1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-12-10 18:24:11 +01:00
LibrePilot/flight/modules/FixedWingPathFollower/fixedwingpathfollower.c
2013-05-14 07:01:45 +09:30

652 lines
26 KiB
C

/**
******************************************************************************
*
* @file fixedwingpathfollower.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief This module compared @ref PositionActuatl to @ref ActiveWaypoint
* and sets @ref AttitudeDesired. It only does this when the FlightMode field
* of @ref ManualControlCommand is Auto.
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/**
* Input object: ActiveWaypoint
* Input object: PositionActual
* Input object: ManualControlCommand
* Output object: AttitudeDesired
*
* This module will periodically update the value of the AttitudeDesired object.
*
* The module executes in its own thread in this example.
*
* Modules have no API, all communication to other modules is done through UAVObjects.
* However modules may use the API exposed by shared libraries.
* See the OpenPilot wiki for more details.
* http://www.openpilot.org/OpenPilot_Application_Architecture
*
*/
#include <openpilot.h>
#include "accels.h"
#include "hwsettings.h"
#include "attitudeactual.h"
#include "pathdesired.h" // object that will be updated by the module
#include "positionactual.h"
#include "manualcontrol.h"
#include "flightstatus.h"
#include "pathstatus.h"
#include "airspeedactual.h"
#include "gpsvelocity.h"
#include "gpsposition.h"
#include "fixedwingpathfollowersettings.h"
#include "fixedwingpathfollowerstatus.h"
#include "homelocation.h"
#include "stabilizationdesired.h"
#include "stabilizationsettings.h"
#include "systemsettings.h"
#include "velocitydesired.h"
#include "velocityactual.h"
#include "taskinfo.h"
#include "paths.h"
#include "CoordinateConversions.h"
// Private constants
#define MAX_QUEUE_SIZE 4
#define STACK_SIZE_BYTES 1548
#define TASK_PRIORITY (tskIDLE_PRIORITY+2)
// Private variables
static bool followerEnabled = false;
static xTaskHandle pathfollowerTaskHandle;
static PathDesiredData pathDesired;
static PathStatusData pathStatus;
static FixedWingPathFollowerSettingsData fixedwingpathfollowerSettings;
// Private functions
static void pathfollowerTask(void *parameters);
static void SettingsUpdatedCb(UAVObjEvent * ev);
static void updatePathVelocity();
static uint8_t updateFixedDesiredAttitude();
static void updateFixedAttitude();
static void airspeedActualUpdatedCb(UAVObjEvent * ev);
static float bound(float val, float min, float max);
/**
* Initialise the module, called on startup
* \returns 0 on success or -1 if initialisation failed
*/
int32_t FixedWingPathFollowerStart()
{
if (followerEnabled) {
// Start main task
xTaskCreate(pathfollowerTask, (signed char *)"PathFollower", STACK_SIZE_BYTES/4, NULL, TASK_PRIORITY, &pathfollowerTaskHandle);
PIOS_TASK_MONITOR_RegisterTask(TASKINFO_RUNNING_PATHFOLLOWER, pathfollowerTaskHandle);
}
return 0;
}
/**
* Initialise the module, called on startup
* \returns 0 on success or -1 if initialisation failed
*/
int32_t FixedWingPathFollowerInitialize()
{
HwSettingsInitialize();
uint8_t optionalModules[HWSETTINGS_OPTIONALMODULES_NUMELEM];
HwSettingsOptionalModulesGet(optionalModules);
if (optionalModules[HWSETTINGS_OPTIONALMODULES_FIXEDWINGPATHFOLLOWER] == HWSETTINGS_OPTIONALMODULES_ENABLED) {
followerEnabled = true;
FixedWingPathFollowerSettingsInitialize();
FixedWingPathFollowerStatusInitialize();
PathDesiredInitialize();
PathStatusInitialize();
VelocityDesiredInitialize();
AirspeedActualInitialize();
} else {
followerEnabled = false;
}
return 0;
}
MODULE_INITCALL(FixedWingPathFollowerInitialize, FixedWingPathFollowerStart)
static float northVelIntegral = 0;
static float eastVelIntegral = 0;
static float downVelIntegral = 0;
static float bearingIntegral = 0;
static float speedIntegral = 0;
static float powerIntegral = 0;
static float airspeedErrorInt=0;
// correct speed by measured airspeed
static float indicatedAirspeedActualBias = 0;
/**
* Module thread, should not return.
