1
0
mirror of https://github.com/richardghirst/PiBits.git synced 2024-11-28 12:24:11 +01:00
PiBits/ServoBlaster/servoblaster.c
2012-11-18 21:12:36 +00:00

471 lines
14 KiB
C

/*
* servoblaster.c Multiple Servo Driver for the RaspberryPi
* Copyright (c) 2012 Richard Hirst <richardghirst@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* If you want the device node created automatically create these two
* files, and make /lib/udev/servoblaster executable (chmod +x):
*
* ============= /etc/udev/rules.d/20-servoblaster.rules =============
* SUBSYSTEM=="module", DEVPATH=="/module/servoblaster", RUN+="/lib/udev/servoblaster"
* ===================================================================
*
* ===================== /lib/udev/servoblaster ======================
* #!/bin/bash
*
* if [ "$ACTION" = "remove" ]; then
* rm -f /dev/servoblaster
* elif [ "$ACTION" = "add" ]; then
* major=$( sed -n 's/ servoblaster//p' /proc/devices )
* [ "$major" ] && mknod -m 0666 /dev/servoblaster c $major 0
* fi
*
* exit 0
* ===================================================================
*/
#include <linux/module.h>
#include <linux/string.h>
#include <linux/fs.h>
#include <linux/io.h>
#include <linux/vmalloc.h>
#include <linux/cdev.h>
#include <linux/scatterlist.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <mach/platform.h>
#include <asm/uaccess.h>
#include <mach/dma.h>
//#include "servoblaster.h"
#define GPIO_LEN 0xb4
#define DMA_LEN 0x24
#define PWM_BASE (BCM2708_PERI_BASE + 0x20C000)
#define PWM_LEN 0x28
#define CLK_BASE (BCM2708_PERI_BASE + 0x101000)
#define CLK_LEN 0xA8
#define GPFSEL0 (0x00/4)
#define GPFSEL1 (0x04/4)
#define GPSET0 (0x1c/4)
#define GPCLR0 (0x28/4)
#define PWM_CTL (0x00/4)
#define PWM_DMAC (0x08/4)
#define PWM_RNG1 (0x10/4)
#define PWM_FIFO (0x18/4)
#define PWMCLK_CNTL 40
#define PWMCLK_DIV 41
#define PWMCTL_MODE1 (1<<1)
#define PWMCTL_PWEN1 (1<<0)
#define PWMCTL_CLRF (1<<6)
#define PWMCTL_USEF1 (1<<5)
#define PWMDMAC_ENAB (1<<31)
// I think this means it requests as soon as there is one free slot in the FIFO
// which is what we want as burst DMA would mess up our timing..
#define PWMDMAC_THRSHLD ((15<<8)|(15<<0))
#define DMA_CS (BCM2708_DMA_CS/4)
#define DMA_CONBLK_AD (BCM2708_DMA_ADDR/4)
#define DMA_DEBUG (BCM2708_DMA_DEBUG/4)
#define BCM2708_DMA_END (1<<1) // Why is this not in mach/dma.h ?
#define BCM2708_DMA_NO_WIDE_BURSTS (1<<26)
static int dev_open(struct inode *, struct file *);
static int dev_close(struct inode *, struct file *);
static ssize_t dev_read(struct file *, char *, size_t, loff_t *);
static ssize_t dev_write(struct file *, const char *, size_t, loff_t *);
static long dev_ioctl(struct file *, unsigned int, unsigned long);
static struct file_operations fops =
{
.open = dev_open,
.read = dev_read,
.write = dev_write,
.release = dev_close,
.unlocked_ioctl = dev_ioctl,
.compat_ioctl = dev_ioctl,
};
// Map servo channels to GPIO pins
static uint8_t servo2gpio[] = {
4, // P1-7
17, // P1-11
#ifdef PWM0_ON_GPIO18
1, // P1-5 (GPIO-18, P1-12 is currently PWM0, for debug)
#else
18, // P1-12
#endif
21, // P1-13
22, // P1-15
23, // P1-16
24, // P1-18
25, // P1-22
};
#define NUM_SERVOS (sizeof(servo2gpio)/sizeof(servo2gpio[0]))
// Structure of our control data, stored in a 4K page, and accessed by dma controller
struct ctldata_s {
struct bcm2708_dma_cb cb[NUM_SERVOS * 4]; // gpio-hi, delay, gpio-lo, delay, for each servo output
uint32_t gpiodata[NUM_SERVOS]; // set-pin, clear-pin values, per servo output
uint32_t pwmdata; // the word we write to the pwm fifo
};
static struct ctldata_s *ctl;
static unsigned long ctldatabase;
static volatile uint32_t *gpio_reg;
static volatile uint32_t *dma_reg;
static volatile uint32_t *clk_reg;
static volatile uint32_t *pwm_reg;
static dev_t devno;
static struct cdev my_cdev;
static int my_major;
static int cycle_ticks = 2000;
static int tick_scale = 6;
// Wait until we're not processing the given servo (actually wait until
// we are not processing the low period of the previous servo, or the
// high period of this one).
