1
0
mirror of https://github.com/richardghirst/PiBits.git synced 2025-02-27 20:54:15 +01:00

690 lines
17 KiB
C

/*
* servod.c Multiple Servo Driver for the RaspberryPi
* Copyright (c) 2013 Richard Hirst <richardghirst@gmail.com>
*
* This program provides very similar functionality to servoblaster, except
* that rather than implementing it as a kernel module, servod implements
* the functionality as a usr space daemon.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>
#include <stdarg.h>
#include <stdint.h>
#include <signal.h>
#include <time.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <getopt.h>
/* Define which GPIOs/P1-pins to use slightly differently for Rev 1 and
* Rev 2 boards, as P1-13 is different. On Rev 1 GPIO 27 was used for
* camera control and GPIO-21 was routed to P1-13, but on Rev 2 it is the
* other way round.
*/
static uint8_t servo2gpio_rev1[] = {
4, // P1-7
17, // P1-11
18, // P1-12
21, // P1-13
22, // P1-15
23, // P1-16
24, // P1-18
25, // P1-22
};
static uint8_t servo2gpio_rev2[] = {
4, // P1-7
17, // P1-11
18, // P1-12
27, // P1-13
22, // P1-15
23, // P1-16
24, // P1-18
25, // P1-22
};
static uint8_t *servo2gpio;
static int num_servos;
#define DEVFILE "/dev/servoblaster"
#define PAGE_SIZE 4096
#define PAGE_SHIFT 12
// CYCLE_TIME_US is the pulse cycle time per servo, in microseconds.
// Typically it should be 20ms, or 20000us.
// SAMPLE_US is the pulse width increment granularity, again in microseconds.
// Setting SAMPLE_US too low will likely cause problems as the DMA controller
// will use too much memory bandwidth. 10us is a good value, though you
// might be ok setting it as low as 2us.
#define CYCLE_TIME_US 20000
#define SAMPLE_US 10
#define SERVO_TIME_US (CYCLE_TIME_US/num_servos)
#define SERVO_SAMPLES (SERVO_TIME_US/SAMPLE_US)
#define SERVO_MIN 0
#define SERVO_MAX (SERVO_SAMPLES - 1)
#define NUM_SAMPLES (CYCLE_TIME_US/SAMPLE_US)
#define NUM_CBS (NUM_SAMPLES*2)
#define NUM_PAGES ((NUM_CBS * 32 + NUM_SAMPLES * 4 + \
PAGE_SIZE - 1) >> PAGE_SHIFT)
#define DMA_BASE 0x20007000
#define DMA_LEN 0x24
#define PWM_BASE 0x2020C000
#define PWM_LEN 0x28
#define CLK_BASE 0x20101000
#define CLK_LEN 0xA8
#define GPIO_BASE 0x20200000
#define GPIO_LEN 0x100
#define PCM_BASE 0x20203000
#define PCM_LEN 0x24
#define DMA_NO_WIDE_BURSTS (1<<26)
#define DMA_WAIT_RESP (1<<3)
#define DMA_D_DREQ (1<<6)
#define DMA_PER_MAP(x) ((x)<<16)
#define DMA_END (1<<1)
#define DMA_RESET (1<<31)
#define DMA_INT (1<<2)
#define DMA_CS (0x00/4)
#define DMA_CONBLK_AD (0x04/4)
#define DMA_DEBUG (0x20/4)
#define GPIO_FSEL0 (0x00/4)
#define GPIO_SET0 (0x1c/4)
#define GPIO_CLR0 (0x28/4)
#define GPIO_LEV0 (0x34/4)
#define GPIO_PULLEN (0x94/4)
#define GPIO_PULLCLK (0x98/4)
#define GPIO_MODE_IN 0
#define GPIO_MODE_OUT 1
#define PWM_CTL (0x00/4)
#define PWM_DMAC (0x08/4)
#define PWM_RNG1 (0x10/4)
#define PWM_FIFO (0x18/4)
#define PWMCLK_CNTL 40
#define PWMCLK_DIV 41
#define PWMCTL_MODE1 (1<<1)
#define PWMCTL_PWEN1 (1<<0)
#define PWMCTL_CLRF (1<<6)
#define PWMCTL_USEF1 (1<<5)
#define PWMDMAC_ENAB (1<<31)
#define PWMDMAC_THRSHLD ((15<<8)|(15<<0))
#define PCM_CS_A (0x00/4)
