1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-11-30 08:24:11 +01:00
LibrePilot/flight/Modules/ManualControl/manualcontrol.c
peabody124 fc54159369 OP-265 Flight reorganization of UAVObjects and Modules up a directory
git-svn-id: svn://svn.openpilot.org/OpenPilot/trunk@2415 ebee16cc-31ac-478f-84a7-5cbb03baadba
2011-01-14 01:38:19 +00:00

443 lines
17 KiB
C

/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup ManualControlModule Manual Control Module
* @brief Provide manual control or allow it alter flight mode.
* @{
*
* Reads in the ManualControlCommand FlightMode setting from receiver then either
* pass the settings straght to ActuatorDesired object (manual mode) or to
* AttitudeDesired object (stabilized mode)
*
* @file manualcontrol.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief ManualControl module. Handles safety R/C link and flight mode.
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "openpilot.h"
#include "manualcontrol.h"
#include "manualcontrolsettings.h"
#include "stabilizationsettings.h"
#include "manualcontrolcommand.h"
#include "actuatordesired.h"
#include "attitudedesired.h"
#include "ahrssettings.h"
#include "flighttelemetrystats.h"
// Private constants
#define STACK_SIZE_BYTES 824
#define TASK_PRIORITY (tskIDLE_PRIORITY+4)
#define UPDATE_PERIOD_MS 20
#define THROTTLE_FAILSAFE -0.1
#define FLIGHT_MODE_LIMIT 1.0/3.0
#define ARMED_TIME_MS 1000
//safe band to allow a bit of calibration error or trim offset (in microseconds)
#define CONNECTION_OFFSET 150
// Private types
typedef enum
{
ARM_STATE_DISARMED,
ARM_STATE_ARMING_MANUAL,
ARM_STATE_ARMED,
ARM_STATE_DISARMING_MANUAL,
ARM_STATE_DISARMING_TIMEOUT
} ArmState_t;
// Private variables
static xTaskHandle taskHandle;
static ArmState_t armState;
// Private functions
static void manualControlTask(void *parameters);
static float scaleChannel(int16_t value, int16_t max, int16_t min, int16_t neutral);
static uint32_t timeDifferenceMs(portTickType start_time, portTickType end_time);
/**
* Module initialization
*/
int32_t ManualControlInitialize()
{
// Start main task
xTaskCreate(manualControlTask, (signed char *)"ManualControl", STACK_SIZE_BYTES/4, NULL, TASK_PRIORITY, &taskHandle);
TaskMonitorAdd(TASKINFO_RUNNING_MANUALCONTROL, taskHandle);
PIOS_WDG_RegisterFlag(PIOS_WDG_MANUAL);
return 0;
}
/**
* Module task
*/
static void manualControlTask(void *parameters)
{
ManualControlSettingsData settings;
StabilizationSettingsData stabSettings;
ManualControlCommandData cmd;
ActuatorDesiredData actuator;
AttitudeDesiredData attitude;
portTickType lastSysTime;
float flightMode;
uint8_t disconnected_count = 0;
uint8_t connected_count = 0;
enum { CONNECTED, DISCONNECTED } connection_state = DISCONNECTED;
// Make sure unarmed on power up
ManualControlCommandGet(&cmd);
cmd.Armed = MANUALCONTROLCOMMAND_ARMED_FALSE;
ManualControlCommandSet(&cmd);
armState = ARM_STATE_DISARMED;
// Main task loop
lastSysTime = xTaskGetTickCount();
while (1) {
// Wait until next update
vTaskDelayUntil(&lastSysTime, UPDATE_PERIOD_MS / portTICK_RATE_MS);
