|
if (stabDesired.StabilizationMode.Pitch == STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE) {
|
|
rpy_desired[1] = stabDesired.Pitch;
|
|
} else {
|
|
rpy_desired[1] = attitudeState.Pitch;
|
|
}
|
|
|
|
if (stabDesired.StabilizationMode.Yaw == STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE) {
|
|
rpy_desired[2] = stabDesired.Yaw;
|
|
} else {
|
|
rpy_desired[2] = attitudeState.Yaw;
|
|
}
|
|
|
|
RPY2Quaternion(rpy_desired, q_desired);
|
|
quat_inverse(q_desired);
|
|
quat_mult(q_desired, &attitudeState.q1, q_error);
|
|
quat_inverse(q_error);
|
|
Quaternion2RPY(q_error, local_error);
|
|
|
|
#else /* if defined(PIOS_QUATERNION_STABILIZATION) */
|
|
// Simpler algorithm for CC, less memory
|
|
float local_error[3] = { stabDesired.Roll - attitudeState.Roll,
|
|
stabDesired.Pitch - attitudeState.Pitch,
|
|
stabDesired.Yaw - attitudeState.Yaw };
|
|
// find shortest way
|
|
float modulo = fmodf(local_error[2] + 180.0f, 360.0f);
|
|
if (modulo < 0) {
|
|
local_error[2] = modulo + 180.0f;
|
|
} else {
|
|
local_error[2] = modulo - 180.0f;
|
|
}
|
|
#endif /* if defined(PIOS_QUATERNION_STABILIZATION) */
|
|
|
|
float gyro_filtered[3];
|
|
gyro_filtered[0] = gyro_filtered[0] * gyro_alpha + gyroStateData.x * (1 - gyro_alpha);
|
|
gyro_filtered[1] = gyro_filtered[1] * gyro_alpha + gyroStateData.y * (1 - gyro_alpha);
|
|
gyro_filtered[2] = gyro_filtered[2] * gyro_alpha + gyroStateData.z * (1 - gyro_alpha);
|
|
|
|
float *attitudeDesiredAxis = &stabDesired.Roll;
|
|
float *actuatorDesiredAxis = &actuatorDesired.Roll;
|
|
float *rateDesiredAxis = &rateDesired.Roll;
|
|
|
|
ActuatorDesiredGet(&actuatorDesired);
|
|
|
|
// A flag to track which stabilization mode each axis is in
|
|
static uint8_t previous_mode[MAX_AXES] = { 255, 255, 255 };
|
|
bool error = false;
|
|
|
|
// Run the selected stabilization algorithm on each axis:
|
|
for (uint8_t i = 0; i < MAX_AXES; i++) {
|
|
// Check whether this axis mode needs to be reinitialized
|
|
bool reinit = (cast_struct_to_array(stabDesired.StabilizationMode, stabDesired.StabilizationMode.Roll)[i] != previous_mode[i]);
|
|
previous_mode[i] = cast_struct_to_array(stabDesired.StabilizationMode, stabDesired.StabilizationMode.Roll)[i];
|
|
|
|
// Apply the selected control law
|
|
switch (cast_struct_to_array(stabDesired.StabilizationMode, stabDesired.StabilizationMode.Roll)[i]) {
|
|
case STABILIZATIONDESIRED_STABILIZATIONMODE_RATE:
|
|
if (reinit) {
|
|
pids[PID_RATE_ROLL + i].iAccumulator = 0;
|
|
}
|
|
|
|
// Store to rate desired variable for storing to UAVO
|
|
rateDesiredAxis[i] =
|
|
bound(attitudeDesiredAxis[i], cast_struct_to_array(settings.ManualRate, settings.ManualRate.Roll)[i]);
|
|
|
|
// Compute the inner loop
|
|
actuatorDesiredAxis[i] = pid_apply_setpoint(&pids[PID_RATE_ROLL + i], speedScaleFactor, rateDesiredAxis[i], gyro_filtered[i], dT);
|
|
actuatorDesiredAxis[i] = bound(actuatorDesiredAxis[i], 1.0f);
|
|
|
|
break;
|
|
|
|
case STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE:
|
|
if (reinit) {
|
|
pids[PID_ROLL + i].iAccumulator = 0;
|
|