#define PCM_FIFO_A (0x04/4)
#define PCM_MODE_A (0x08/4)
#define PCM_RXC_A (0x0c/4)
#define PCM_TXC_A (0x10/4)
#define PCM_DREQ_A (0x14/4)
#define PCM_INTEN_A (0x18/4)
#define PCM_INT_STC_A (0x1c/4)
#define PCM_GRAY (0x20/4)
#define PCMCLK_CNTL 38
#define PCMCLK_DIV 39
#define DELAY_VIA_PWM 0
#define DELAY_VIA_PCM 1
typedef struct {
uint32_t info, src, dst, length,
stride, next, pad[2];
} dma_cb_t;
struct ctl {
uint32_t sample[NUM_SAMPLES];
dma_cb_t cb[NUM_CBS];
};
typedef struct {
uint8_t *virtaddr;
uint32_t physaddr;
} page_map_t;
page_map_t *page_map;
static uint8_t *virtbase;
static volatile uint32_t *pwm_reg;
static volatile uint32_t *pcm_reg;
static volatile uint32_t *clk_reg;
static volatile uint32_t *dma_reg;
static volatile uint32_t *gpio_reg;
static int delay_hw = DELAY_VIA_PWM;
static struct timeval *servo_kill_time;
static int idle_timeout = 0;
static void set_servo(int servo, int width);
static void
udelay(int us)
{
struct timespec ts = { 0, us * 1000 };
nanosleep(&ts, NULL);
}
static void
terminate(int dummy)
{
int i;
if (dma_reg && virtbase) {
for (i = 0; i < num_servos; i++)
set_servo(i, 0);
udelay(CYCLE_TIME_US);
dma_reg[DMA_CS] = DMA_RESET;
udelay(10);
}
unlink(DEVFILE);
exit(1);
}
static void
fatal(char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
vfprintf(stderr, fmt, ap);
va_end(ap);
terminate(0);
}
static void
init_idle_timers(void)
{
servo_kill_time = calloc(num_servos, sizeof(struct timeval));
if (!servo_kill_time)
fatal("servod: calloc() failed\n");
}
static void
update_idle_time(int servo)
{
if (idle_timeout == 0)
return;
gettimeofday(servo_kill_time + servo, NULL);
servo_kill_time[servo].tv_sec += idle_timeout / 1000;
servo_kill_time[servo].tv_usec += (idle_timeout % 1000) * 1000;
while (servo_kill_time[servo].tv_usec >= 1000000) {
servo_kill_time[servo].tv_usec -= 1000000;
servo_kill_time[servo].tv_sec++;
}
}
static void
get_next_idle_timeout(struct timeval *tv)
{
int i;
struct timeval now;
struct timeval min = { 60, 0 };
long this_diff, min_diff;
gettimeofday(&now, NULL);
for (i = 0; i < num_servos; i++) {
if (servo_kill_time[i].tv_sec == 0)
continue;
else if (servo_kill_time[i].tv_sec < now.tv_sec ||
(servo_kill_time[i].tv_sec == now.tv_sec &&
servo_kill_time[i].tv_usec <= now.tv_usec)) {
servo_kill_time[i].tv_sec = 0;
set_servo(i, 0);
} else {
this_diff = (servo_kill_time[i].tv_sec - now.tv_sec) * 1000000
+ servo_kill_time[i].tv_usec - now.tv_usec;
min_diff = min.tv_sec * 1000000 + min.tv_usec;
if (this_diff < min_diff) {
min.tv_sec = this_diff / 1000000;
min.tv_usec = this_diff % 1000000;
}
}
}
*tv = min;
}
static void
gpio_set_mode(uint32_t pin, uint32_t mode)
{
uint32_t fsel = gpio_reg[GPIO_FSEL0 + pin/10];
fsel &= ~(7 << ((pin % 10) * 3));
fsel |= mode << ((pin % 10) * 3);
gpio_reg[GPIO_FSEL0 + pin/10] = fsel;
}
static void
gpio_set(int pin, int level)
{
if (level)
gpio_reg[GPIO_SET0] = 1 << pin;
else
gpio_reg[GPIO_CLR0] = 1 << pin;
}
static uint32_t
mem_virt_to_phys(void *virt)
{
uint32_t offset = (uint8_t *)virt - virtbase;
return page_map[offset >> PAGE_SHIFT].physaddr + (offset % PAGE_SIZE);
}
