1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-01-19 04:52:12 +01:00
Philippe Renon 6b39fc0800 uncrustify
2016-01-04 21:41:45 +01:00

964 lines
31 KiB
C

/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup TelemetryModule Telemetry Module
* @brief Main telemetry module
* Starts three tasks (RX, TX, and priority TX) that watch event queues
* and handle all the telemetry of the UAVobjects
* @{
*
* @file telemetry.c
* @author The LibrePilot Project, http://www.librepilot.org Copyright (C) 2015.
* The OpenPilot Team, http://www.openpilot.org Copyright (C) 2015.
* @brief Telemetry module, handles telemetry and UAVObject updates
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* Telemetry uses four tasks. Two are created for the main telemetry
* stream called "TelTx" and "TelRx". Two are created to handle the OPLink
* radio connection, called "RadioTx" and "RadioRx", the latter being
* overridden by USB if connected.
*
* The following code uses a "local" prefix to refer to the telemetry channel
* associated with a port on the FC and a "radio" prefix to refer to the
* telemetry channel associated with the OPLink/USB.
*
* The "local" telemetry port to use is defined by PIOS_COM_TELEM_RF in
* PIOS_Board_Init().
*
* A UAVTalk connection instance, telemUavTalkCon, is associated with the
* "local" channel and another, radioUavTalkCon, with the "radio" channel.
* Associated with each instance is a transmit routine which will send data
* to the appropriate port.
*
* Data is passed on the telemetry channels using queues. If
* PIOS_TELEM_PRIORITY_QUEUE is defined then two queues are created, one normal
* priority and the other high priority.
*
* The "Tx" tasks read events first from the priority queue and then from
* the normal queue, passing each event to processObjEvent() which ultimately
* passes each event to the UAVTalk library which results in the appropriate
* transmit routine being called to send the data back to the recipient on
* the "local" or "radio" link.
*/
#include <openpilot.h>
#include "telemetry.h"
#include "flighttelemetrystats.h"
#include "gcstelemetrystats.h"
#include "hwsettings.h"
#include "taskinfo.h"
// Private constants
#define MAX_QUEUE_SIZE TELEM_QUEUE_SIZE
// Three different stack size parameter are accepted for Telemetry(RX PIOS_TELEM_RX_STACK_SIZE)
// Tx(PIOS_TELEM_TX_STACK_SIZE) and Radio RX(PIOS_TELEM_RADIO_RX_STACK_SIZE)
#ifdef PIOS_TELEM_RX_STACK_SIZE
#define STACK_SIZE_RX_BYTES PIOS_TELEM_RX_STACK_SIZE
#define STACK_SIZE_TX_BYTES PIOS_TELEM_TX_STACK_SIZE
#else
#define STACK_SIZE_RX_BYTES PIOS_TELEM_STACK_SIZE
#define STACK_SIZE_TX_BYTES PIOS_TELEM_STACK_SIZE
#endif
#ifdef PIOS_TELEM_RADIO_RX_STACK_SIZE
#define STACK_SIZE_RADIO_RX_BYTES PIOS_TELEM_RADIO_RX_STACK_SIZE
#define STACK_SIZE_RADIO_TX_BYTES PIOS_TELEM_RADIO_TX_STACK_SIZE
#else
#define STACK_SIZE_RADIO_RX_BYTES STACK_SIZE_RX_BYTES
#define STACK_SIZE_RADIO_TX_BYTES STACK_SIZE_TX_BYTES
#endif
#define TASK_PRIORITY_RX (tskIDLE_PRIORITY + 2)