pids[PID_RATE_ROLL + i].iAccumulator = 0;
|
|
}
|
|
|
|
// Compute the outer loop
|
|
rateDesiredAxis[i] = pid_apply(&pids[PID_ROLL + i], local_error[i], dT);
|
|
rateDesiredAxis[i] = bound(rateDesiredAxis[i],
|
|
cast_struct_to_array(settings.MaximumRate, settings.MaximumRate.Roll)[i]);
|
|
|
|
// Compute the inner loop
|
|
actuatorDesiredAxis[i] = pid_apply_setpoint(&pids[PID_RATE_ROLL + i], speedScaleFactor, rateDesiredAxis[i], gyro_filtered[i], dT);
|
|
actuatorDesiredAxis[i] = bound(actuatorDesiredAxis[i], 1.0f);
|
|
|
|
break;
|
|
|
|
case STABILIZATIONDESIRED_STABILIZATIONMODE_VIRTUALBAR:
|
|
|
|
// Store for debugging output
|
|
rateDesiredAxis[i] = attitudeDesiredAxis[i];
|
|
|
|
// Run a virtual flybar stabilization algorithm on this axis
|
|
stabilization_virtual_flybar(gyro_filtered[i], rateDesiredAxis[i], &actuatorDesiredAxis[i], dT, reinit, i, &settings);
|
|
|
|
break;
|
|
|
|
case STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING:
|
|
{
|
|
if (reinit) {
|
|
pids[PID_RATE_ROLL + i].iAccumulator = 0;
|
|
}
|
|
|
|
float weak_leveling = local_error[i] * weak_leveling_kp;
|
|
weak_leveling = bound(weak_leveling, weak_leveling_max);
|
|
|
|
// Compute desired rate as input biased towards leveling
|
|
rateDesiredAxis[i] = attitudeDesiredAxis[i] + weak_leveling;
|
|
actuatorDesiredAxis[i] = pid_apply_setpoint(&pids[PID_RATE_ROLL + i], speedScaleFactor, rateDesiredAxis[i], gyro_filtered[i], dT);
|
|
actuatorDesiredAxis[i] = bound(actuatorDesiredAxis[i], 1.0f);
|
|
|
|
break;
|
|
}
|
|
|
|
case STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK:
|
|
if (reinit) {
|
|
pids[PID_RATE_ROLL + i].iAccumulator = 0;
|
|
}
|
|
|
|
if (fabsf(attitudeDesiredAxis[i]) > max_axislock_rate) {
|
|
// While getting strong commands act like rate mode
|
|
rateDesiredAxis[i] = attitudeDesiredAxis[i];
|
|
axis_lock_accum[i] = 0;
|
|
} else {
|
|
// For weaker commands or no command simply attitude lock (almost) on no gyro change
|
|
axis_lock_accum[i] += (attitudeDesiredAxis[i] - gyro_filtered[i]) * dT;
|
|
axis_lock_accum[i] = bound(axis_lock_accum[i], max_axis_lock);
|
|
rateDesiredAxis[i] = pid_apply(&pids[PID_ROLL + i], axis_lock_accum[i], dT);
|
|
}
|
|
|
|
rateDesiredAxis[i] = bound(rateDesiredAxis[i],
|
|
cast_struct_to_array(settings.ManualRate, settings.ManualRate.Roll)[i]);
|
|
|
|
actuatorDesiredAxis[i] = pid_apply_setpoint(&pids[PID_RATE_ROLL + i], speedScaleFactor, rateDesiredAxis[i], gyro_filtered[i], dT);
|
|
actuatorDesiredAxis[i] = bound(actuatorDesiredAxis[i], 1.0f);
|
|
|
|
break;
|
|
|
|
case STABILIZATIONDESIRED_STABILIZATIONMODE_RELAYRATE:
|
|
// Store to rate desired variable for storing to UAVO
|
|
rateDesiredAxis[i] = bound(attitudeDesiredAxis[i],
|
|
cast_struct_to_array(settings.ManualRate, settings.ManualRate.Roll)[i]);
|
|
|
|
// Run the relay controller which also estimates the oscillation parameters
|
|
stabilization_relay_rate(rateDesiredAxis[i] - gyro_filtered[i], &actuatorDesiredAxis[i], i, reinit);
|
|
actuatorDesiredAxis[i] = bound(actuatorDesiredAxis[i], 1.0f);
|
|
|
|
break;
|
|
|
|