*/
static void pathfollowerTask(__attribute__((unused)) void *parameters)
{
SystemSettingsData systemSettings;
FlightStatusData flightStatus;
portTickType lastUpdateTime;
AirspeedActualConnectCallback(airspeedActualUpdatedCb);
FixedWingPathFollowerSettingsConnectCallback(SettingsUpdatedCb);
PathDesiredConnectCallback(SettingsUpdatedCb);
FixedWingPathFollowerSettingsGet(&fixedwingpathfollowerSettings);
PathDesiredGet(&pathDesired);
// Main task loop
lastUpdateTime = xTaskGetTickCount();
while (1) {
// Conditions when this runs:
// 1. Must have FixedWing type airframe
// 2. Flight mode is PositionHold and PathDesired.Mode is Endpoint OR
// FlightMode is PathPlanner and PathDesired.Mode is Endpoint or Path
SystemSettingsGet(&systemSettings);
if ( (systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_FIXEDWING) &&
(systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_FIXEDWINGELEVON) &&
(systemSettings.AirframeType != SYSTEMSETTINGS_AIRFRAMETYPE_FIXEDWINGVTAIL) )
{
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE,SYSTEMALARMS_ALARM_WARNING);
vTaskDelay(1000);
continue;
}
// Continue collecting data if not enough time
vTaskDelayUntil(&lastUpdateTime, fixedwingpathfollowerSettings.UpdatePeriod / portTICK_RATE_MS);
FlightStatusGet(&flightStatus);
PathStatusGet(&pathStatus);
uint8_t result;
// Check the combinations of flightmode and pathdesired mode
switch(flightStatus.FlightMode) {
case FLIGHTSTATUS_FLIGHTMODE_POSITIONHOLD:
case FLIGHTSTATUS_FLIGHTMODE_RETURNTOBASE:
if (pathDesired.Mode == PATHDESIRED_MODE_FLYENDPOINT) {
updatePathVelocity();
result = updateFixedDesiredAttitude();
if (result) {
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE,SYSTEMALARMS_ALARM_OK);
} else {
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE,SYSTEMALARMS_ALARM_WARNING);
}
} else {
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE,SYSTEMALARMS_ALARM_ERROR);
}
break;
case FLIGHTSTATUS_FLIGHTMODE_PATHPLANNER:
pathStatus.UID = pathDesired.UID;
pathStatus.Status = PATHSTATUS_STATUS_INPROGRESS;
switch(pathDesired.Mode) {
case PATHDESIRED_MODE_FLYENDPOINT:
case PATHDESIRED_MODE_FLYVECTOR:
case PATHDESIRED_MODE_FLYCIRCLERIGHT:
case PATHDESIRED_MODE_FLYCIRCLELEFT:
updatePathVelocity();
result = updateFixedDesiredAttitude();
if (result) {
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE,SYSTEMALARMS_ALARM_OK);
} else {
pathStatus.Status = PATHSTATUS_STATUS_CRITICAL;
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE,SYSTEMALARMS_ALARM_WARNING);
}
break;
case PATHDESIRED_MODE_FIXEDATTITUDE:
updateFixedAttitude(pathDesired.ModeParameters);
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE,SYSTEMALARMS_ALARM_OK);
break;
case PATHDESIRED_MODE_DISARMALARM:
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE,SYSTEMALARMS_ALARM_CRITICAL);
break;
default:
pathStatus.Status = PATHSTATUS_STATUS_CRITICAL;
AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE,SYSTEMALARMS_ALARM_ERROR);
break;
}
break;
default:
// Be cleaner and get rid of global variables
northVelIntegral = 0;
eastVelIntegral = 0;
downVelIntegral = 0;
bearingIntegral = 0;
speedIntegral = 0;
powerIntegral = 0;
break;
}
PathStatusSet(&pathStatus);
}
}
/**
* Compute desired velocity from the current position and path
*
* Takes in @ref PositionActual and compares it to @ref PathDesired
* and computes @ref VelocityDesired
*/
static void updatePathVelocity()
{
PositionActualData positionActual;
PositionActualGet(&positionActual);
VelocityActualData velocityActual;
