1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-11-29 07:24:13 +01:00
LibrePilot/flight/Libraries/CoordinateConversions.c
peabody124 3afdc7e41c CC-24: Rotate the CC board at any angle relative to "flat and level" with GCS
config plugin updates.  Has not been tested in flight yet although seems
sensible so please be careful when using this code.

git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@3166 ebee16cc-31ac-478f-84a7-5cbb03baadba
2011-04-15 06:37:16 +00:00

429 lines
12 KiB
C

/**
******************************************************************************
*
* @file CoordinateConversions.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief General conversions with different coordinate systems.
* - all angles in deg
* - distances in meters
* - altitude above WGS-84 elipsoid
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <math.h>
#include <stdint.h>
#include "CoordinateConversions.h"
#define RAD2DEG (180.0/M_PI)
#define DEG2RAD (M_PI/180.0)
// ****** convert Lat,Lon,Alt to ECEF ************
void LLA2ECEF(double LLA[3], double ECEF[3])
{
const double a = 6378137.0; // Equatorial Radius
const double e = 8.1819190842622e-2; // Eccentricity
double sinLat, sinLon, cosLat, cosLon;
double N;
sinLat = sin(DEG2RAD * LLA[0]);
sinLon = sin(DEG2RAD * LLA[1]);
cosLat = cos(DEG2RAD * LLA[0]);
cosLon = cos(DEG2RAD * LLA[1]);
N = a / sqrt(1.0 - e * e * sinLat * sinLat); //prime vertical radius of curvature
ECEF[0] = (N + LLA[2]) * cosLat * cosLon;
ECEF[1] = (N + LLA[2]) * cosLat * sinLon;
ECEF[2] = ((1 - e * e) * N + LLA[2]) * sinLat;
}
// ****** convert ECEF to Lat,Lon,Alt (ITERATIVE!) *********
uint16_t ECEF2LLA(double ECEF[3], double LLA[3])
{
/**
* LLA parameter is used to prime the iteration.
* A position within 1 meter of the specified LLA
* will be calculated within at most 3 iterations.
* If unknown: Call with any valid LLA coordinate
* will compute within at most 5 iterations.
* Suggestion: [0,0,0]
**/
const double a = 6378137.0; // Equatorial Radius
const double e = 8.1819190842622e-2; // Eccentricity
double x = ECEF[0], y = ECEF[1], z = ECEF[2];
double Lat, N, NplusH, delta, esLat;
uint16_t iter;
#define MAX_ITER 10 // should not take more than 5 for valid coordinates
#define ACCURACY 1.0e-11 // used to be e-14, but we don't need sub micrometer exact calculations
LLA[1] = RAD2DEG * atan2(y, x);
Lat = DEG2RAD * LLA[0];
esLat = e * sin(Lat);
N = a / sqrt(1 - esLat * esLat);
NplusH = N + LLA[2];
delta = 1;
iter = 0;
while (((delta > ACCURACY) || (delta < -ACCURACY))
&& (iter < MAX_ITER)) {
delta = Lat - atan(z / (sqrt(x * x + y * y) * (1 - (N * e * e / NplusH))));
Lat = Lat - delta;
esLat = e * sin(Lat);
N = a / sqrt(1 - esLat * esLat);
NplusH = sqrt(x * x + y * y) / cos(Lat);
iter += 1;
}
LLA[0] = RAD2DEG * Lat;
LLA[2] = NplusH - N;