PIOS_WDG_UpdateFlag(PIOS_WDG_MANUAL);
// Read settings
ManualControlSettingsGet(&settings);
StabilizationSettingsGet(&stabSettings);
if (ManualControlCommandReadOnly(&cmd)) {
FlightTelemetryStatsData flightTelemStats;
FlightTelemetryStatsGet(&flightTelemStats);
if(flightTelemStats.Status != FLIGHTTELEMETRYSTATS_STATUS_CONNECTED) {
/* trying to fly via GCS and lost connection. fall back to transmitter */
UAVObjMetadata metadata;
UAVObjGetMetadata(&cmd, &metadata);
metadata.access = ACCESS_READWRITE;
UAVObjSetMetadata(&cmd, &metadata);
}
}
if (!ManualControlCommandReadOnly(&cmd)) {
// Check settings, if error raise alarm
if (settings.Roll >= MANUALCONTROLSETTINGS_ROLL_NONE ||
settings.Pitch >= MANUALCONTROLSETTINGS_PITCH_NONE ||
settings.Yaw >= MANUALCONTROLSETTINGS_YAW_NONE ||
settings.Throttle >= MANUALCONTROLSETTINGS_THROTTLE_NONE ||
settings.FlightMode >= MANUALCONTROLSETTINGS_FLIGHTMODE_NONE) {
AlarmsSet(SYSTEMALARMS_ALARM_MANUALCONTROL, SYSTEMALARMS_ALARM_CRITICAL);
cmd.FlightMode = MANUALCONTROLCOMMAND_FLIGHTMODE_AUTO;
cmd.Connected = MANUALCONTROLCOMMAND_CONNECTED_FALSE;
ManualControlCommandSet(&cmd);
continue;
}
// Read channel values in us
// TODO: settings.InputMode is currently ignored because PIOS will not allow runtime
// selection of PWM and PPM. The configuration is currently done at compile time in
// the pios_config.h file.
for (int n = 0; n < MANUALCONTROLCOMMAND_CHANNEL_NUMELEM; ++n) {
#if defined(PIOS_INCLUDE_PWM)
cmd.Channel[n] = PIOS_PWM_Get(n);
#elif defined(PIOS_INCLUDE_PPM)
cmd.Channel[n] = PIOS_PPM_Get(n);
#elif defined(PIOS_INCLUDE_SPEKTRUM)
cmd.Channel[n] = PIOS_SPEKTRUM_Get(n);
#endif
}
// Calculate roll command in range +1 to -1
cmd.Roll = scaleChannel(cmd.Channel[settings.Roll], settings.ChannelMax[settings.Roll],
settings.ChannelMin[settings.Roll], settings.ChannelNeutral[settings.Roll]);
// Calculate pitch command in range +1 to -1
cmd.Pitch = scaleChannel(cmd.Channel[settings.Pitch], settings.ChannelMax[settings.Pitch],
settings.ChannelMin[settings.Pitch], settings.ChannelNeutral[settings.Pitch]);
// Calculate yaw command in range +1 to -1
cmd.Yaw = scaleChannel(cmd.Channel[settings.Yaw], settings.ChannelMax[settings.Yaw],
settings.ChannelMin[settings.Yaw], settings.ChannelNeutral[settings.Yaw]);
// Calculate throttle command in range +1 to -1
cmd.Throttle = scaleChannel(cmd.Channel[settings.Throttle], settings.ChannelMax[settings.Throttle],
settings.ChannelMin[settings.Throttle], settings.ChannelNeutral[settings.Throttle]);
if (settings.Accessory1 != MANUALCONTROLSETTINGS_ACCESSORY1_NONE)
cmd.Accessory1 = scaleChannel(cmd.Channel[settings.Accessory1], settings.ChannelMax[settings.Accessory1],
settings.ChannelMin[settings.Accessory1], settings.ChannelNeutral[settings.Accessory1]);
else
cmd.Accessory1 = 0;
if (settings.Accessory2 != MANUALCONTROLSETTINGS_ACCESSORY2_NONE)
cmd.Accessory2 = scaleChannel(cmd.Channel[settings.Accessory2], settings.ChannelMax[settings.Accessory2],
settings.ChannelMin[settings.Accessory2], settings.ChannelNeutral[settings.Accessory2]);
else