case STABILIZATIONDESIRED_STABILIZATIONMODE_RELAYATTITUDE:
|
|
if (reinit) {
|
|
pids[PID_ROLL + i].iAccumulator = 0;
|
|
}
|
|
|
|
// Compute the outer loop like attitude mode
|
|
rateDesiredAxis[i] = pid_apply(&pids[PID_ROLL + i], local_error[i], dT);
|
|
rateDesiredAxis[i] = bound(rateDesiredAxis[i],
|
|
cast_struct_to_array(settings.MaximumRate, settings.MaximumRate.Roll)[i]);
|
|
|
|
// Run the relay controller which also estimates the oscillation parameters
|
|
stabilization_relay_rate(rateDesiredAxis[i] - gyro_filtered[i], &actuatorDesiredAxis[i], i, reinit);
|
|
actuatorDesiredAxis[i] = bound(actuatorDesiredAxis[i], 1.0f);
|
|
|
|
break;
|
|
|
|
case STABILIZATIONDESIRED_STABILIZATIONMODE_NONE:
|
|
actuatorDesiredAxis[i] = bound(attitudeDesiredAxis[i], 1.0f);
|
|
break;
|
|
default:
|
|
error = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (settings.VbarPiroComp == STABILIZATIONSETTINGS_VBARPIROCOMP_TRUE) {
|
|
stabilization_virtual_flybar_pirocomp(gyro_filtered[2], dT);
|
|
}
|
|
|
|
#ifdef DIAG_RATEDESIRED
|
|
RateDesiredSet(&rateDesired);
|
|
#endif
|
|
|
|
// Save dT
|
|
actuatorDesired.UpdateTime = dT * 1000;
|
|
actuatorDesired.Throttle = stabDesired.Throttle;
|
|
|
|
// Suppress desired output while disarmed or throttle low, for configured axis
|
|
if (flightStatus.Armed != FLIGHTSTATUS_ARMED_ARMED || stabDesired.Throttle < 0) {
|
|
if (lowThrottleZeroAxis[ROLL]) {
|
|
actuatorDesired.Roll = 0.0f;
|
|
}
|
|
|
|
if (lowThrottleZeroAxis[PITCH]) {
|
|
actuatorDesired.Pitch = 0.0f;
|
|
}
|
|
|
|
if (lowThrottleZeroAxis[YAW]) {
|
|
actuatorDesired.Yaw = 0.0f;
|
|
}
|
|
}
|
|
|
|
if (PARSE_FLIGHT_MODE(flightStatus.FlightMode) != FLIGHTMODE_MANUAL) {
|
|
ActuatorDesiredSet(&actuatorDesired);
|
|
} else {
|
|
// Force all axes to reinitialize when engaged
|
|
for (uint8_t i = 0; i < MAX_AXES; i++) {
|
|
previous_mode[i] = 255;
|
|
}
|
|
}
|
|
|
|
if (flightStatus.Armed != FLIGHTSTATUS_ARMED_ARMED ||
|
|
(lowThrottleZeroIntegral && stabDesired.Throttle < 0)) {
|
|
// Force all axes to reinitialize when engaged
|
|
for (uint8_t i = 0; i < MAX_AXES; i++) {
|
|
previous_mode[i] = 255;
|
|
}
|
|
}
|
|
|
|
// Clear or set alarms. Done like this to prevent toggline each cycle
|
|
// and hammering system alarms
|
|
if (error) {
|
|
AlarmsSet(SYSTEMALARMS_ALARM_STABILIZATION, SYSTEMALARMS_ALARM_ERROR);
|
|
} else {
|
|
AlarmsClear(SYSTEMALARMS_ALARM_STABILIZATION);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Clear the accumulators and derivatives for all the axes
|
|
*/
|
|
static void ZeroPids(void)
|
|
{
|
|
for (uint32_t i = 0; i < PID_MAX; i++) {
|
|
pid_zero(&pids[i]);
|
|
}
|
|
|
|
|
|
for (uint8_t i = 0; i < 3; i++) {
|
|
axis_lock_accum[i] = 0.0f;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Bound input value between limits
|
|
*/
|
|
static float bound(float val, float range)
|
|
{
|
|
if (val < -range) {
|
|
val = -range;
|
|
} else if (val > range) {
|
|
val = range;
|
|
}
|
|
return val;
|
|
}
|
|
|
|
static void SettingsUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
|
|
{
|
|
StabilizationSettingsGet(&settings);
