1
0
mirror of https://github.com/richardghirst/PiBits.git synced 2024-11-28 12:24:11 +01:00
PiBits/MouseScan/MouseScan.c
2013-01-12 21:02:47 +00:00

411 lines
7.9 KiB
C

#include <stdint.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <gtk/gtk.h>
/* Surface to store current scribbles */
static cairo_surface_t *surface = NULL;
#define GPIO_BASE 0x20200000
#define GPIO_LEN 0x100
#define GPIO_FSEL0 (0x00/4)
#define GPIO_SET0 (0x1c/4)
#define GPIO_CLR0 (0x28/4)
#define GPIO_LEV0 (0x34/4)
#define GPIO_PULLEN (0x94/4)
#define GPIO_PULLCLK (0x98/4)
#define GPIO_MODE_IN 0
#define GPIO_MODE_OUT 1
#define CLK_PIN 4
#define DATA_PIN 17
static volatile uint32_t *gpio_reg;
//static int verbose = 1;
static float xscale = 0.60;
static float yscale = 0.60;
int winsize = 1024;
static void
udelay(int us)
{
struct timespec ts = { 0, us * 1000 };
if (us <= 100) {
volatile uint32_t x = 0;
int i;
for (i = 0; i < 30*us; i++)
x += gpio_reg[0];
return;
}
nanosleep(&ts, NULL);
}
static void
fatal(char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
vfprintf(stderr, fmt, ap);
va_end(ap);
exit(1);
}
static void *
map_peripheral(uint32_t base, uint32_t len)
{
int fd = open("/dev/mem", O_RDWR);
void * vaddr;
if (fd < 0)
fatal("Failed to open /dev/mem: %m\n");
vaddr = mmap(NULL, len, PROT_READ|PROT_WRITE, MAP_SHARED, fd, base);
if (vaddr == MAP_FAILED)
fatal("Failed to map peripheral at 0x%08x: %m\n", base);
close(fd);
return vaddr;
}
static void
gpio_set_mode(uint32_t pin, uint32_t mode)
{
uint32_t fsel = gpio_reg[GPIO_FSEL0 + pin/10];
fsel &= ~(7 << ((pin % 10) * 3));
fsel |= mode << ((pin % 10) * 3);
gpio_reg[GPIO_FSEL0 + pin/10] = fsel;
//printf("Pin %d mode %d\n", pin, mode);
}
static void
gpio_set(int pin, int level)
{
if (level)
gpio_reg[GPIO_SET0] = 1 << pin;
else
gpio_reg[GPIO_CLR0] = 1 << pin;
//printf("Pin %d set to %d\n", pin, level ? 1 : 0);
}
static int
gpio_get(int pin)
{
int level = (gpio_reg[GPIO_LEV0] >> pin) & 1;
//printf("Pin %d read as %d\n", pin, level);
return level;
}
static uint8_t
read_sensor(int reg)
{
uint8_t val = 0;
int i;
gpio_set(DATA_PIN, 1);
gpio_set_mode(DATA_PIN, GPIO_MODE_OUT);
udelay(1);
for (i = 0x80; i; i >>= 1) {
gpio_set(CLK_PIN, 0);
gpio_set(DATA_PIN, reg & i);
udelay(1);
gpio_set(CLK_PIN, 1);
udelay(1);
}
gpio_set_mode(DATA_PIN, GPIO_MODE_IN);
udelay(100);
for (val = 0, i = 0; i < 8; i++) {
gpio_set(CLK_PIN, 0);
udelay(1);
gpio_set(CLK_PIN, 1);
udelay(1);
val <<= 1;
val |= gpio_get(DATA_PIN);
udelay(1);
}
return val;
}
static void
write_sensor(int reg, int val)
{
int i;
reg |= 0x80;
for (i = 0x80; i; i >>= 1) {
gpio_set(CLK_PIN, 0);
udelay(1);
gpio_set_mode(DATA_PIN, GPIO_MODE_OUT);
gpio_set(DATA_PIN, reg & i);
udelay(1);
gpio_set(CLK_PIN, 1);
udelay(1);
}
for (i = 0x80; i; i >>= 1) {
gpio_set(CLK_PIN, 0);
udelay(1);
gpio_set(DATA_PIN, val & i);
udelay(1);
gpio_set(CLK_PIN, 1);
udelay(1);
}
gpio_set_mode(DATA_PIN, GPIO_MODE_IN);
}
static void
init_sensor(void)
{
gpio_reg = map_peripheral(GPIO_BASE, GPIO_LEN);
gpio_set(GPIO_PULLEN, 1);
udelay(1);
gpio_set(GPIO_PULLCLK, 1 << DATA_PIN);
udelay(1);
gpio_set(GPIO_PULLEN, 0);
gpio_set(GPIO_PULLCLK, 0);
gpio_set(CLK_PIN, 1);
gpio_set(DATA_PIN, 1);
gpio_set_mode(CLK_PIN, GPIO_MODE_OUT);
gpio_set_mode(DATA_PIN, GPIO_MODE_IN);
sleep(1); // Ensure we're synchronized
write_sensor(0x0a,0x80);
udelay(1000);
write_sensor(0x0a,0x11);
udelay(1000);
printf("Product ID: %02x Revision: %02x\n", read_sensor(0), read_sensor(1));
}
int
get_image(int *xoff, int *yoff, uint8_t *img)
{
int i;
uint8_t v;
int m, x, y;
m = read_sensor(2);
x = (signed char)read_sensor(3);
y = (signed char)read_sensor(4);
printf("m=0x%02x, x=%d, y=%d\n", m, x, y);
*xoff = x;
*yoff = y;
write_sensor(0x0a, 0x19);
for (i = 0; i < 256; i++) {
