1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-12-12 20:08:48 +01:00
LibrePilot/flight/Modules/Stabilization/stabilization.c

472 lines
14 KiB
C

/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup StabilizationModule Stabilization Module
* @brief Stabilization PID loops in an airframe type independent manner
* @note This object updates the @ref ActuatorDesired "Actuator Desired" based on the
* PID loops on the @ref AttitudeDesired "Attitude Desired" and @ref AttitudeActual "Attitude Actual"
* @{
*
* @file stabilization.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief Attitude stabilization module.
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "openpilot.h"
#include "stabilization.h"
#include "stabilizationsettings.h"
#include "actuatordesired.h"
#include "ratedesired.h"
#include "stabilizationdesired.h"
#include "attitudeactual.h"
#include "gyros.h"
#include "flightstatus.h"
#include "manualcontrol.h" // Just to get a macro
#include "CoordinateConversions.h"
// Private constants
#define MAX_QUEUE_SIZE 1
#if defined(PIOS_STABILIZATION_STACK_SIZE)
#define STACK_SIZE_BYTES PIOS_STABILIZATION_STACK_SIZE
#else
#define STACK_SIZE_BYTES 724
#endif
#define TASK_PRIORITY (tskIDLE_PRIORITY+4)
#define FAILSAFE_TIMEOUT_MS 30
enum {PID_RATE_ROLL, PID_RATE_PITCH, PID_RATE_YAW, PID_ROLL, PID_PITCH, PID_YAW, PID_MAX};
enum {ROLL,PITCH,YAW,MAX_AXES};
// Private types
typedef struct {
float p;
float i;
float d;
float iLim;
float iAccumulator;
float lastErr;
} pid_type;
// Private variables
static xTaskHandle taskHandle;
static StabilizationSettingsData settings;
static xQueueHandle queue;
float dT = 1;
float gyro_alpha = 0;
float gyro_filtered[3] = {0,0,0};
float axis_lock_accum[3] = {0,0,0};
uint8_t max_axis_lock = 0;
uint8_t max_axislock_rate = 0;
float weak_leveling_kp = 0;
uint8_t weak_leveling_max = 0;
bool lowThrottleZeroIntegral;
pid_type pids[PID_MAX];
// Private functions
static void stabilizationTask(void* parameters);
static float ApplyPid(pid_type * pid, const float err);
static float bound(float val);
static void ZeroPids(void);
static void SettingsUpdatedCb(UAVObjEvent * ev);
/**
* Module initialization
*/
int32_t StabilizationStart()
{
// Initialize variables
// Start main task
xTaskCreate(stabilizationTask, (signed char*)"Stabilization", STACK_SIZE_BYTES/4, NULL, TASK_PRIORITY, &taskHandle);
TaskMonitorAdd(TASKINFO_RUNNING_STABILIZATION, taskHandle);
PIOS_WDG_RegisterFlag(PIOS_WDG_STABILIZATION);
return 0;
}
/**
* Module initialization
*/
int32_t StabilizationInitialize()
{
// Initialize variables
StabilizationSettingsInitialize();
ActuatorDesiredInitialize();
#if defined(DIAGNOSTICS)
RateDesiredInitialize();
#endif
// Create object queue
queue = xQueueCreate(MAX_QUEUE_SIZE, sizeof(UAVObjEvent));
// Listen for updates.