static void *
map_peripheral(uint32_t base, uint32_t len)
{
int fd = open("/dev/mem", O_RDWR);
void * vaddr;
if (fd < 0)
fatal("servod: Failed to open /dev/mem: %m\n");
vaddr = mmap(NULL, len, PROT_READ|PROT_WRITE, MAP_SHARED, fd, base);
if (vaddr == MAP_FAILED)
fatal("servod: Failed to map peripheral at 0x%08x: %m\n", base);
close(fd);
return vaddr;
}
static void
set_servo(int servo, int width)
{
struct ctl *ctl = (struct ctl *)virtbase;
dma_cb_t *cbp = ctl->cb + servo * SERVO_SAMPLES * 2;
uint32_t phys_gpclr0 = 0x7e200000 + 0x28;
uint32_t phys_gpset0 = 0x7e200000 + 0x1c;
uint32_t *dp = ctl->sample + servo * SERVO_SAMPLES;
int i;
uint32_t mask = 1 << servo2gpio[servo];
dp[width] = mask;
if (width == 0) {
cbp->dst = phys_gpclr0;
} else {
for (i = width - 1; i > 0; i--)
dp[i] = 0;
dp[0] = mask;
cbp->dst = phys_gpset0;
update_idle_time(servo);
}
}
static void
make_pagemap(void)
{
int i, fd, memfd, pid;
char pagemap_fn[64];
page_map = malloc(NUM_PAGES * sizeof(*page_map));
if (page_map == 0)
fatal("servod: Failed to malloc page_map: %m\n");
memfd = open("/dev/mem", O_RDWR);
if (memfd < 0)
fatal("servod: Failed to open /dev/mem: %m\n");
pid = getpid();
sprintf(pagemap_fn, "/proc/%d/pagemap", pid);
fd = open(pagemap_fn, O_RDONLY);
if (fd < 0)
fatal("servod: Failed to open %s: %m\n", pagemap_fn);
if (lseek(fd, (uint32_t)virtbase >> 9, SEEK_SET) !=
(uint32_t)virtbase >> 9) {
fatal("servod: Failed to seek on %s: %m\n", pagemap_fn);
}
for (i = 0; i < NUM_PAGES; i++) {
uint64_t pfn;
page_map[i].virtaddr = virtbase + i * PAGE_SIZE;
// Following line forces page to be allocated
page_map[i].virtaddr[0] = 0;
if (read(fd, &pfn, sizeof(pfn)) != sizeof(pfn))
fatal("servod: Failed to read %s: %m\n", pagemap_fn);
if (((pfn >> 55) & 0x1bf) != 0x10c)
fatal("servod: Page %d not present (pfn 0x%016llx)\n", i, pfn);
page_map[i].physaddr = (uint32_t)pfn << PAGE_SHIFT | 0x40000000;
}
close(fd);
close(memfd);
}
static void
setup_sighandlers(void)
{
int i;
// Catch all signals possible - it is vital we kill the DMA engine
// on process exit!
for (i = 0; i < 64; i++) {
struct sigaction sa;
memset(&sa, 0, sizeof(sa));
sa.sa_handler = terminate;
sigaction(i, &sa, NULL);
}
}
static void
init_ctrl_data(void)
{
struct ctl *ctl = (struct ctl *)virtbase;
dma_cb_t *cbp = ctl->cb;
uint32_t phys_fifo_addr;
uint32_t phys_gpclr0 = 0x7e200000 + 0x28;
int servo, i;
if (delay_hw == DELAY_VIA_PWM)
phys_fifo_addr = (PWM_BASE | 0x7e000000) + 0x18;
else
phys_fifo_addr = (PCM_BASE | 0x7e000000) + 0x04;
memset(ctl->sample, 0, sizeof(ctl->sample));
for (servo = 0 ; servo < num_servos; servo++) {
for (i = 0; i < SERVO_SAMPLES; i++)
ctl->sample[servo * SERVO_SAMPLES + i] = 1 << servo2gpio[servo];
}
for (i = 0; i < NUM_SAMPLES; i++) {
cbp->info = DMA_NO_WIDE_BURSTS | DMA_WAIT_RESP;
cbp->src = mem_virt_to_phys(ctl->sample + i);
cbp->dst = phys_gpclr0;
cbp->length = 4;
cbp->stride = 0;
cbp->next = mem_virt_to_phys(cbp + 1);
cbp++;
// Delay
if (delay_hw == DELAY_VIA_PWM)
cbp->info = DMA_NO_WIDE_BURSTS | DMA_WAIT_RESP | DMA_D_DREQ | DMA_PER_MAP(5);
else
cbp->info = DMA_NO_WIDE_BURSTS | DMA_WAIT_RESP | DMA_D_DREQ | DMA_PER_MAP(2);