cmd.Accessory2 = 0;
if (settings.Accessory3 != MANUALCONTROLSETTINGS_ACCESSORY3_NONE)
cmd.Accessory3 = scaleChannel(cmd.Channel[settings.Accessory3], settings.ChannelMax[settings.Accessory3],
settings.ChannelMin[settings.Accessory3], settings.ChannelNeutral[settings.Accessory3]);
else
cmd.Accessory3 = 0;
// Update flight mode
flightMode = scaleChannel(cmd.Channel[settings.FlightMode], settings.ChannelMax[settings.FlightMode],
settings.ChannelMin[settings.FlightMode], settings.ChannelNeutral[settings.FlightMode]);
if (flightMode < -FLIGHT_MODE_LIMIT) { // Position 1
for(int i = 0; i < 3; i++) {
if(settings.Pos1StabilizationSettings[i] == MANUALCONTROLSETTINGS_POS1STABILIZATIONSETTINGS_NONE)
cmd.StabilizationSettings[i] = MANUALCONTROLCOMMAND_STABILIZATIONSETTINGS_NONE;
else if(settings.Pos1StabilizationSettings[i] == MANUALCONTROLSETTINGS_POS1STABILIZATIONSETTINGS_RATE)
cmd.StabilizationSettings[i] = MANUALCONTROLCOMMAND_STABILIZATIONSETTINGS_RATE;
else if(settings.Pos1StabilizationSettings[i] == MANUALCONTROLSETTINGS_POS1STABILIZATIONSETTINGS_ATTITUDE)
cmd.StabilizationSettings[i] = MANUALCONTROLCOMMAND_STABILIZATIONSETTINGS_ATTITUDE;
}
if(settings.Pos1FlightMode == MANUALCONTROLSETTINGS_POS1FLIGHTMODE_MANUAL)
cmd.FlightMode = MANUALCONTROLCOMMAND_FLIGHTMODE_MANUAL;
else if(settings.Pos1FlightMode == MANUALCONTROLSETTINGS_POS1FLIGHTMODE_STABILIZED)
cmd.FlightMode = MANUALCONTROLCOMMAND_FLIGHTMODE_STABILIZED;
else if(settings.Pos1FlightMode == MANUALCONTROLSETTINGS_POS1FLIGHTMODE_AUTO)
cmd.FlightMode = MANUALCONTROLCOMMAND_FLIGHTMODE_AUTO;
} else if (flightMode > FLIGHT_MODE_LIMIT) { // Position 3
for(int i = 0; i < 3; i++) {
if(settings.Pos3StabilizationSettings[i] == MANUALCONTROLSETTINGS_POS3STABILIZATIONSETTINGS_NONE)
cmd.StabilizationSettings[i] = MANUALCONTROLCOMMAND_STABILIZATIONSETTINGS_NONE;
else if(settings.Pos3StabilizationSettings[i] == MANUALCONTROLSETTINGS_POS3STABILIZATIONSETTINGS_RATE)
cmd.StabilizationSettings[i] = MANUALCONTROLCOMMAND_STABILIZATIONSETTINGS_RATE;
else if(settings.Pos3StabilizationSettings[i] == MANUALCONTROLSETTINGS_POS3STABILIZATIONSETTINGS_ATTITUDE)
cmd.StabilizationSettings[i] = MANUALCONTROLCOMMAND_STABILIZATIONSETTINGS_ATTITUDE;
}
if(settings.Pos3FlightMode == MANUALCONTROLSETTINGS_POS3FLIGHTMODE_MANUAL)
cmd.FlightMode = MANUALCONTROLCOMMAND_FLIGHTMODE_MANUAL;
else if(settings.Pos3FlightMode == MANUALCONTROLSETTINGS_POS3FLIGHTMODE_STABILIZED)
cmd.FlightMode = MANUALCONTROLCOMMAND_FLIGHTMODE_STABILIZED;
else if(settings.Pos3FlightMode == MANUALCONTROLSETTINGS_POS3FLIGHTMODE_AUTO)
cmd.FlightMode = MANUALCONTROLCOMMAND_FLIGHTMODE_AUTO;
} else { // Position 2
for(int i = 0; i < 3; i++) {
if(settings.Pos2StabilizationSettings[i] == MANUALCONTROLSETTINGS_POS2STABILIZATIONSETTINGS_NONE)
cmd.StabilizationSettings[i] = MANUALCONTROLCOMMAND_STABILIZATIONSETTINGS_NONE;
else if(settings.Pos2StabilizationSettings[i] == MANUALCONTROLSETTINGS_POS2STABILIZATIONSETTINGS_RATE)
cmd.StabilizationSettings[i] = MANUALCONTROLCOMMAND_STABILIZATIONSETTINGS_RATE;