VelocityActualGet(&velocityActual);
// look ahead fixedwingpathfollowerSettings.HeadingFeedForward seconds
float cur[3] = {positionActual.North + (velocityActual.North * fixedwingpathfollowerSettings.HeadingFeedForward),
positionActual.East + (velocityActual.East * fixedwingpathfollowerSettings.HeadingFeedForward),
positionActual.Down + (velocityActual.Down * fixedwingpathfollowerSettings.HeadingFeedForward)
};
struct path_status progress;
path_progress(pathDesired.Start, pathDesired.End, cur, &progress, pathDesired.Mode);
float groundspeed;
float altitudeSetpoint;
switch (pathDesired.Mode) {
case PATHDESIRED_MODE_FLYCIRCLERIGHT:
case PATHDESIRED_MODE_DRIVECIRCLERIGHT:
case PATHDESIRED_MODE_FLYCIRCLELEFT:
case PATHDESIRED_MODE_DRIVECIRCLELEFT:
groundspeed = pathDesired.EndingVelocity;
altitudeSetpoint = pathDesired.End[2];
break;
case PATHDESIRED_MODE_FLYENDPOINT:
case PATHDESIRED_MODE_DRIVEENDPOINT:
case PATHDESIRED_MODE_FLYVECTOR:
case PATHDESIRED_MODE_DRIVEVECTOR:
default:
groundspeed = pathDesired.StartingVelocity + (pathDesired.EndingVelocity - pathDesired.StartingVelocity) *
bound(progress.fractional_progress,0,1);
altitudeSetpoint = pathDesired.Start[2] + (pathDesired.End[2] - pathDesired.Start[2]) *
bound(progress.fractional_progress,0,1);
break;
}
// make sure groundspeed is not zero
if (groundspeed<1e-2f) groundspeed=1e-2f;
// calculate velocity - can be zero if waypoints are too close
VelocityDesiredData velocityDesired;
velocityDesired.North = progress.path_direction[0];
velocityDesired.East = progress.path_direction[1];
float error_speed = progress.error * fixedwingpathfollowerSettings.HorizontalPosP;
// if a plane is crossing its desired flightpath facing the wrong way (away from flight direction)
// it would turn towards the flightpath to get on its desired course. This however would reverse the correction vector
// once it crosses the flightpath again, which would make it again turn towards the flightpath (but away from its desired heading)
// leading to an S-shape snake course the wrong way
// this only happens especially if HorizontalPosP is too high, as otherwise the angle between velocity desired and path_direction won't
// turn steep unless there is enough space complete the turn before crossing the flightpath
// in this case the plane effectively needs to be turned around
// indicators:
// difference between correction_direction and velocityactual >90 degrees and
// difference between path_direction and velocityactual >90 degrees ( 4th sector, facing away from eerything )
// fix: ignore correction, steer in path direction until the situation has become better (condition doesn't apply anymore)
float angle1=RAD2DEG( atan2f(progress.path_direction[1],progress.path_direction[0]) - atan2f(velocityActual.East,velocityActual.North));
float angle2=RAD2DEG( atan2f(progress.correction_direction[1],progress.correction_direction[0]) - atan2f(velocityActual.East,velocityActual.North));
if (angle1<-180.0f) angle1+=360.0f;
if (angle1>180.0f) angle1-=360.0f;
if (angle2<-180.0f) angle2+=360.0f;
if (angle2>180.0f) angle2-=360.0f;
if (fabsf(angle1)>=90.0f && fabsf(angle2)>=90.0f) {
error_speed=0;
}
// calculate correction - can also be zero if correction vector is 0 or no error present
velocityDesired.North += progress.correction_direction[0] * error_speed;
velocityDesired.East += progress.correction_direction[1] * error_speed;
//scale to correct length
float l=sqrtf(velocityDesired.North*velocityDesired.North + velocityDesired.East*velocityDesired.East);