#define TASK_PRIORITY_TX (tskIDLE_PRIORITY + 2)
#define TASK_PRIORITY_RADRX (tskIDLE_PRIORITY + 2)
#define TASK_PRIORITY_RADTX (tskIDLE_PRIORITY + 2)
#define REQ_TIMEOUT_MS 250
#define MAX_RETRIES 2
#define STATS_UPDATE_PERIOD_MS 4000
#define CONNECTION_TIMEOUT_MS 8000
#ifdef PIOS_INCLUDE_RFM22B
#define HAS_RADIO
#endif
// Private types
typedef struct {
// Determine port on which to communicate telemetry information
uint32_t (*getPort)();
// Main telemetry queue
xQueueHandle queue;
#ifdef PIOS_TELEM_PRIORITY_QUEUE
// Priority telemetry queue
xQueueHandle priorityQueue;
#endif /* PIOS_TELEM_PRIORITY_QUEUE */
// Transmit/receive task handles
xTaskHandle txTaskHandle;
xTaskHandle rxTaskHandle;
// Telemetry stream
UAVTalkConnection uavTalkCon;
} channelContext;
#ifdef HAS_RADIO
// Main telemetry channel
static channelContext localChannel;
static int32_t transmitLocalData(uint8_t *data, int32_t length);
static void registerLocalObject(UAVObjHandle obj);
static uint32_t localPort();
#endif /* ifdef HAS_RADIO */
static void updateSettings(channelContext *channel);
// OPLink telemetry channel
static channelContext radioChannel;
static int32_t transmitRadioData(uint8_t *data, int32_t length);
static void registerRadioObject(UAVObjHandle obj);
static uint32_t radioPort();
static uint32_t radio_port;
// Telemetry stats
static uint32_t txErrors;
static uint32_t txRetries;
static uint32_t timeOfLastObjectUpdate;
static void telemetryTxTask(void *parameters);
static void telemetryRxTask(void *parameters);
static void updateObject(
channelContext *channel,
UAVObjHandle obj,
int32_t eventType);
static void processObjEvent(
channelContext *channel,
UAVObjEvent *ev);
static int32_t setUpdatePeriod(
channelContext *channel,
UAVObjHandle obj,
int32_t updatePeriodMs);
static int32_t setLoggingPeriod(
channelContext *channel,
UAVObjHandle obj,
int32_t updatePeriodMs);
static void updateTelemetryStats();
static void gcsTelemetryStatsUpdated();
/**
* Initialise the telemetry module
* \return -1 if initialisation failed
* \return 0 on success
*/
int32_t TelemetryStart(void)
{
#ifdef HAS_RADIO
// Only start the local telemetry tasks if needed
if (localPort()) {
UAVObjIterate(&registerLocalObject);
// Listen to objects of interest
#ifdef PIOS_TELEM_PRIORITY_QUEUE
GCSTelemetryStatsConnectQueue(localChannel.priorityQueue);
#else /* PIOS_TELEM_PRIORITY_QUEUE */
GCSTelemetryStatsConnectQueue(localChannel.queue);
#endif /* PIOS_TELEM_PRIORITY_QUEUE */
// Start telemetry tasks
xTaskCreate(telemetryTxTask,
"TelTx",
STACK_SIZE_TX_BYTES / 4,
&localChannel,
TASK_PRIORITY_TX,
&localChannel.txTaskHandle);
PIOS_TASK_MONITOR_RegisterTask(TASKINFO_RUNNING_TELEMETRYTX,
localChannel.txTaskHandle);
xTaskCreate(telemetryRxTask,
"TelRx",
STACK_SIZE_RX_BYTES / 4,
&localChannel,
TASK_PRIORITY_RX,
&localChannel.rxTaskHandle);
PIOS_TASK_MONITOR_RegisterTask(TASKINFO_RUNNING_TELEMETRYRX,
localChannel.rxTaskHandle);
}
#endif /* ifdef HAS_RADIO */
// Start the telemetry tasks associated with Radio/USB