else if(settings.Pos2StabilizationSettings[i] == MANUALCONTROLSETTINGS_POS2STABILIZATIONSETTINGS_ATTITUDE)
cmd.StabilizationSettings[i] = MANUALCONTROLCOMMAND_STABILIZATIONSETTINGS_ATTITUDE;
}
if(settings.Pos2FlightMode == MANUALCONTROLSETTINGS_POS2FLIGHTMODE_MANUAL)
cmd.FlightMode = MANUALCONTROLCOMMAND_FLIGHTMODE_MANUAL;
else if(settings.Pos2FlightMode == MANUALCONTROLSETTINGS_POS2FLIGHTMODE_STABILIZED)
cmd.FlightMode = MANUALCONTROLCOMMAND_FLIGHTMODE_STABILIZED;
else if(settings.Pos2FlightMode == MANUALCONTROLSETTINGS_POS2FLIGHTMODE_AUTO)
cmd.FlightMode = MANUALCONTROLCOMMAND_FLIGHTMODE_AUTO;
}
// Update the ManualControlCommand object
ManualControlCommandSet(&cmd);
// This seems silly to set then get, but the reason is if the GCS is
// the control input, the set command will be blocked by the read only
// setting and the get command will pull the right values from telemetry
} else
ManualControlCommandGet(&cmd); /* Under GCS control */
// Implement hysteresis loop on connection status
// Must check both Max and Min in case they reversed
if (!ManualControlCommandReadOnly(&cmd) &&
cmd.Channel[settings.Throttle] < settings.ChannelMax[settings.Throttle] - CONNECTION_OFFSET &&
cmd.Channel[settings.Throttle] < settings.ChannelMin[settings.Throttle] - CONNECTION_OFFSET) {
if (disconnected_count++ > 10) {
connection_state = DISCONNECTED;
connected_count = 0;
disconnected_count = 0;
} else
disconnected_count++;
} else {
if (connected_count++ > 10) {
connection_state = CONNECTED;
connected_count = 0;
disconnected_count = 0;
} else
connected_count++;
}
if (connection_state == DISCONNECTED) {
cmd.Connected = MANUALCONTROLCOMMAND_CONNECTED_FALSE;
cmd.Throttle = -1; // Shut down engine with no control
cmd.Roll = 0;
cmd.Yaw = 0;
cmd.Pitch = 0;
//cmd.FlightMode = MANUALCONTROLCOMMAND_FLIGHTMODE_AUTO; // don't do until AUTO implemented and functioning
AlarmsSet(SYSTEMALARMS_ALARM_MANUALCONTROL, SYSTEMALARMS_ALARM_WARNING);
ManualControlCommandSet(&cmd);
} else {
cmd.Connected = MANUALCONTROLCOMMAND_CONNECTED_TRUE;
AlarmsClear(SYSTEMALARMS_ALARM_MANUALCONTROL);
ManualControlCommandSet(&cmd);
}
// Arming and Disarming mechanism
if (cmd.Throttle < 0) {
// Throttle is low, in this condition the arming state could change
float armStickLevel = cmd.Roll;
bool manualArm = false;
bool manualDisarm = false;
uint8_t newCmdArmed = cmd.Armed;
static portTickType armedDisarmStart;
if (armStickLevel <= -0.90)
manualArm = true;
else if (armStickLevel >= +0.90)
manualDisarm = true;
// Look for state changes and write in newArmState
switch(armState) {
case ARM_STATE_DISARMED:
newCmdArmed = MANUALCONTROLCOMMAND_ARMED_FALSE;
if (manualArm) {
armedDisarmStart = lastSysTime;
armState = ARM_STATE_ARMING_MANUAL;
}
break;
case ARM_STATE_ARMING_MANUAL:
if (manualArm) {
if (timeDifferenceMs(armedDisarmStart, lastSysTime) > ARMED_TIME_MS)
armState = ARM_STATE_ARMED;
}
else
armState = ARM_STATE_DISARMED;
break;
case ARM_STATE_ARMED:
// When we get here, the throttle is low,
// we go immediately to disarming due to timeout, also when the disarming mechanism is not enabled