velocityDesired.North *= groundspeed/l;
velocityDesired.East *= groundspeed/l;
float downError = altitudeSetpoint - positionActual.Down;
velocityDesired.Down = downError * fixedwingpathfollowerSettings.VerticalPosP;
// update pathstatus
pathStatus.error = progress.error;
pathStatus.fractional_progress = progress.fractional_progress;
VelocityDesiredSet(&velocityDesired);
}
/**
* Compute desired attitude from a fixed preset
*
*/
static void updateFixedAttitude(float* attitude)
{
StabilizationDesiredData stabDesired;
StabilizationDesiredGet(&stabDesired);
stabDesired.Roll = attitude[0];
stabDesired.Pitch = attitude[1];
stabDesired.Yaw = attitude[2];
stabDesired.Throttle = attitude[3];
stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_ROLL] = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_PITCH] = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_YAW] = STABILIZATIONDESIRED_STABILIZATIONMODE_RATE;
StabilizationDesiredSet(&stabDesired);
}
/**
* Compute desired attitude from the desired velocity
*
* Takes in @ref NedActual which has the acceleration in the
* NED frame as the feedback term and then compares the
* @ref VelocityActual against the @ref VelocityDesired
*/
static uint8_t updateFixedDesiredAttitude()
{
uint8_t result = 1;
float dT = fixedwingpathfollowerSettings.UpdatePeriod / 1000.0f; //Convert from [ms] to [s]
VelocityDesiredData velocityDesired;
VelocityActualData velocityActual;
StabilizationDesiredData stabDesired;
AttitudeActualData attitudeActual;
AccelsData accels;
StabilizationSettingsData stabSettings;
FixedWingPathFollowerStatusData fixedwingpathfollowerStatus;
AirspeedActualData airspeedActual;
float groundspeedActual;
float groundspeedDesired;
float indicatedAirspeedActual;
float indicatedAirspeedDesired;
float airspeedError;
float pitchCommand;
float descentspeedDesired;
float descentspeedError;
float powerCommand;
float bearingError;
float bearingCommand;
FixedWingPathFollowerStatusGet(&fixedwingpathfollowerStatus);
VelocityActualGet(&velocityActual);
StabilizationDesiredGet(&stabDesired);
VelocityDesiredGet(&velocityDesired);
AttitudeActualGet(&attitudeActual);
AccelsGet(&accels);
StabilizationSettingsGet(&stabSettings);
AirspeedActualGet(&airspeedActual);
/**
* Compute speed error (required for throttle and pitch)
*/
// Current ground speed
groundspeedActual = sqrtf( velocityActual.East*velocityActual.East + velocityActual.North*velocityActual.North );
// note that airspeedActualBias is ( calibratedAirspeed - groundSpeed ) at the time of measurement,
// but thanks to accelerometers, groundspeed reacts faster to changes in direction
// than airspeed and gps sensors alone
indicatedAirspeedActual = groundspeedActual + indicatedAirspeedActualBias;
// Desired ground speed
groundspeedDesired = sqrtf(velocityDesired.North*velocityDesired.North + velocityDesired.East*velocityDesired.East);
indicatedAirspeedDesired = bound( groundspeedDesired + indicatedAirspeedActualBias,
fixedwingpathfollowerSettings.BestClimbRateSpeed,
fixedwingpathfollowerSettings.CruiseSpeed);
// Airspeed error
airspeedError = indicatedAirspeedDesired - indicatedAirspeedActual;
// Vertical speed error
descentspeedDesired = bound (
velocityDesired.Down,
-fixedwingpathfollowerSettings.VerticalVelMax,
fixedwingpathfollowerSettings.VerticalVelMax);
descentspeedError = descentspeedDesired - velocityActual.Down;
// Error condition: wind speed is higher than maximum allowed speed. We are forced backwards!