// if (read_sensor(0x0d) != i)
// printf("Error, expecting register %d\n", i);
v = read_sensor(0x0c);
img[i] = v;
if (v & 0xc0) {
// printf("Bad value %02x\n", v);
i--;
}
}
write_sensor(0x0a, 0x11);
#if 0
for (i = 255; i >= 0; i--) {
printf("%02x ", img[i]);
if ((i & 0x0f) == 0)
printf("\n");
}
printf("\n");
#endif
return 0;
}
#define SZ 1
/* Draw a rectangle on the surface at the given position */
static void
draw_image (GtkWidget *widget)
{
cairo_t *cr;
uint8_t img[256];
int r, c, xoff, yoff;
static float x, y;
get_image(&xoff, &yoff, img);
x += (float)xoff * xscale;
y -= (float)yoff * yscale;
if (x < 0)
x = 0;
if (x > winsize - 17)
x = winsize - 17;
if (y < 0)
y = 0;
if (y > winsize - 17)
y = winsize - 17;
//x=0; y=0;
/* Paint to the surface, where we store our state */
cr = cairo_create (surface);
for (r = 0; r < 16; r++) {
for (c = 0; c < 16; c++) {
cairo_set_source_rgb (cr, (double)(img[(240-r*16) + 15 - c])/(double)64, 0, 0);
cairo_rectangle (cr, (r+x)*SZ, (c+y)*SZ, SZ, SZ);
cairo_fill (cr);
}
}
cairo_destroy (cr);
/* Now invalidate the affected region of the drawing area. */
gtk_widget_queue_draw_area (widget, x*SZ, y*SZ, 16*SZ, 16*SZ);
}
static void
clear_surface (void)
{
cairo_t *cr;
cr = cairo_create (surface);
cairo_set_source_rgb (cr, 1, 1, 1);
cairo_paint (cr);
cairo_destroy (cr);
}
/* Create a new surface of the appropriate size to store our scribbles */
static gboolean
configure_event_cb (GtkWidget *widget,
GdkEventConfigure *event,
gpointer data)
{
if (surface)
cairo_surface_destroy (surface);
surface = gdk_window_create_similar_surface (gtk_widget_get_window (widget),
CAIRO_CONTENT_COLOR,
gtk_widget_get_allocated_width (widget),
gtk_widget_get_allocated_height (widget));
/* Initialize the surface to white */
clear_surface ();
draw_image(widget);
/* We've handled the configure event, no need for further processing. */
return TRUE;
}
/* Redraw the screen from the surface. Note that the ::draw
* signal receives a ready-to-be-used cairo_t that is already
* clipped to only draw the exposed areas of the widget
*/
static gboolean
draw_cb (GtkWidget *widget,
cairo_t *cr,
gpointer data)
{
cairo_set_source_surface (cr, surface, 0, 0);
cairo_rectangle (cr, 3, 3, 6, 6);
cairo_fill (cr);
cairo_paint (cr);
return FALSE;
}
static void
close_window (void)
{
if (surface)
cairo_surface_destroy (surface);
gtk_main_quit ();
}
static gboolean
time_handler(GtkWidget *widget)
{
static volatile int processing;
static volatile int ticker;
if (processing) {
;
} else if (ticker > 0) {
ticker--;
} else {
processing = 1;
ticker = 1;
draw_image(widget);
processing = 0;
}
return 1;
}
int
main (int argc,
char *argv[])
{
GtkWidget *window;
GtkWidget *frame;
GtkWidget *da;
if (argc > 1) {
sscanf(argv[1], "%f", &xscale);
yscale = xscale;
}
if (argc > 2) {
sscanf(argv[2], "%f", &yscale);
}
printf("Using scales %f, %f\n", xscale, yscale);
init_sensor();
gtk_init (&argc, &argv);
window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_window_set_title (GTK_WINDOW (window), "Drawing Area");
g_signal_connect (window, "destroy", G_CALLBACK (close_window), NULL);
gtk_container_set_border_width (GTK_CONTAINER (window), 8);
frame = gtk_frame_new (NULL);
gtk_frame_set_shadow_type (GTK_FRAME (frame), GTK_SHADOW_IN);
gtk_container_add (GTK_CONTAINER (window), frame);
da = gtk_drawing_area_new ();
/* set a minimum size */
gtk_widget_set_size_request (da, winsize, winsize);
gtk_container_add (GTK_CONTAINER (frame), da);
/* Signals used to handle the backing surface */
g_signal_connect (da, "draw",
G_CALLBACK (draw_cb), NULL);
g_signal_connect (da,"configure-event",
G_CALLBACK (configure_event_cb), NULL);
g_timeout_add(2, (GSourceFunc) time_handler, (gpointer) da);
gtk_widget_show_all (window);
gtk_main ();
return 0;
}