UAVObjIterate(&registerRadioObject);
// Listen to objects of interest
#ifdef PIOS_TELEM_PRIORITY_QUEUE
GCSTelemetryStatsConnectQueue(radioChannel.priorityQueue);
#else /* PIOS_TELEM_PRIORITY_QUEUE */
GCSTelemetryStatsConnectQueue(radioChannel.queue);
#endif /* PIOS_TELEM_PRIORITY_QUEUE */
xTaskCreate(telemetryTxTask,
"RadioTx",
STACK_SIZE_RADIO_TX_BYTES / 4,
&radioChannel,
TASK_PRIORITY_RADTX,
&radioChannel.txTaskHandle);
PIOS_TASK_MONITOR_RegisterTask(TASKINFO_RUNNING_RADIOTX,
radioChannel.txTaskHandle);
xTaskCreate(telemetryRxTask,
"RadioRx",
STACK_SIZE_RADIO_RX_BYTES / 4,
&radioChannel,
TASK_PRIORITY_RADRX,
&radioChannel.rxTaskHandle);
PIOS_TASK_MONITOR_RegisterTask(TASKINFO_RUNNING_RADIORX,
radioChannel.rxTaskHandle);
return 0;
}
/* Intialise a telemetry channel */
void TelemetryInitializeChannel(channelContext *channel)
{
// Create object queues
channel->queue = xQueueCreate(MAX_QUEUE_SIZE,
sizeof(UAVObjEvent));
#if defined(PIOS_TELEM_PRIORITY_QUEUE)
channel->priorityQueue = xQueueCreate(MAX_QUEUE_SIZE,
sizeof(UAVObjEvent));
#endif /* PIOS_TELEM_PRIORITY_QUEUE */
// Create periodic event that will be used to update the telemetry stats
UAVObjEvent ev;
memset(&ev, 0, sizeof(UAVObjEvent));
#ifdef PIOS_TELEM_PRIORITY_QUEUE
EventPeriodicQueueCreate(&ev,
channel->priorityQueue,
STATS_UPDATE_PERIOD_MS);
#else /* PIOS_TELEM_PRIORITY_QUEUE */
EventPeriodicQueueCreate(&ev,
channel->queue,
STATS_UPDATE_PERIOD_MS);
#endif /* PIOS_TELEM_PRIORITY_QUEUE */
}
/**
* Initialise the telemetry module
* \return -1 if initialisation failed
* \return 0 on success
*/
int32_t TelemetryInitialize(void)
{
HwSettingsInitialize();
#ifdef PIOS_INCLUDE_RFM22B
OPLinkSettingsInitialize();
OPLinkSettingsData data;
OPLinkSettingsGet(&data);
if (data.PPMOnly) {
radio_port = 0;
} else {
radio_port = PIOS_COM_RF;
}
#else /* PIOS_INCLUDE_RFM22B */
radio_port = PIOS_COM_TELEM_RF;
#endif /* PIOS_INCLUDE_RFM22B */
FlightTelemetryStatsInitialize();
GCSTelemetryStatsInitialize();
// Initialize vars
timeOfLastObjectUpdate = 0;
// Reset link stats
txErrors = 0;
txRetries = 0;
#ifdef HAS_RADIO
// Set channel port handlers
localChannel.getPort = localPort;
// Set the local telemetry baud rate
updateSettings(&localChannel);
// Only initialise local channel if telemetry port enabled
if (localPort()) {
// Initialise channel
TelemetryInitializeChannel(&localChannel);
// Initialise UAVTalk
localChannel.uavTalkCon = UAVTalkInitialize(&transmitLocalData);
}
#endif /* ifdef HAS_RADIO */
// Set channel port handlers
radioChannel.getPort = radioPort;
// Set the channel port baud rate
updateSettings(&radioChannel);
// Initialise channel
TelemetryInitializeChannel(&radioChannel);
// Initialise UAVTalk
radioChannel.uavTalkCon = UAVTalkInitialize(&transmitRadioData);
return 0;
}
MODULE_INITCALL(TelemetryInitialize, TelemetryStart);
#ifdef HAS_RADIO
/**
* Register a new object, adds object to local list and connects the queue depending on the object's
* telemetry settings.