fixedwingpathfollowerStatus.Errors[FIXEDWINGPATHFOLLOWERSTATUS_ERRORS_WIND] = 0;
if (groundspeedDesired - indicatedAirspeedActualBias <= 0 ) {
fixedwingpathfollowerStatus.Errors[FIXEDWINGPATHFOLLOWERSTATUS_ERRORS_WIND] = 1;
result = 0;
}
// Error condition: plane too slow or too fast
fixedwingpathfollowerStatus.Errors[FIXEDWINGPATHFOLLOWERSTATUS_ERRORS_HIGHSPEED] = 0;
fixedwingpathfollowerStatus.Errors[FIXEDWINGPATHFOLLOWERSTATUS_ERRORS_LOWSPEED] = 0;
if ( indicatedAirspeedActual > fixedwingpathfollowerSettings.AirSpeedMax) {
fixedwingpathfollowerStatus.Errors[FIXEDWINGPATHFOLLOWERSTATUS_ERRORS_OVERSPEED] = 1;
result = 0;
}
if ( indicatedAirspeedActual > fixedwingpathfollowerSettings.CruiseSpeed * 1.2f) {
fixedwingpathfollowerStatus.Errors[FIXEDWINGPATHFOLLOWERSTATUS_ERRORS_HIGHSPEED] = 1;
result = 0;
}
if (indicatedAirspeedActual < fixedwingpathfollowerSettings.BestClimbRateSpeed * 0.8f && 1) { //The next three && 1 are placeholders for UAVOs representing LANDING and TAKEOFF
fixedwingpathfollowerStatus.Errors[FIXEDWINGPATHFOLLOWERSTATUS_ERRORS_LOWSPEED] = 1;
result = 0;
}
if (indicatedAirspeedActual < fixedwingpathfollowerSettings.StallSpeedClean && 1 && 1) { //Where the && 1 represents the UAVO that will control whether the airplane is prepped for landing or not
fixedwingpathfollowerStatus.Errors[FIXEDWINGPATHFOLLOWERSTATUS_ERRORS_STALLSPEED] = 1;
result = 0;
}
if (indicatedAirspeedActual < fixedwingpathfollowerSettings.StallSpeedDirty && 1) {
fixedwingpathfollowerStatus.Errors[FIXEDWINGPATHFOLLOWERSTATUS_ERRORS_STALLSPEED] = 1;
result = 0;
}
if (indicatedAirspeedActual<1e-6f) {
// prevent division by zero, abort without controlling anything. This guidance mode is not suited for takeoff or touchdown, or handling stationary planes
// also we cannot handle planes flying backwards, lets just wait until the nose drops
fixedwingpathfollowerStatus.Errors[FIXEDWINGPATHFOLLOWERSTATUS_ERRORS_LOWSPEED] = 1;
return 0;
}
/**
* Compute desired throttle command
*/
// compute saturated integral error throttle response. Make integral leaky for better performance. Approximately 30s time constant.