armedDisarmStart = lastSysTime;
armState = ARM_STATE_DISARMING_TIMEOUT;
newCmdArmed = MANUALCONTROLCOMMAND_ARMED_TRUE;
break;
case ARM_STATE_DISARMING_TIMEOUT:
// We get here when armed while throttle low, even when the arming timeout is not enabled
if (settings.ArmedTimeout != 0)
if (timeDifferenceMs(armedDisarmStart, lastSysTime) > settings.ArmedTimeout)
armState = ARM_STATE_DISARMED;
// Switch to disarming due to manual control when needed
if (manualDisarm) {
armedDisarmStart = lastSysTime;
armState = ARM_STATE_DISARMING_MANUAL;
}
break;
case ARM_STATE_DISARMING_MANUAL:
if (manualDisarm) {
if (timeDifferenceMs(armedDisarmStart, lastSysTime) > ARMED_TIME_MS)
armState = ARM_STATE_DISARMED;
}
else
armState = ARM_STATE_ARMED;
break;
}
// Update cmd object when needed
if (newCmdArmed != cmd.Armed) {
cmd.Armed = newCmdArmed;
ManualControlCommandSet(&cmd);
}
} else {
// The throttle is not low, in case we where arming or disarming, abort
switch(armState) {
case ARM_STATE_DISARMING_MANUAL:
case ARM_STATE_DISARMING_TIMEOUT:
armState = ARM_STATE_ARMED;
break;
case ARM_STATE_ARMING_MANUAL:
armState = ARM_STATE_DISARMED;
break;
default:
// Nothing needs to be done in the other states
break;
}
}
// Depending on the mode update the Stabilization or Actuator objects
if (cmd.FlightMode == MANUALCONTROLCOMMAND_FLIGHTMODE_MANUAL) {
actuator.Roll = cmd.Roll;
actuator.Pitch = cmd.Pitch;
actuator.Yaw = cmd.Yaw;
actuator.Throttle = cmd.Throttle;
ActuatorDesiredSet(&actuator);
} else if (cmd.FlightMode == MANUALCONTROLCOMMAND_FLIGHTMODE_STABILIZED) {
attitude.Roll = cmd.Roll * stabSettings.RollMax;
attitude.Pitch = cmd.Pitch * stabSettings.PitchMax;
attitude.Yaw = fmod(cmd.Yaw * 180.0, 360);
attitude.Throttle = (cmd.Throttle < 0) ? -1 : cmd.Throttle;
AttitudeDesiredSet(&attitude);
}
if (cmd.Accessory3 < -.5) { //TODO: Make what happens here depend on GCS
AHRSSettingsData attitudeSettings;
AHRSSettingsGet(&attitudeSettings);
// Hard coding a maximum bias of 15 for now... maybe mistake
attitudeSettings.PitchBias = cmd.Accessory1 * 15;
attitudeSettings.RollBias = cmd.Accessory2 * 15;
AHRSSettingsSet(&attitudeSettings);
}
}
}
/**
* Convert channel from servo pulse duration (microseconds) to scaled -1/+1 range.
*/
static float scaleChannel(int16_t value, int16_t max, int16_t min, int16_t neutral)
{
float valueScaled;
// Scale
if ((max > min && value >= neutral) || (min > max && value <= neutral)) {
if (max != neutral) {
valueScaled = (float)(value - neutral) / (float)(max - neutral);
} else {
valueScaled = 0;
}
} else {
if (min != neutral) {
valueScaled = (float)(value - neutral) / (float)(neutral - min);
} else {
valueScaled = 0;
}
}
// Bound
if (valueScaled > 1.0) {
valueScaled = 1.0;
} else if (valueScaled < -1.0) {
valueScaled = -1.0;
}
return valueScaled;
}
static uint32_t timeDifferenceMs(portTickType start_time, portTickType end_time) {
if(end_time > start_time)
return (end_time - start_time) * portTICK_RATE_MS;
return ((((portTICK_RATE_MS) -1) - start_time) + end_time) * portTICK_RATE_MS;
}
/**
* @}
* @}
*/