return (iter < MAX_ITER);
}
// ****** find ECEF to NED rotation matrix ********
void RneFromLLA(double LLA[3], float Rne[3][3])
{
float sinLat, sinLon, cosLat, cosLon;
sinLat = (float)sin(DEG2RAD * LLA[0]);
sinLon = (float)sin(DEG2RAD * LLA[1]);
cosLat = (float)cos(DEG2RAD * LLA[0]);
cosLon = (float)cos(DEG2RAD * LLA[1]);
Rne[0][0] = -sinLat * cosLon;
Rne[0][1] = -sinLat * sinLon;
Rne[0][2] = cosLat;
Rne[1][0] = -sinLon;
Rne[1][1] = cosLon;
Rne[1][2] = 0;
Rne[2][0] = -cosLat * cosLon;
Rne[2][1] = -cosLat * sinLon;
Rne[2][2] = -sinLat;
}
// ****** find roll, pitch, yaw from quaternion ********
void Quaternion2RPY(const float q[4], float rpy[3])
{
float R13, R11, R12, R23, R33;
float q0s = q[0] * q[0];
float q1s = q[1] * q[1];
float q2s = q[2] * q[2];
float q3s = q[3] * q[3];
R13 = 2 * (q[1] * q[3] - q[0] * q[2]);
R11 = q0s + q1s - q2s - q3s;
R12 = 2 * (q[1] * q[2] + q[0] * q[3]);
R23 = 2 * (q[2] * q[3] + q[0] * q[1]);
R33 = q0s - q1s - q2s + q3s;
rpy[1] = RAD2DEG * asinf(-R13); // pitch always between -pi/2 to pi/2
rpy[2] = RAD2DEG * atan2f(R12, R11);
rpy[0] = RAD2DEG * atan2f(R23, R33);
//TODO: consider the cases where |R13| ~= 1, |pitch| ~= pi/2
}
// ****** find quaternion from roll, pitch, yaw ********
void RPY2Quaternion(const float rpy[3], float q[4])
{
float phi, theta, psi;
float cphi, sphi, ctheta, stheta, cpsi, spsi;
phi = DEG2RAD * rpy[0] / 2;
theta = DEG2RAD * rpy[1] / 2;
psi = DEG2RAD * rpy[2] / 2;
cphi = cosf(phi);
sphi = sinf(phi);
ctheta = cosf(theta);
stheta = sinf(theta);
cpsi = cosf(psi);
spsi = sinf(psi);
q[0] = cphi * ctheta * cpsi + sphi * stheta * spsi;
q[1] = sphi * ctheta * cpsi - cphi * stheta * spsi;
q[2] = cphi * stheta * cpsi + sphi * ctheta * spsi;
q[3] = cphi * ctheta * spsi - sphi * stheta * cpsi;
if (q[0] < 0) { // q0 always positive for uniqueness
q[0] = -q[0];
q[1] = -q[1];
q[2] = -q[2];
q[3] = -q[3];
}
}
//** Find Rbe, that rotates a vector from earth fixed to body frame, from quaternion **
void Quaternion2R(float q[4], float Rbe[3][3])
{
float q0s = q[0] * q[0], q1s = q[1] * q[1], q2s = q[2] * q[2], q3s = q[3] * q[3];
Rbe[0][0] = q0s + q1s - q2s - q3s;
Rbe[0][1] = 2 * (q[1] * q[2] + q[0] * q[3]);
Rbe[0][2] = 2 * (q[1] * q[3] - q[0] * q[2]);
Rbe[1][0] = 2 * (q[1] * q[2] - q[0] * q[3]);
Rbe[1][1] = q0s - q1s + q2s - q3s;
Rbe[1][2] = 2 * (q[2] * q[3] + q[0] * q[1]);
Rbe[2][0] = 2 * (q[1] * q[3] + q[0] * q[2]);
Rbe[2][1] = 2 * (q[2] * q[3] - q[0] * q[1]);
Rbe[2][2] = q0s - q1s - q2s + q3s;
}
// ****** Express LLA in a local NED Base Frame ********
void LLA2Base(double LLA[3], double BaseECEF[3], float Rne[3][3], float NED[3])
{
double ECEF[3];
float diff[3];
LLA2ECEF(LLA, ECEF);
diff[0] = (float)(ECEF[0] - BaseECEF[0]);
diff[1] = (float)(ECEF[1] - BaseECEF[1]);
diff[2] = (float)(ECEF[2] - BaseECEF[2]);