* \param[in] obj Object to connect
*/
static void registerLocalObject(UAVObjHandle obj)
{
if (UAVObjIsMetaobject(obj)) {
// Only connect change notifications for meta objects. No periodic updates
#ifdef PIOS_TELEM_PRIORITY_QUEUE
UAVObjConnectQueue(obj, localChannel.priorityQueue, EV_MASK_ALL_UPDATES);
#else /* PIOS_TELEM_PRIORITY_QUEUE */
UAVObjConnectQueue(obj, localChannel.queue, EV_MASK_ALL_UPDATES);
#endif /* PIOS_TELEM_PRIORITY_QUEUE */
} else {
// Setup object for periodic updates
updateObject(
&localChannel,
obj,
EV_NONE);
}
}
#endif /* ifdef HAS_RADIO */
static void registerRadioObject(UAVObjHandle obj)
{
if (UAVObjIsMetaobject(obj)) {
// Only connect change notifications for meta objects. No periodic updates
#ifdef PIOS_TELEM_PRIORITY_QUEUE
UAVObjConnectQueue(obj, radioChannel.priorityQueue, EV_MASK_ALL_UPDATES);
#else /* PIOS_TELEM_PRIORITY_QUEUE */
UAVObjConnectQueue(obj, radioChannel.queue, EV_MASK_ALL_UPDATES);
#endif /* PIOS_TELEM_PRIORITY_QUEUE */
} else {
// Setup object for periodic updates
updateObject(
&radioChannel,
obj,
EV_NONE);
}
}
/**
* Update object's queue connections and timer, depending on object's settings
* \param[in] telemetry channel context
* \param[in] obj Object to updates
*/
static void updateObject(
channelContext *channel,
UAVObjHandle obj,
int32_t eventType)
{
UAVObjMetadata metadata;
UAVObjUpdateMode updateMode, loggingMode;
int32_t eventMask;
if (UAVObjIsMetaobject(obj)) {
// This function updates the periodic updates for the object.
// Meta Objects cannot have periodic updates.
PIOS_Assert(false);
return;
}
// Get metadata
UAVObjGetMetadata(obj, &metadata);
updateMode = UAVObjGetTelemetryUpdateMode(&metadata);
loggingMode = UAVObjGetLoggingUpdateMode(&metadata);
// Setup object depending on update mode
eventMask = 0;
switch (updateMode) {
case UPDATEMODE_PERIODIC:
// Set update period
setUpdatePeriod(channel,
obj,
metadata.telemetryUpdatePeriod);
// Connect queue
eventMask |= EV_UPDATED_PERIODIC | EV_UPDATED_MANUAL | EV_UPDATE_REQ;
break;
case UPDATEMODE_ONCHANGE:
// Set update period
setUpdatePeriod(channel, obj, 0);
// Connect queue
eventMask |= EV_UPDATED | EV_UPDATED_MANUAL | EV_UPDATE_REQ;
break;
case UPDATEMODE_THROTTLED:
if ((eventType == EV_UPDATED_PERIODIC) || (eventType == EV_NONE)) {
// If we received a periodic update, we can change back to update on change
eventMask |= EV_UPDATED | EV_UPDATED_MANUAL | EV_UPDATE_REQ;
// Set update period on initialization and metadata change
if (eventType == EV_NONE) {
setUpdatePeriod(channel,
obj,
metadata.telemetryUpdatePeriod);
}
} else {
// Otherwise, we just received an object update, so switch to periodic for the timeout period to prevent more updates
eventMask |= EV_UPDATED_PERIODIC | EV_UPDATED_MANUAL | EV_UPDATE_REQ;
}
break;
case UPDATEMODE_MANUAL:
// Set update period
setUpdatePeriod(channel, obj, 0);
// Connect queue
eventMask |= EV_UPDATED_MANUAL | EV_UPDATE_REQ;
break;
}
switch (loggingMode) {
case UPDATEMODE_PERIODIC:
// Set update period
setLoggingPeriod(channel, obj, metadata.loggingUpdatePeriod);
// Connect queue
eventMask |= EV_LOGGING_PERIODIC | EV_LOGGING_MANUAL;
break;
case UPDATEMODE_ONCHANGE:
// Set update period
setLoggingPeriod(channel, obj, 0);
// Connect queue
eventMask |= EV_UPDATED | EV_LOGGING_MANUAL;
break;
case UPDATEMODE_THROTTLED:
if ((eventType == EV_LOGGING_PERIODIC) || (eventType == EV_NONE)) {