if (fixedwingpathfollowerSettings.PowerPI[FIXEDWINGPATHFOLLOWERSETTINGS_POWERPI_KI] >0) {
powerIntegral = bound(powerIntegral + -descentspeedError * dT,
-fixedwingpathfollowerSettings.PowerPI[FIXEDWINGPATHFOLLOWERSETTINGS_POWERPI_ILIMIT]/fixedwingpathfollowerSettings.PowerPI[FIXEDWINGPATHFOLLOWERSETTINGS_POWERPI_KI],
fixedwingpathfollowerSettings.PowerPI[FIXEDWINGPATHFOLLOWERSETTINGS_POWERPI_ILIMIT]/fixedwingpathfollowerSettings.PowerPI[FIXEDWINGPATHFOLLOWERSETTINGS_POWERPI_KI]
)*(1.0f-1.0f/(1.0f+30.0f/dT));
} else powerIntegral = 0;
//Compute the cross feed from vertical speed to pitch, with saturation
float speedErrorToPowerCommandComponent = bound (
(airspeedError/fixedwingpathfollowerSettings.BestClimbRateSpeed)* fixedwingpathfollowerSettings.AirspeedToPowerCrossFeed[FIXEDWINGPATHFOLLOWERSETTINGS_AIRSPEEDTOPOWERCROSSFEED_KP] ,
-fixedwingpathfollowerSettings.AirspeedToPowerCrossFeed[FIXEDWINGPATHFOLLOWERSETTINGS_AIRSPEEDTOPOWERCROSSFEED_MAX],
fixedwingpathfollowerSettings.AirspeedToPowerCrossFeed[FIXEDWINGPATHFOLLOWERSETTINGS_AIRSPEEDTOPOWERCROSSFEED_MAX]
);
// Compute final throttle response
powerCommand = -descentspeedError * fixedwingpathfollowerSettings.PowerPI[FIXEDWINGPATHFOLLOWERSETTINGS_POWERPI_KP] +
powerIntegral* fixedwingpathfollowerSettings.PowerPI[FIXEDWINGPATHFOLLOWERSETTINGS_POWERPI_KI] +
speedErrorToPowerCommandComponent;
//Output internal state to telemetry
fixedwingpathfollowerStatus.Error[FIXEDWINGPATHFOLLOWERSTATUS_ERROR_POWER] = descentspeedError;
fixedwingpathfollowerStatus.ErrorInt[FIXEDWINGPATHFOLLOWERSTATUS_ERRORINT_POWER] = powerIntegral;
fixedwingpathfollowerStatus.Command[FIXEDWINGPATHFOLLOWERSTATUS_COMMAND_POWER] = powerCommand;
// set throttle
stabDesired.Throttle = bound(fixedwingpathfollowerSettings.ThrottleLimit[FIXEDWINGPATHFOLLOWERSETTINGS_THROTTLELIMIT_NEUTRAL] + powerCommand,
fixedwingpathfollowerSettings.ThrottleLimit[FIXEDWINGPATHFOLLOWERSETTINGS_THROTTLELIMIT_MIN],
fixedwingpathfollowerSettings.ThrottleLimit[FIXEDWINGPATHFOLLOWERSETTINGS_THROTTLELIMIT_MAX]);
// Error condition: plane cannot hold altitude at current speed.