|
|
|
|
// Set the roll rate PID constants
|
|
pid_configure(&pids[PID_RATE_ROLL], settings.RollRatePID.Kp,
|
|
settings.RollRatePID.Ki,
|
|
pids[PID_RATE_ROLL].d = settings.RollRatePID.Kd,
|
|
pids[PID_RATE_ROLL].iLim = settings.RollRatePID.ILimit);
|
|
|
|
// Set the pitch rate PID constants
|
|
pid_configure(&pids[PID_RATE_PITCH], settings.PitchRatePID.Kp,
|
|
pids[PID_RATE_PITCH].i = settings.PitchRatePID.Ki,
|
|
pids[PID_RATE_PITCH].d = settings.PitchRatePID.Kd,
|
|
pids[PID_RATE_PITCH].iLim = settings.PitchRatePID.ILimit);
|
|
|
|
// Set the yaw rate PID constants
|
|
pid_configure(&pids[PID_RATE_YAW], settings.YawRatePID.Kp,
|
|
pids[PID_RATE_YAW].i = settings.YawRatePID.Ki,
|
|
pids[PID_RATE_YAW].d = settings.YawRatePID.Kd,
|
|
pids[PID_RATE_YAW].iLim = settings.YawRatePID.ILimit);
|
|
|
|
// Set the roll attitude PI constants
|
|
pid_configure(&pids[PID_ROLL], settings.RollPI.Kp,
|
|
settings.RollPI.Ki, 0,
|
|
pids[PID_ROLL].iLim = settings.RollPI.ILimit);
|
|
|
|
// Set the pitch attitude PI constants
|
|
pid_configure(&pids[PID_PITCH], settings.PitchPI.Kp,
|
|
pids[PID_PITCH].i = settings.PitchPI.Ki, 0,
|
|
settings.PitchPI.ILimit);
|
|
|
|
// Set the yaw attitude PI constants
|
|
pid_configure(&pids[PID_YAW], settings.YawPI.Kp,
|
|
settings.YawPI.Ki, 0,
|
|
settings.YawPI.ILimit);
|
|
|
|
// Set up the derivative term
|
|
pid_configure_derivative(settings.DerivativeCutoff, settings.DerivativeGamma);
|
|
|
|
// Maximum deviation to accumulate for axis lock
|
|
max_axis_lock = settings.MaxAxisLock;
|
|
max_axislock_rate = settings.MaxAxisLockRate;
|
|
|
|
// Settings for weak leveling
|
|
weak_leveling_kp = settings.WeakLevelingKp;
|
|
weak_leveling_max = settings.MaxWeakLevelingRate;
|
|
|
|
// Whether to zero the PID integrals while throttle is low
|
|
lowThrottleZeroIntegral = settings.LowThrottleZeroIntegral == STABILIZATIONSETTINGS_LOWTHROTTLEZEROINTEGRAL_TRUE;
|
|
|
|
// Whether to suppress (zero) the StabilizationDesired output for each axis while disarmed or throttle is low
|
|
lowThrottleZeroAxis[ROLL] = settings.LowThrottleZeroAxis.Roll == STABILIZATIONSETTINGS_LOWTHROTTLEZEROAXIS_TRUE;
|
|
lowThrottleZeroAxis[PITCH] = settings.LowThrottleZeroAxis.Pitch == STABILIZATIONSETTINGS_LOWTHROTTLEZEROAXIS_TRUE;
|
|
lowThrottleZeroAxis[YAW] = settings.LowThrottleZeroAxis.Yaw == STABILIZATIONSETTINGS_LOWTHROTTLEZEROAXIS_TRUE;
|
|
|
|
// The dT has some jitter iteration to iteration that we don't want to
|
|
// make thie result unpredictable. Still, it's nicer to specify the constant
|
|
// based on a time (in ms) rather than a fixed multiplier. The error between
|
|
// update rates on OP (~300 Hz) and CC (~475 Hz) is negligible for this
|
|
// calculation
|
|
const float fakeDt = 0.0025f;
|
|
if (settings.GyroTau < 0.0001f) {
|
|
gyro_alpha = 0; // not trusting this to resolve to 0
|
|
} else {
|
|
gyro_alpha = expf(-fakeDt / settings.GyroTau);
|
|
}
|
|
|
|
// Compute time constant for vbar decay term based on a tau
|
|
vbar_decay = expf(-fakeDt / settings.VbarTau);
|
|
}
|
|
|
|
|
|
/**
|
|
* @}
|
|
* @}
|
|
*/
|