// If we received a periodic update, we can change back to update on change
eventMask |= EV_UPDATED | EV_LOGGING_MANUAL;
// Set update period on initialization and metadata change
if (eventType == EV_NONE) {
setLoggingPeriod(channel,
obj,
metadata.loggingUpdatePeriod);
}
} else {
// Otherwise, we just received an object update, so switch to periodic for the timeout period to prevent more updates
eventMask |= EV_LOGGING_PERIODIC | EV_LOGGING_MANUAL;
}
break;
case UPDATEMODE_MANUAL:
// Set update period
setLoggingPeriod(channel, obj, 0);
// Connect queue
eventMask |= EV_LOGGING_MANUAL;
break;
}
// note that all setting objects have implicitly IsPriority=true
#ifdef PIOS_TELEM_PRIORITY_QUEUE
if (UAVObjIsPriority(obj)) {
UAVObjConnectQueue(obj, channel->priorityQueue, eventMask);
} else
#endif /* PIOS_TELEM_PRIORITY_QUEUE */
UAVObjConnectQueue(obj, channel->queue, eventMask);
}
/**
* Processes queue events
*/
static void processObjEvent(
channelContext *channel,
UAVObjEvent *ev)
{
UAVObjMetadata metadata;
UAVObjUpdateMode updateMode;
int32_t retries;
int32_t success;
if (ev->obj == 0) {
updateTelemetryStats();
} else if (ev->obj == GCSTelemetryStatsHandle()) {
gcsTelemetryStatsUpdated();
} else {
// Get object metadata
UAVObjGetMetadata(ev->obj, &metadata);
updateMode = UAVObjGetTelemetryUpdateMode(&metadata);
// Act on event
retries = 0;
success = -1;
if ((ev->event == EV_UPDATED && (updateMode == UPDATEMODE_ONCHANGE || updateMode == UPDATEMODE_THROTTLED))
|| ev->event == EV_UPDATED_MANUAL
|| (ev->event == EV_UPDATED_PERIODIC && updateMode != UPDATEMODE_THROTTLED)) {
// Send update to GCS (with retries)
while (retries < MAX_RETRIES && success == -1) {
// call blocks until ack is received or timeout
success = UAVTalkSendObject(channel->uavTalkCon,
ev->obj,
ev->instId,
UAVObjGetTelemetryAcked(&metadata), REQ_TIMEOUT_MS);
if (success == -1) {
++retries;
}
}
// Update stats
txRetries += retries;
if (success == -1) {
++txErrors;
}
} else if (ev->event == EV_UPDATE_REQ) {
// Request object update from GCS (with retries)
while (retries < MAX_RETRIES && success == -1) {
// call blocks until update is received or timeout
success = UAVTalkSendObjectRequest(channel->uavTalkCon,
ev->obj,
ev->instId,
REQ_TIMEOUT_MS);
if (success == -1) {
++retries;
}
}
// Update stats
txRetries += retries;
if (success == -1) {
++txErrors;
}
}
// If this is a metaobject then make necessary telemetry updates
if (UAVObjIsMetaobject(ev->obj)) {
// linked object will be the actual object the metadata are for
updateObject(
channel,
UAVObjGetLinkedObj(ev->obj),
EV_NONE);
} else {
if (updateMode == UPDATEMODE_THROTTLED) {
// If this is UPDATEMODE_THROTTLED, the event mask changes on every event.
updateObject(
channel,
ev->obj,
ev->event);
}
}
}
// Log UAVObject if necessary
if (ev->obj) {
updateMode = UAVObjGetLoggingUpdateMode(&metadata);
if ((ev->event == EV_UPDATED && (updateMode == UPDATEMODE_ONCHANGE || updateMode == UPDATEMODE_THROTTLED))
|| ev->event == EV_LOGGING_MANUAL
|| (ev->event == EV_LOGGING_PERIODIC && updateMode != UPDATEMODE_THROTTLED)) {
if (ev->instId == UAVOBJ_ALL_INSTANCES) {
success = UAVObjGetNumInstances(ev->obj);
for (retries = 0; retries < success; retries++) {
UAVObjInstanceWriteToLog(ev->obj, retries);
}
} else {
UAVObjInstanceWriteToLog(ev->obj, ev->instId);
}
}
if (updateMode == UPDATEMODE_THROTTLED) {
// If this is UPDATEMODE_THROTTLED, the event mask changes on every event.