fixedwingpathfollowerStatus.Errors[FIXEDWINGPATHFOLLOWERSTATUS_ERRORS_LOWPOWER] = 0;
if (powerCommand >= fixedwingpathfollowerSettings.ThrottleLimit[FIXEDWINGPATHFOLLOWERSETTINGS_THROTTLELIMIT_MAX] && // throttle at maximum
velocityActual.Down > 0 && // we ARE going down
descentspeedDesired < 0 && // we WANT to go up
airspeedError > 0) { // we are too slow already
fixedwingpathfollowerStatus.Errors[FIXEDWINGPATHFOLLOWERSTATUS_ERRORS_LOWPOWER] = 1;
result = 0;
}
// Error condition: plane keeps climbing despite minimum throttle (opposite of above)
fixedwingpathfollowerStatus.Errors[FIXEDWINGPATHFOLLOWERSTATUS_ERRORS_HIGHPOWER] = 0;
if (powerCommand >= fixedwingpathfollowerSettings.ThrottleLimit[FIXEDWINGPATHFOLLOWERSETTINGS_THROTTLELIMIT_MIN] && // throttle at minimum
velocityActual.Down < 0 && // we ARE going up
descentspeedDesired > 0 && // we WANT to go down
airspeedError < 0 ) { // we are too fast already
fixedwingpathfollowerStatus.Errors[FIXEDWINGPATHFOLLOWERSTATUS_ERRORS_HIGHPOWER] = 1;
result = 0;
}
/**
* Compute desired pitch command
*/
if (fixedwingpathfollowerSettings.SpeedPI[FIXEDWINGPATHFOLLOWERSETTINGS_SPEEDPI_KI] > 0){
//Integrate with saturation
airspeedErrorInt=bound(airspeedErrorInt + airspeedError * dT,
-fixedwingpathfollowerSettings.SpeedPI[FIXEDWINGPATHFOLLOWERSETTINGS_SPEEDPI_ILIMIT]/fixedwingpathfollowerSettings.SpeedPI[FIXEDWINGPATHFOLLOWERSETTINGS_SPEEDPI_KI],
fixedwingpathfollowerSettings.SpeedPI[FIXEDWINGPATHFOLLOWERSETTINGS_SPEEDPI_ILIMIT]/fixedwingpathfollowerSettings.SpeedPI[FIXEDWINGPATHFOLLOWERSETTINGS_SPEEDPI_KI]);
}
//Compute the cross feed from vertical speed to pitch, with saturation
float verticalSpeedToPitchCommandComponent=bound (-descentspeedError * fixedwingpathfollowerSettings.VerticalToPitchCrossFeed[FIXEDWINGPATHFOLLOWERSETTINGS_VERTICALTOPITCHCROSSFEED_KP],
-fixedwingpathfollowerSettings.VerticalToPitchCrossFeed[FIXEDWINGPATHFOLLOWERSETTINGS_VERTICALTOPITCHCROSSFEED_MAX],
fixedwingpathfollowerSettings.VerticalToPitchCrossFeed[FIXEDWINGPATHFOLLOWERSETTINGS_VERTICALTOPITCHCROSSFEED_MAX]
);
//Compute the pitch command as err*Kp + errInt*Ki + X_feed.
pitchCommand= -(airspeedError*fixedwingpathfollowerSettings.SpeedPI[FIXEDWINGPATHFOLLOWERSETTINGS_SPEEDPI_KP]
+ airspeedErrorInt*fixedwingpathfollowerSettings.SpeedPI[FIXEDWINGPATHFOLLOWERSETTINGS_SPEEDPI_KI]
) + verticalSpeedToPitchCommandComponent;
fixedwingpathfollowerStatus.Error[FIXEDWINGPATHFOLLOWERSTATUS_ERROR_SPEED] = airspeedError;
fixedwingpathfollowerStatus.ErrorInt[FIXEDWINGPATHFOLLOWERSTATUS_ERRORINT_SPEED] = airspeedErrorInt;
fixedwingpathfollowerStatus.Command[FIXEDWINGPATHFOLLOWERSTATUS_COMMAND_SPEED] = pitchCommand;
stabDesired.Pitch = bound(fixedwingpathfollowerSettings.PitchLimit[FIXEDWINGPATHFOLLOWERSETTINGS_PITCHLIMIT_NEUTRAL] + pitchCommand,
fixedwingpathfollowerSettings.PitchLimit[FIXEDWINGPATHFOLLOWERSETTINGS_PITCHLIMIT_MIN],
fixedwingpathfollowerSettings.PitchLimit[FIXEDWINGPATHFOLLOWERSETTINGS_PITCHLIMIT_MAX]);
// Error condition: high speed dive
fixedwingpathfollowerStatus.Errors[FIXEDWINGPATHFOLLOWERSTATUS_ERRORS_PITCHCONTROL] = 0;
if (pitchCommand >= fixedwingpathfollowerSettings.PitchLimit[FIXEDWINGPATHFOLLOWERSETTINGS_PITCHLIMIT_MAX] && // pitch demand is full up