cbp->src = mem_virt_to_phys(ctl); // Any data will do
cbp->dst = phys_fifo_addr;
cbp->length = 4;
cbp->stride = 0;
cbp->next = mem_virt_to_phys(cbp + 1);
cbp++;
}
cbp--;
cbp->next = mem_virt_to_phys(ctl->cb);
}
static void
init_hardware(void)
{
struct ctl *ctl = (struct ctl *)virtbase;
if (delay_hw == DELAY_VIA_PWM) {
// Initialise PWM
pwm_reg[PWM_CTL] = 0;
udelay(10);
clk_reg[PWMCLK_CNTL] = 0x5A000006; // Source=PLLD (500MHz)
udelay(100);
clk_reg[PWMCLK_DIV] = 0x5A000000 | (50<<12); // set pwm div to 50, giving 10MHz
udelay(100);
clk_reg[PWMCLK_CNTL] = 0x5A000016; // Source=PLLD and enable
udelay(100);
pwm_reg[PWM_RNG1] = SAMPLE_US * 10;
udelay(10);
pwm_reg[PWM_DMAC] = PWMDMAC_ENAB | PWMDMAC_THRSHLD;
udelay(10);
pwm_reg[PWM_CTL] = PWMCTL_CLRF;
udelay(10);
pwm_reg[PWM_CTL] = PWMCTL_USEF1 | PWMCTL_PWEN1;
udelay(10);
} else {
// Initialise PCM
pcm_reg[PCM_CS_A] = 1; // Disable Rx+Tx, Enable PCM block
udelay(100);
clk_reg[PCMCLK_CNTL] = 0x5A000006; // Source=PLLD (500MHz)
udelay(100);
clk_reg[PCMCLK_DIV] = 0x5A000000 | (50<<12); // Set pcm div to 50, giving 10MHz
udelay(100);
clk_reg[PCMCLK_CNTL] = 0x5A000016; // Source=PLLD and enable
udelay(100);
pcm_reg[PCM_TXC_A] = 0<<31 | 1<<30 | 0<<20 | 0<<16; // 1 channel, 8 bits
udelay(100);
pcm_reg[PCM_MODE_A] = (SAMPLE_US * 10 - 1) << 10;
udelay(100);
pcm_reg[PCM_CS_A] |= 1<<4 | 1<<3; // Clear FIFOs
udelay(100);
pcm_reg[PCM_DREQ_A] = 64<<24 | 64<<8; // DMA Req when one slot is free?
udelay(100);
pcm_reg[PCM_CS_A] |= 1<<9; // Enable DMA
udelay(100);
}
// Initialise the DMA
dma_reg[DMA_CS] = DMA_RESET;
udelay(10);
dma_reg[DMA_CS] = DMA_INT | DMA_END;
dma_reg[DMA_CONBLK_AD] = mem_virt_to_phys(ctl->cb);
dma_reg[DMA_DEBUG] = 7; // clear debug error flags
dma_reg[DMA_CS] = 0x10880001; // go, mid priority, wait for outstanding writes
if (delay_hw == DELAY_VIA_PCM) {
pcm_reg[PCM_CS_A] |= 1<<2; // Enable Tx
}
}
static void
go_go_go(void)
{
int fd;
struct timeval tv;
static char line[128];
int nchars = 0;
char nl;
if ((fd = open(DEVFILE, O_RDWR|O_NONBLOCK)) == -1)
fatal("servod: Failed to open %s: %m\n", DEVFILE);
for (;;) {
int n, width, servo;
fd_set ifds;
FD_ZERO(&ifds);
FD_SET(fd, &ifds);
get_next_idle_timeout(&tv);
if ((n = select(fd+1, &ifds, NULL, NULL, &tv)) != 1)
continue;
while (read(fd, line+nchars, 1) == 1) {
if (line[nchars] == '\n') {
line[++nchars] = '\0';
nchars = 0;
n = sscanf(line, "%d=%d%c", &servo, &width, &nl);
if (n !=3 || nl != '\n') {
fprintf(stderr, "Bad input: %s", line);
} else if (servo < 0 || servo >= num_servos) {
fprintf(stderr, "Invalid servo number %d\n", servo);
} else if (width < SERVO_MIN || width > SERVO_MAX) {
fprintf(stderr, "Invalid width %d\n", width);
} else {
set_servo(servo, width);
}
} else {
if (++nchars >= 126) {
fprintf(stderr, "Input too long\n");
nchars = 0;
}
}
}
}
}
/* Determining the board revision is a lot more complicated than it should be
* (see comments in wiringPi for details). We will just look at the last two
* digits of the Revision string and treat '00' and '01' as errors, '02' and
* '03' as rev 1, and any other hex value as rev 2.