NED[0] = Rne[0][0] * diff[0] + Rne[0][1] * diff[1] + Rne[0][2] * diff[2];
NED[1] = Rne[1][0] * diff[0] + Rne[1][1] * diff[1] + Rne[1][2] * diff[2];
NED[2] = Rne[2][0] * diff[0] + Rne[2][1] * diff[1] + Rne[2][2] * diff[2];
}
// ****** Express ECEF in a local NED Base Frame ********
void ECEF2Base(double ECEF[3], double BaseECEF[3], float Rne[3][3], float NED[3])
{
float diff[3];
diff[0] = (float)(ECEF[0] - BaseECEF[0]);
diff[1] = (float)(ECEF[1] - BaseECEF[1]);
diff[2] = (float)(ECEF[2] - BaseECEF[2]);
NED[0] = Rne[0][0] * diff[0] + Rne[0][1] * diff[1] + Rne[0][2] * diff[2];
NED[1] = Rne[1][0] * diff[0] + Rne[1][1] * diff[1] + Rne[1][2] * diff[2];
NED[2] = Rne[2][0] * diff[0] + Rne[2][1] * diff[1] + Rne[2][2] * diff[2];
}
// ****** convert Rotation Matrix to Quaternion ********
// ****** if R converts from e to b, q is rotation from e to b ****
void R2Quaternion(float R[3][3], float q[4])
{
float m[4], mag;
uint8_t index,i;
m[0] = 1 + R[0][0] + R[1][1] + R[2][2];
m[1] = 1 + R[0][0] - R[1][1] - R[2][2];
m[2] = 1 - R[0][0] + R[1][1] - R[2][2];
m[3] = 1 - R[0][0] - R[1][1] + R[2][2];
// find maximum divisor
index = 0;
mag = m[0];
for (i=1;i<4;i++){
if (m[i] > mag){
mag = m[i];
index = i;
}
}
mag = 2*sqrt(mag);
if (index == 0) {
q[0] = mag/4;
q[1] = (R[1][2]-R[2][1])/mag;
q[2] = (R[2][0]-R[0][2])/mag;
q[3] = (R[0][1]-R[1][0])/mag;
}
else if (index == 1) {
q[1] = mag/4;
q[0] = (R[1][2]-R[2][1])/mag;
q[2] = (R[0][1]+R[1][0])/mag;
q[3] = (R[0][2]+R[2][0])/mag;
}
else if (index == 2) {
q[2] = mag/4;
q[0] = (R[2][0]-R[0][2])/mag;
q[1] = (R[0][1]+R[1][0])/mag;
q[3] = (R[1][2]+R[2][1])/mag;
}
else {
q[3] = mag/4;
q[0] = (R[0][1]-R[1][0])/mag;
q[1] = (R[0][2]+R[2][0])/mag;
q[2] = (R[1][2]+R[2][1])/mag;
}
// q0 positive, i.e. angle between pi and -pi
if (q[0] < 0){
q[0] = -q[0];
q[1] = -q[1];
q[2] = -q[2];
q[3] = -q[3];
}
}
// ****** Rotation Matrix from Two Vector Directions ********
// ****** given two vector directions (v1 and v2) known in two frames (b and e) find Rbe ***
// ****** solution is approximate if can't be exact ***
uint8_t RotFrom2Vectors(const float v1b[3], const float v1e[3], const float v2b[3], const float v2e[3], float Rbe[3][3])
{
float Rib[3][3], Rie[3][3];
float mag;
uint8_t i,j,k;
// identity rotation in case of error
for (i=0;i<3;i++){
for (j=0;j<3;j++)
Rbe[i][j]=0;
Rbe[i][i]=1;
}
// The first rows of rot matrices chosen in direction of v1
mag = VectorMagnitude(v1b);
if (fabs(mag) < 1e-30)
return (-1);
for (i=0;i<3;i++)
Rib[0][i]=v1b[i]/mag;
mag = VectorMagnitude(v1e);
if (fabs(mag) < 1e-30)
return (-1);
for (i=0;i<3;i++)
Rie[0][i]=v1e[i]/mag;
// The second rows of rot matrices chosen in direction of v1xv2
CrossProduct(v1b,v2b,&Rib[1][0]);
mag = VectorMagnitude(&Rib[1][0]);
if (fabs(mag) < 1e-30)
return (-1);
for (i=0;i<3;i++)