velocityActual.Down > 0 && // we ARE going down
descentspeedDesired < 0 && // we WANT to go up
airspeedError < 0 ) { // we are too fast already
fixedwingpathfollowerStatus.Errors[FIXEDWINGPATHFOLLOWERSTATUS_ERRORS_PITCHCONTROL] = 1;
result = 0;
}
/**
* Compute desired roll command
*/
if (groundspeedDesired> 1e-6f) {
bearingError = RAD2DEG(atan2f(velocityDesired.East,velocityDesired.North) - atan2f(velocityActual.East,velocityActual.North));
} else {
// if we are not supposed to move, run in a circle
bearingError = -90.0f;
}
if (bearingError<-180.0f) bearingError+=360.0f;
if (bearingError>180.0f) bearingError-=360.0f;
bearingIntegral = bound(bearingIntegral + bearingError * dT * fixedwingpathfollowerSettings.BearingPI[FIXEDWINGPATHFOLLOWERSETTINGS_BEARINGPI_KI],
-fixedwingpathfollowerSettings.BearingPI[FIXEDWINGPATHFOLLOWERSETTINGS_BEARINGPI_ILIMIT],
fixedwingpathfollowerSettings.BearingPI[FIXEDWINGPATHFOLLOWERSETTINGS_BEARINGPI_ILIMIT]);
bearingCommand = (bearingError * fixedwingpathfollowerSettings.BearingPI[FIXEDWINGPATHFOLLOWERSETTINGS_BEARINGPI_KP] +
bearingIntegral);
fixedwingpathfollowerStatus.Error[FIXEDWINGPATHFOLLOWERSTATUS_ERROR_BEARING] = bearingError;
fixedwingpathfollowerStatus.ErrorInt[FIXEDWINGPATHFOLLOWERSTATUS_ERRORINT_BEARING] = bearingIntegral;
fixedwingpathfollowerStatus.Command[FIXEDWINGPATHFOLLOWERSTATUS_COMMAND_BEARING] = bearingCommand;
stabDesired.Roll = bound( fixedwingpathfollowerSettings.RollLimit[FIXEDWINGPATHFOLLOWERSETTINGS_ROLLLIMIT_NEUTRAL] +
bearingCommand,
fixedwingpathfollowerSettings.RollLimit[FIXEDWINGPATHFOLLOWERSETTINGS_ROLLLIMIT_MIN],
fixedwingpathfollowerSettings.RollLimit[FIXEDWINGPATHFOLLOWERSETTINGS_ROLLLIMIT_MAX] );
// TODO: find a check to determine loss of directional control. Likely needs some check of derivative
/**
* Compute desired yaw command
*/
// TODO implement raw control mode for yaw and base on Accels.Y
stabDesired.Yaw = 0;
stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_ROLL] = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_PITCH] = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_YAW] = STABILIZATIONDESIRED_STABILIZATIONMODE_NONE;
StabilizationDesiredSet(&stabDesired);
FixedWingPathFollowerStatusSet(&fixedwingpathfollowerStatus);
return result;
}
/**
* Bound input value between limits
*/
static float bound(float val, float min, float max)
{
if (val < min) {
val = min;
} else if (val > max) {
val = max;
}
return val;
}
static void SettingsUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
FixedWingPathFollowerSettingsGet(&fixedwingpathfollowerSettings);
PathDesiredGet(&pathDesired);
}
static void airspeedActualUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
AirspeedActualData airspeedActual;
VelocityActualData velocityActual;
AirspeedActualGet(&airspeedActual);
VelocityActualGet(&velocityActual);
float groundspeed = sqrtf(velocityActual.East*velocityActual.East + velocityActual.North*velocityActual.North );
indicatedAirspeedActualBias = airspeedActual.CalibratedAirspeed - groundspeed;
// note - we do fly by Indicated Airspeed (== calibrated airspeed)
// however since airspeed is updated less often than groundspeed, we use sudden changes to groundspeed to offset the airspeed by the same measurement.
}