updateObject(
channel,
ev->obj,
ev->event);
}
}
}
/**
* Telemetry transmit task, regular priority
*/
static void telemetryTxTask(void *parameters)
{
channelContext *channel = (channelContext *)parameters;
UAVObjEvent ev;
/* Check for a bad context */
if (!channel) {
return;
}
// Loop forever
while (1) {
/**
* Tries to empty the high priority queue before handling any standard priority item
*/
#ifdef PIOS_TELEM_PRIORITY_QUEUE
// empty priority queue, non-blocking
while (xQueueReceive(channel->priorityQueue, &ev, 0) == pdTRUE) {
// Process event
processObjEvent(channel, &ev);
}
// check regular queue and process update - non-blocking
if (xQueueReceive(channel->queue, &ev, 0) == pdTRUE) {
// Process event
processObjEvent(channel, &ev);
// if both queues are empty, wait on priority queue for updates (1 tick) then repeat cycle
} else if (xQueueReceive(channel->priorityQueue, &ev, 1) == pdTRUE) {
// Process event
processObjEvent(channel, &ev);
}
#else
// wait on queue for updates (1 tick) then repeat cycle
if (xQueueReceive(channel->queue, &ev, 1) == pdTRUE) {
// Process event
processObjEvent(channel, &ev);
}
#endif /* PIOS_TELEM_PRIORITY_QUEUE */
}
}
/**
* Telemetry receive task. Processes queue events and periodic updates.
*/
static void telemetryRxTask(void *parameters)
{
channelContext *channel = (channelContext *)parameters;
/* Check for a bad context */
if (!channel) {
return;
}
// Task loop
while (1) {
uint32_t inputPort = channel->getPort();
if (inputPort) {
// Block until data are available
uint8_t serial_data[16];
uint16_t bytes_to_process;
bytes_to_process = PIOS_COM_ReceiveBuffer(inputPort, serial_data, sizeof(serial_data), 500);
if (bytes_to_process > 0) {
UAVTalkProcessInputStream(channel->uavTalkCon, serial_data, bytes_to_process);
}
} else {
vTaskDelay(5);
}
}
}
#ifdef HAS_RADIO
/**
* Determine the port to be used for communication on the telemetry channel
* \return com port number
*/
static uint32_t localPort()
{
return PIOS_COM_TELEM_RF;
}
#endif /* ifdef HAS_RADIO */
/**
* Determine the port to be used for communication on the radio channel
* \return com port number
*/
static uint32_t radioPort()
{
uint32_t port = radio_port;
#ifdef PIOS_INCLUDE_USB
// if USB is connected, USB takes precedence for telemetry
if (PIOS_COM_Available(PIOS_COM_TELEM_USB)) {
port = PIOS_COM_TELEM_USB;
}
#endif /* PIOS_INCLUDE_USB */
return port;
}
#ifdef HAS_RADIO
/**
* Transmit data buffer to the modem or USB port.
* \param[in] data Data buffer to send
* \param[in] length Length of buffer
* \return -1 on failure
* \return number of bytes transmitted on success
*/
static int32_t transmitLocalData(uint8_t *data, int32_t length)
{
uint32_t outputPort = localChannel.getPort();
if (outputPort) {
return PIOS_COM_SendBuffer(outputPort, data, length);
}
return -1;
}
#endif /* ifdef HAS_RADIO */
/**
* Transmit data buffer to the radioport.