*/
static int
board_rev(void)
{
char buf[128];
char *ptr, *end, *res;
static int rev = 0;
FILE *fp;
if (rev)
return rev;
fp = fopen("/proc/cpuinfo", "r");
if (!fp)
fatal("Unable to open /proc/cpuinfo: %m\n");
while ((res = fgets(buf, 128, fp))) {
if (!strncmp(buf, "Revision", 8))
break;
}
fclose(fp);
if (!res)
fatal("servod: No 'Revision' record in /proc/cpuinfo\n");
ptr = buf + strlen(buf) - 3;
rev = strtol(ptr, &end, 16);
if (end != ptr + 2)
fatal("servod: Failed to parse Revision string\n");
if (rev < 1)
fatal("servod: Invalid board Revision\n");
else if (rev < 4)
rev = 1;
else
rev = 2;
return rev;
}
int
main(int argc, char **argv)
{
int i;
while (1) {
int c;
int option_index;
static struct option long_options[] = {
{ "pcm", no_argument, 0, 'p' },
{ "idle-timeout", required_argument, 0, 't' },
{ "idle_timeout", required_argument, 0, 't' },
{ "help", no_argument, 0, 'h' },
{ 0, 0, 0, 0 }
};
c = getopt_long(argc, argv, "hpt:", long_options, &option_index);
if (c == -1) {
break;
} else if (c == 'p') {
delay_hw = DELAY_VIA_PCM;
} else if (c == 't') {
idle_timeout = atoi(optarg);
if (idle_timeout < 10 || idle_timeout > 3600000)
fatal("Invalid idle_timeout specified\n");
} else if (c == 'h') {
printf("\nUsage: %s [--pcm] [--idle-timeout=N]\n\n"
"Where:\n"
" --pcm tells servod to use PCM rather than PWM hardware\n"
" to implement delays\n"
" --idle-timeout=N tells servod to stop sending servo pulses for a\n"
" given output N milliseconds after the last update\n\n",
argv[0]);
exit(0);
} else {
fatal("Invalid parameter\n");
}
}
/* Select the correct pin mapping based on board rev */
if (board_rev() == 1) {
servo2gpio = servo2gpio_rev1;
num_servos = sizeof(servo2gpio_rev1);
} else {
servo2gpio = servo2gpio_rev2;
num_servos = sizeof(servo2gpio_rev2);
}
printf("Board revision: %5d\n", board_rev());
printf("Using hardware: %5s\n", delay_hw == DELAY_VIA_PWM ? "PWM" : "PCM");
printf("Idle timeout (ms): %5d\n", idle_timeout);
printf("Number of servos: %5d\n", num_servos);
printf("Servo cycle time: %5dus\n", CYCLE_TIME_US);
printf("Pulse width units: %5dus\n", SAMPLE_US);
printf("Maximum width value: %5d (%dus)\n", SERVO_MAX,
SERVO_MAX * SAMPLE_US);
init_idle_timers();
setup_sighandlers();
dma_reg = map_peripheral(DMA_BASE, DMA_LEN);
pwm_reg = map_peripheral(PWM_BASE, PWM_LEN);
pcm_reg = map_peripheral(PCM_BASE, PCM_LEN);
clk_reg = map_peripheral(CLK_BASE, CLK_LEN);
gpio_reg = map_peripheral(GPIO_BASE, GPIO_LEN);
virtbase = mmap(NULL, NUM_PAGES * PAGE_SIZE, PROT_READ|PROT_WRITE,
MAP_SHARED|MAP_ANONYMOUS|MAP_NORESERVE|MAP_LOCKED,
-1, 0);
if (virtbase == MAP_FAILED)
fatal("servod: Failed to mmap physical pages: %m\n");
if ((unsigned long)virtbase & (PAGE_SIZE-1))
fatal("servod: Virtual address is not page aligned\n");
make_pagemap();
for (i = 0; i < num_servos; i++) {
gpio_set(servo2gpio[i], 0);
gpio_set_mode(servo2gpio[i], GPIO_MODE_OUT);
}
init_ctrl_data();
init_hardware();
unlink(DEVFILE);
if (mkfifo(DEVFILE, 0666) < 0)
fatal("servod: Failed to create %s: %m\n", DEVFILE);
if (chmod(DEVFILE, 0666) < 0)
fatal("servod: Failed to set permissions on %s: %m\n", DEVFILE);
if (daemon(0,1) < 0)
fatal("servod: Failed to daemonize process: %m\n");
go_go_go();
return 0;
}