// AttitudeActualConnectQueue(queue);
GyrosConnectQueue(queue);
StabilizationSettingsConnectCallback(SettingsUpdatedCb);
SettingsUpdatedCb(StabilizationSettingsHandle());
// Start main task
return 0;
}
MODULE_INITCALL(StabilizationInitialize, StabilizationStart)
/**
* Module task
*/
static void stabilizationTask(void* parameters)
{
UAVObjEvent ev;
uint32_t timeval = PIOS_DELAY_GetRaw();
ActuatorDesiredData actuatorDesired;
StabilizationDesiredData stabDesired;
RateDesiredData rateDesired;
AttitudeActualData attitudeActual;
GyrosData gyrosData;
FlightStatusData flightStatus;
SettingsUpdatedCb((UAVObjEvent *) NULL);
// Main task loop
ZeroPids();
while(1) {
PIOS_WDG_UpdateFlag(PIOS_WDG_STABILIZATION);
// Wait until the AttitudeRaw object is updated, if a timeout then go to failsafe
if ( xQueueReceive(queue, &ev, FAILSAFE_TIMEOUT_MS / portTICK_RATE_MS) != pdTRUE )
{
AlarmsSet(SYSTEMALARMS_ALARM_STABILIZATION,SYSTEMALARMS_ALARM_WARNING);
continue;
}
dT = PIOS_DELAY_DiffuS(timeval) * 1.0e-6f;
timeval = PIOS_DELAY_GetRaw();
FlightStatusGet(&flightStatus);
StabilizationDesiredGet(&stabDesired);
AttitudeActualGet(&attitudeActual);
GyrosGet(&gyrosData);
#if defined(DIAGNOSTICS)
RateDesiredGet(&rateDesired);
#endif
#if defined(PIOS_QUATERNION_STABILIZATION)
// Quaternion calculation of error in each axis. Uses more memory.
float rpy_desired[3];
float q_desired[4];
float q_error[4];
float local_error[3];
// Essentially zero errors for anything in rate or none
if(stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_ROLL] == STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE)
rpy_desired[0] = stabDesired.Roll;
else
rpy_desired[0] = attitudeActual.Roll;
if(stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_PITCH] == STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE)
rpy_desired[1] = stabDesired.Pitch;
else
rpy_desired[1] = attitudeActual.Pitch;
if(stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_YAW] == STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE)
rpy_desired[2] = stabDesired.Yaw;
else
rpy_desired[2] = attitudeActual.Yaw;
RPY2Quaternion(rpy_desired, q_desired);
quat_inverse(q_desired);
quat_mult(q_desired, &attitudeActual.q1, q_error);
quat_inverse(q_error);
Quaternion2RPY(q_error, local_error);
#else
// Simpler algorithm for CC, less memory
float local_error[3] = {stabDesired.Roll - attitudeActual.Roll,
stabDesired.Pitch - attitudeActual.Pitch,
stabDesired.Yaw - attitudeActual.Yaw};
local_error[2] = fmod(local_error[2] + 180, 360) - 180;
#endif
gyro_filtered[0] = gyro_filtered[0] * gyro_alpha + gyrosData.x * (1 - gyro_alpha);
gyro_filtered[1] = gyro_filtered[1] * gyro_alpha + gyrosData.y * (1 - gyro_alpha);
gyro_filtered[2] = gyro_filtered[2] * gyro_alpha + gyrosData.z * (1 - gyro_alpha);
float *attitudeDesiredAxis = &stabDesired.Roll;
float *actuatorDesiredAxis = &actuatorDesired.Roll;
float *rateDesiredAxis = &rateDesired.Roll;
//Calculate desired rate
for(uint8_t i=0; i< MAX_AXES; i++)
{
switch(stabDesired.StabilizationMode[i])
{
case STABILIZATIONDESIRED_STABILIZATIONMODE_RATE:
rateDesiredAxis[i] = attitudeDesiredAxis[i];
// Zero attitude and axis lock accumulators
pids[PID_ROLL + i].iAccumulator = 0;
axis_lock_accum[i] = 0;
break;
case STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING:
{
float weak_leveling = local_error[i] * weak_leveling_kp;
if(weak_leveling > weak_leveling_max)