* \param[in] data Data buffer to send
* \param[in] length Length of buffer
* \return -1 on failure
* \return number of bytes transmitted on success
*/
static int32_t transmitRadioData(uint8_t *data, int32_t length)
{
uint32_t outputPort = radioChannel.getPort();
if (outputPort) {
return PIOS_COM_SendBuffer(outputPort, data, length);
}
return -1;
}
/**
* Set update period of object (it must be already setup for periodic updates)
* \param[in] telemetry channel context
* \param[in] obj The object to update
* \param[in] updatePeriodMs The update period in ms, if zero then periodic updates are disabled
* \return 0 Success
* \return -1 Failure
*/
static int32_t setUpdatePeriod(
channelContext *channel,
UAVObjHandle obj,
int32_t updatePeriodMs)
{
UAVObjEvent ev;
int32_t ret;
// Add or update object for periodic updates
ev.obj = obj;
ev.instId = UAVOBJ_ALL_INSTANCES;
ev.event = EV_UPDATED_PERIODIC;
ev.lowPriority = true;
#ifdef PIOS_TELEM_PRIORITY_QUEUE
xQueueHandle targetQueue = UAVObjIsPriority(obj) ? channel->priorityQueue :
channel->queue;
#else /* PIOS_TELEM_PRIORITY_QUEUE */
xQueueHandle targetQueue = channel->queue;
#endif /* PIOS_TELEM_PRIORITY_QUEUE */
ret = EventPeriodicQueueUpdate(&ev, targetQueue, updatePeriodMs);
if (ret == -1) {
ret = EventPeriodicQueueCreate(&ev, targetQueue, updatePeriodMs);
}
return ret;
}
/**
* Set logging update period of object (it must be already setup for periodic updates)
* \param[in] telemetry channel context
* \param[in] obj The object to update
* \param[in] updatePeriodMs The update period in ms, if zero then periodic updates are disabled
* \return 0 Success
* \return -1 Failure
*/
static int32_t setLoggingPeriod(
channelContext *channel,
UAVObjHandle obj,
int32_t updatePeriodMs)
{
UAVObjEvent ev;
int32_t ret;
// Add or update object for periodic updates
ev.obj = obj;
ev.instId = UAVOBJ_ALL_INSTANCES;
ev.event = EV_LOGGING_PERIODIC;
ev.lowPriority = true;
#ifdef PIOS_TELEM_PRIORITY_QUEUE
xQueueHandle targetQueue = UAVObjIsPriority(obj) ? channel->priorityQueue :
channel->queue;
#else /* PIOS_TELEM_PRIORITY_QUEUE */
xQueueHandle targetQueue = channel->queue;
#endif /* PIOS_TELEM_PRIORITY_QUEUE */
ret = EventPeriodicQueueUpdate(&ev, targetQueue, updatePeriodMs);
if (ret == -1) {
ret = EventPeriodicQueueCreate(&ev, targetQueue, updatePeriodMs);
}
return ret;
}
/**
* Called each time the GCS telemetry stats object is updated.
* Trigger a flight telemetry stats update if a connection is not
* yet established.
*/
static void gcsTelemetryStatsUpdated()
{
FlightTelemetryStatsData flightStats;
GCSTelemetryStatsData gcsStats;
FlightTelemetryStatsGet(&flightStats);
GCSTelemetryStatsGet(&gcsStats);
if (flightStats.Status != FLIGHTTELEMETRYSTATS_STATUS_CONNECTED || gcsStats.Status != GCSTELEMETRYSTATS_STATUS_CONNECTED) {
updateTelemetryStats();
}
}
/**
* Update telemetry statistics and handle connection handshake
*/
static void updateTelemetryStats()
{
UAVTalkStats utalkStats;
FlightTelemetryStatsData flightStats;
GCSTelemetryStatsData gcsStats;
uint8_t forceUpdate;
uint8_t connectionTimeout;
uint32_t timeNow;
// Get stats
UAVTalkGetStats(radioChannel.uavTalkCon, &utalkStats, true);
#ifdef HAS_RADIO
UAVTalkAddStats(localChannel.uavTalkCon, &utalkStats, true);
#endif
// Get object data
FlightTelemetryStatsGet(&flightStats);
GCSTelemetryStatsGet(&gcsStats);
// Update stats object
if (flightStats.Status == FLIGHTTELEMETRYSTATS_STATUS_CONNECTED) {
flightStats.TxDataRate = (float)utalkStats.txBytes / ((float)STATS_UPDATE_PERIOD_MS / 1000.0f);