Rib[1][i]=Rib[1][i]/mag;
CrossProduct(v1e,v2e,&Rie[1][0]);
mag = VectorMagnitude(&Rie[1][0]);
if (fabs(mag) < 1e-30)
return (-1);
for (i=0;i<3;i++)
Rie[1][i]=Rie[1][i]/mag;
// The third rows of rot matrices are XxY (Row1xRow2)
CrossProduct(&Rib[0][0],&Rib[1][0],&Rib[2][0]);
CrossProduct(&Rie[0][0],&Rie[1][0],&Rie[2][0]);
// Rbe = Rbi*Rie = Rib'*Rie
for (i=0;i<3;i++)
for(j=0;j<3;j++){
Rbe[i][j]=0;
for(k=0;k<3;k++)
Rbe[i][j] += Rib[k][i]*Rie[k][j];
}
return 1;
}
void Rv2Rot(float Rv[3], float R[3][3])
{
// Compute rotation matrix from a rotation vector
// To save .text space, uses Quaternion2R()
float q[4];
float angle = VectorMagnitude(Rv);
if (angle <= 0.00048828125f) {
// angle < sqrt(2*machine_epsilon(float)), so flush cos(x) to 1.0f
q[0] = 1.0f;
// and flush sin(x/2)/x to 0.5
q[1] = 0.5f*Rv[0];
q[2] = 0.5f*Rv[1];
q[3] = 0.5f*Rv[2];
// This prevents division by zero, while retaining full accuracy
}
else {
q[0] = cosf(angle*0.5f);
float scale = sinf(angle*0.5f) / angle;
q[1] = scale*Rv[0];
q[2] = scale*Rv[1];
q[3] = scale*Rv[2];
}
Quaternion2R(q, R);
}
// ****** Vector Cross Product ********
void CrossProduct(const float v1[3], const float v2[3], float result[3])
{
result[0] = v1[1]*v2[2] - v2[1]*v1[2];
result[1] = v2[0]*v1[2] - v1[0]*v2[2];
result[2] = v1[0]*v2[1] - v2[0]*v1[1];
}
// ****** Vector Magnitude ********
float VectorMagnitude(const float v[3])
{
return(sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]));
}
/**
* @brief Compute the inverse of a quaternion
* @param [in][out] q The matrix to invert
*/
void quat_inverse(float q[4])
{
q[1] = -q[1];
q[2] = -q[2];
q[3] = -q[3];
}
/**
* @brief Duplicate a quaternion
* @param[in] q quaternion in
* @param[out] qnew quaternion to copy to
*/
void quat_copy(const float q[4], float qnew[4])
{
qnew[0] = q[0];
qnew[1] = q[1];
qnew[2] = q[2];
qnew[3] = q[3];
}
/**
* @brief Multiply two quaternions into a third
* @param[in] q1 First quaternion
* @param[in] q2 Second quaternion
* @param[out] qout Output quaternion
*/
void quat_mult(const float q1[4], const float q2[4], float qout[4])
{
qout[0] = q1[0]*q2[0] - q1[1]*q2[1] - q1[2]*q2[2] - q1[3]*q2[3];
qout[1] = q1[0]*q2[1] + q1[1]*q2[0] + q1[2]*q2[3] - q1[3]*q2[2];
qout[2] = q1[0]*q2[2] - q1[1]*q2[3] + q1[2]*q2[0] + q1[3]*q2[1];
qout[3] = q1[0]*q2[3] + q1[1]*q2[2] - q1[2]*q2[1] + q1[3]*q2[0];
}
/**
* @brief Rotate a vector by a rotation matrix
* @param[in] R a three by three rotation matrix (first index is row)
* @param[in] vec the source vector
* @param[out] vec_out the output vector
*/
void rot_mult(float R[3][3], const float vec[3], float vec_out[3])
{
vec_out[0] = R[0][0] * vec[0] + R[0][1] * vec[1] + R[0][2] * vec[2];
vec_out[1] = R[1][0] * vec[0] + R[1][1] * vec[1] + R[1][2] * vec[2];
vec_out[2] = R[2][0] * vec[0] + R[2][1] * vec[1] + R[2][2] * vec[2];
}