weak_leveling = weak_leveling_max;
if(weak_leveling < -weak_leveling_max)
weak_leveling = -weak_leveling_max;
rateDesiredAxis[i] = attitudeDesiredAxis[i] + weak_leveling;
// Zero attitude and axis lock accumulators
pids[PID_ROLL + i].iAccumulator = 0;
axis_lock_accum[i] = 0;
break;
}
case STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE:
rateDesiredAxis[i] = ApplyPid(&pids[PID_ROLL + i], local_error[i]);
if(rateDesiredAxis[i] > settings.MaximumRate[i])
rateDesiredAxis[i] = settings.MaximumRate[i];
else if(rateDesiredAxis[i] < -settings.MaximumRate[i])
rateDesiredAxis[i] = -settings.MaximumRate[i];
axis_lock_accum[i] = 0;
break;
case STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK:
if(fabs(attitudeDesiredAxis[i]) > max_axislock_rate) {
// While getting strong commands act like rate mode
rateDesiredAxis[i] = attitudeDesiredAxis[i];
axis_lock_accum[i] = 0;
} else {
// For weaker commands or no command simply attitude lock (almost) on no gyro change
axis_lock_accum[i] += (attitudeDesiredAxis[i] - gyro_filtered[i]) * dT;
if(axis_lock_accum[i] > max_axis_lock)
axis_lock_accum[i] = max_axis_lock;
else if(axis_lock_accum[i] < -max_axis_lock)
axis_lock_accum[i] = -max_axis_lock;
rateDesiredAxis[i] = ApplyPid(&pids[PID_ROLL + i], axis_lock_accum[i]);
}
if(rateDesiredAxis[i] > settings.MaximumRate[i])
rateDesiredAxis[i] = settings.MaximumRate[i];
else if(rateDesiredAxis[i] < -settings.MaximumRate[i])
rateDesiredAxis[i] = -settings.MaximumRate[i];
break;
}
}
uint8_t shouldUpdate = 1;
#if defined(DIAGNOSTICS)
RateDesiredSet(&rateDesired);
#endif
ActuatorDesiredGet(&actuatorDesired);
//Calculate desired command
for(int8_t ct=0; ct< MAX_AXES; ct++)
{
switch(stabDesired.StabilizationMode[ct])
{
case STABILIZATIONDESIRED_STABILIZATIONMODE_RATE:
case STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE:
case STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK:
case STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING:
{
float command = ApplyPid(&pids[PID_RATE_ROLL + ct], rateDesiredAxis[ct] - gyro_filtered[ct]);
actuatorDesiredAxis[ct] = bound(command);
break;
}
case STABILIZATIONDESIRED_STABILIZATIONMODE_NONE:
switch (ct)
{
case ROLL:
actuatorDesiredAxis[ct] = bound(attitudeDesiredAxis[ct]);
shouldUpdate = 1;
pids[PID_RATE_ROLL].iAccumulator = 0;
pids[PID_ROLL].iAccumulator = 0;
break;
case PITCH:
actuatorDesiredAxis[ct] = bound(attitudeDesiredAxis[ct]);
shouldUpdate = 1;
pids[PID_RATE_PITCH].iAccumulator = 0;
pids[PID_PITCH].iAccumulator = 0;
break;
case YAW:
actuatorDesiredAxis[ct] = bound(attitudeDesiredAxis[ct]);
shouldUpdate = 1;
pids[PID_RATE_YAW].iAccumulator = 0;
pids[PID_YAW].iAccumulator = 0;
break;
}
break;
}
}
// Save dT
actuatorDesired.UpdateTime = dT * 1000;
if(PARSE_FLIGHT_MODE(flightStatus.FlightMode) == FLIGHTMODE_MANUAL)
shouldUpdate = 0;
if(shouldUpdate)
{
actuatorDesired.Throttle = stabDesired.Throttle;
if(dT > 15)
actuatorDesired.NumLongUpdates++;
ActuatorDesiredSet(&actuatorDesired);
}
if(flightStatus.Armed != FLIGHTSTATUS_ARMED_ARMED ||
(lowThrottleZeroIntegral && stabDesired.Throttle < 0) ||
!shouldUpdate)
{
ZeroPids();
}
// Clear alarms
AlarmsClear(SYSTEMALARMS_ALARM_STABILIZATION);
}
}
float ApplyPid(pid_type * pid, const float err)
{
float diff = (err - pid->lastErr);
pid->lastErr = err;
// Scale up accumulator by 1000 while computing to avoid losing precision