flightStats.TxBytes += utalkStats.txBytes;
flightStats.TxFailures += txErrors;
flightStats.TxRetries += txRetries;
flightStats.RxDataRate = (float)utalkStats.rxBytes / ((float)STATS_UPDATE_PERIOD_MS / 1000.0f);
flightStats.RxBytes += utalkStats.rxBytes;
flightStats.RxFailures += utalkStats.rxErrors;
flightStats.RxSyncErrors += utalkStats.rxSyncErrors;
flightStats.RxCrcErrors += utalkStats.rxCrcErrors;
} else {
flightStats.TxDataRate = 0;
flightStats.TxBytes = 0;
flightStats.TxFailures = 0;
flightStats.TxRetries = 0;
flightStats.RxDataRate = 0;
flightStats.RxBytes = 0;
flightStats.RxFailures = 0;
flightStats.RxSyncErrors = 0;
flightStats.RxCrcErrors = 0;
}
txErrors = 0;
txRetries = 0;
// Check for connection timeout
timeNow = xTaskGetTickCount() * portTICK_RATE_MS;
if (utalkStats.rxObjects > 0) {
timeOfLastObjectUpdate = timeNow;
}
if ((timeNow - timeOfLastObjectUpdate) > CONNECTION_TIMEOUT_MS) {
connectionTimeout = 1;
} else {
connectionTimeout = 0;
}
// Update connection state
forceUpdate = 1;
if (flightStats.Status == FLIGHTTELEMETRYSTATS_STATUS_DISCONNECTED) {
// Wait for connection request
if (gcsStats.Status == GCSTELEMETRYSTATS_STATUS_HANDSHAKEREQ) {
flightStats.Status = FLIGHTTELEMETRYSTATS_STATUS_HANDSHAKEACK;
}
} else if (flightStats.Status == FLIGHTTELEMETRYSTATS_STATUS_HANDSHAKEACK) {
// Wait for connection
if (gcsStats.Status == GCSTELEMETRYSTATS_STATUS_CONNECTED) {
flightStats.Status = FLIGHTTELEMETRYSTATS_STATUS_CONNECTED;
} else if (gcsStats.Status == GCSTELEMETRYSTATS_STATUS_DISCONNECTED) {
flightStats.Status = FLIGHTTELEMETRYSTATS_STATUS_DISCONNECTED;
}
} else if (flightStats.Status == FLIGHTTELEMETRYSTATS_STATUS_CONNECTED) {
if (gcsStats.Status != GCSTELEMETRYSTATS_STATUS_CONNECTED || connectionTimeout) {
flightStats.Status = FLIGHTTELEMETRYSTATS_STATUS_DISCONNECTED;
} else {
forceUpdate = 0;
}
} else {
flightStats.Status = FLIGHTTELEMETRYSTATS_STATUS_DISCONNECTED;
}
// TODO: check whether is there any error condition worth raising an alarm
// Disconnection is actually a normal (non)working status so it is not raising alarms anymore.
if (flightStats.Status == FLIGHTTELEMETRYSTATS_STATUS_CONNECTED) {
AlarmsClear(SYSTEMALARMS_ALARM_TELEMETRY);
}
// Update object
FlightTelemetryStatsSet(&flightStats);
// Force telemetry update if not connected
if (forceUpdate) {
FlightTelemetryStatsUpdated();
}
}
/**
* Update the telemetry settings, called on startup.
* FIXME: This should be in the TelemetrySettings object. But objects
* have too much overhead yet. Also the telemetry has no any specific
* settings, etc. Thus the HwSettings object which contains the
* telemetry port speed is used for now.
*/
static void updateSettings(channelContext *channel)
{
uint32_t port = channel->getPort();
if (port) {
// Retrieve settings
HwSettingsTelemetrySpeedOptions speed;
HwSettingsTelemetrySpeedGet(&speed);
// Set port speed
switch (speed) {
case HWSETTINGS_TELEMETRYSPEED_2400:
PIOS_COM_ChangeBaud(port, 2400);
break;
case HWSETTINGS_TELEMETRYSPEED_4800:
PIOS_COM_ChangeBaud(port, 4800);
break;
case HWSETTINGS_TELEMETRYSPEED_9600:
PIOS_COM_ChangeBaud(port, 9600);
break;
case HWSETTINGS_TELEMETRYSPEED_19200:
PIOS_COM_ChangeBaud(port, 19200);
break;
case HWSETTINGS_TELEMETRYSPEED_38400:
PIOS_COM_ChangeBaud(port, 38400);
break;
case HWSETTINGS_TELEMETRYSPEED_57600:
PIOS_COM_ChangeBaud(port, 57600);
break;
case HWSETTINGS_TELEMETRYSPEED_115200:
PIOS_COM_ChangeBaud(port, 115200);
break;
}
}
}
/**
* @}
* @}
*/