pid->iAccumulator += err * (pid->i * dT * 1000.0f);
if(pid->iAccumulator > (pid->iLim * 1000.0f)) {
pid->iAccumulator = pid->iLim * 1000.0f;
} else if (pid->iAccumulator < -(pid->iLim * 1000.0f)) {
pid->iAccumulator = -pid->iLim * 1000.0f;
}
return ((err * pid->p) + pid->iAccumulator / 1000.0f + (diff * pid->d / dT));
}
static void ZeroPids(void)
{
for(int8_t ct = 0; ct < PID_MAX; ct++) {
pids[ct].iAccumulator = 0.0f;
pids[ct].lastErr = 0.0f;
}
for(uint8_t i = 0; i < 3; i++)
axis_lock_accum[i] = 0.0f;
}
/**
* Bound input value between limits
*/
static float bound(float val)
{
if(val < -1.0f) {
val = -1.0f;
} else if(val > 1.0f) {
val = 1.0f;
}
return val;
}
static void SettingsUpdatedCb(UAVObjEvent * ev)
{
memset(pids,0,sizeof (pid_type) * PID_MAX);
StabilizationSettingsGet(&settings);
// Set the roll rate PID constants
pids[0].p = settings.RollRatePID[STABILIZATIONSETTINGS_ROLLRATEPID_KP];
pids[0].i = settings.RollRatePID[STABILIZATIONSETTINGS_ROLLRATEPID_KI];
pids[0].d = settings.RollRatePID[STABILIZATIONSETTINGS_ROLLRATEPID_KD];
pids[0].iLim = settings.RollRatePID[STABILIZATIONSETTINGS_ROLLRATEPID_ILIMIT];
// Set the pitch rate PID constants
pids[1].p = settings.PitchRatePID[STABILIZATIONSETTINGS_PITCHRATEPID_KP];
pids[1].i = settings.PitchRatePID[STABILIZATIONSETTINGS_PITCHRATEPID_KI];
pids[1].d = settings.PitchRatePID[STABILIZATIONSETTINGS_PITCHRATEPID_KD];
pids[1].iLim = settings.PitchRatePID[STABILIZATIONSETTINGS_PITCHRATEPID_ILIMIT];
// Set the yaw rate PID constants
pids[2].p = settings.YawRatePID[STABILIZATIONSETTINGS_YAWRATEPID_KP];
pids[2].i = settings.YawRatePID[STABILIZATIONSETTINGS_YAWRATEPID_KI];
pids[2].d = settings.YawRatePID[STABILIZATIONSETTINGS_YAWRATEPID_KD];
pids[2].iLim = settings.YawRatePID[STABILIZATIONSETTINGS_YAWRATEPID_ILIMIT];
// Set the roll attitude PI constants
pids[3].p = settings.RollPI[STABILIZATIONSETTINGS_ROLLPI_KP];
pids[3].i = settings.RollPI[STABILIZATIONSETTINGS_ROLLPI_KI];
pids[3].iLim = settings.RollPI[STABILIZATIONSETTINGS_ROLLPI_ILIMIT];
// Set the pitch attitude PI constants
pids[4].p = settings.PitchPI[STABILIZATIONSETTINGS_PITCHPI_KP];
pids[4].i = settings.PitchPI[STABILIZATIONSETTINGS_PITCHPI_KI];
pids[4].iLim = settings.PitchPI[STABILIZATIONSETTINGS_PITCHPI_ILIMIT];
// Set the yaw attitude PI constants
pids[5].p = settings.YawPI[STABILIZATIONSETTINGS_YAWPI_KP];
pids[5].i = settings.YawPI[STABILIZATIONSETTINGS_YAWPI_KI];
pids[5].iLim = settings.YawPI[STABILIZATIONSETTINGS_YAWPI_ILIMIT];
// Maximum deviation to accumulate for axis lock
max_axis_lock = settings.MaxAxisLock;
max_axislock_rate = settings.MaxAxisLockRate;
// Settings for weak leveling
weak_leveling_kp = settings.WeakLevelingKp;
weak_leveling_max = settings.MaxWeakLevelingRate;
// Whether to zero the PID integrals while throttle is low
lowThrottleZeroIntegral = settings.LowThrottleZeroIntegral == STABILIZATIONSETTINGS_LOWTHROTTLEZEROINTEGRAL_TRUE;
// The dT has some jitter iteration to iteration that we don't want to
// make thie result unpredictable. Still, it's nicer to specify the constant
// based on a time (in ms) rather than a fixed multiplier. The error between
// update rates on OP (~300 Hz) and CC (~475 Hz) is negligible for this
// calculation
const float fakeDt = 0.0025;
if(settings.GyroTau < 0.0001)
gyro_alpha = 0; // not trusting this to resolve to 0
else
gyro_alpha = exp(-fakeDt / settings.GyroTau);
}
/**
* @}
* @}
*/