static int wait_for_servo(int servo)
{
local_irq_disable();
for (;;) {
int cb = (dma_reg[DMA_CONBLK_AD] - ((uint32_t)ctl->cb & 0x7fffffff)) / sizeof(ctl->cb[0]);
if (servo > 0) {
if (cb < servo*4-2 || cb > servo*4+2)
break;
} else {
if (cb > 2 && cb < NUM_SERVOS*4-2)
break;
}
local_irq_enable();
set_current_state(TASK_INTERRUPTIBLE);
if (schedule_timeout(1))
return -EINTR;
local_irq_disable();
}
// Return with IRQs disabled!!!
return 0;
}
int init_module(void)
{
int res, i, s;
res = alloc_chrdev_region(&devno, 0, 1, "servoblaster");
if (res < 0) {
printk(KERN_WARNING "ServoBlaster: Can't allocated device number\n");
return res;
}
my_major = MAJOR(devno);
cdev_init(&my_cdev, &fops);
my_cdev.owner = THIS_MODULE;
my_cdev.ops = &fops;
res = cdev_add(&my_cdev, MKDEV(my_major, 0), 1);
if (res) {
printk(KERN_WARNING "ServoBlaster: Error %d adding device\n", res);
unregister_chrdev_region(devno, 1);
return res;
}
ctldatabase = __get_free_pages(GFP_KERNEL, 0);
printk(KERN_INFO "ServoBlaster: Control page is at 0x%lx, cycle_ticks %d, tick_scale %d\n", ctldatabase, cycle_ticks, tick_scale);
if (ctldatabase == 0) {
printk(KERN_WARNING "ServoBlaster: alloc_pages failed\n");
cdev_del(&my_cdev);
unregister_chrdev_region(devno, 1);
return -EFAULT;
}
ctl = (struct ctldata_s *)ctldatabase;
gpio_reg = (uint32_t *)ioremap(GPIO_BASE, GPIO_LEN);
dma_reg = (uint32_t *)ioremap(DMA_BASE, DMA_LEN);
clk_reg = (uint32_t *)ioremap(CLK_BASE, CLK_LEN);
pwm_reg = (uint32_t *)ioremap(PWM_BASE, PWM_LEN);
memset(ctl, 0, sizeof(*ctl));
// Set all servo control pins to be outputs
for (i = 0; i < NUM_SERVOS; i++) {
int gpio = servo2gpio[i];
int fnreg = gpio/10 + GPFSEL0;
int fnshft = (gpio %10) * 3;
gpio_reg[GPCLR0] = 1 << gpio;
gpio_reg[fnreg] = (gpio_reg[fnreg] & ~(7 << fnshft)) | (1 << fnshft);
}
#ifdef PWM0_ON_GPIO18
// Set pwm0 output on gpio18
gpio_reg[GPCLR0] = 1 << 18;
gpio_reg[GPFSEL1] = (gpio_reg[GPFSEL1] & ~(7 << 8*3)) | ( 2 << 8*3);
#endif
// Build the DMA CB chain
for (s = 0; s < NUM_SERVOS; s++) {
int i = s*4;
// Set gpio high
ctl->gpiodata[s] = 1 << servo2gpio[s];
ctl->cb[i].info = BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP;
ctl->cb[i].src = (uint32_t)(&ctl->gpiodata[s]) & 0x7fffffff;
// We clear the GPIO here initially, so outputs go to 0 on startup
// Once someone writes to /dev/servoblaster we'll patch it to a 'set'
ctl->cb[i].dst = ((GPIO_BASE + GPCLR0*4) & 0x00ffffff) | 0x7e000000;
ctl->cb[i].length = sizeof(uint32_t);
ctl->cb[i].stride = 0;
ctl->cb[i].next = (uint32_t)(ctl->cb + i + 1) & 0x7fffffff;
// delay
i++;
ctl->cb[i].info = BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP | BCM2708_DMA_D_DREQ | BCM2708_DMA_PER_MAP(5);
ctl->cb[i].src = (uint32_t)(&ctl->pwmdata) & 0x7fffffff;
ctl->cb[i].dst = ((PWM_BASE + PWM_FIFO*4) & 0x00ffffff) | 0x7e000000;
ctl->cb[i].length = sizeof(uint32_t) * 1; // default 1 tick high
ctl->cb[i].stride = 0;
ctl->cb[i].next = (uint32_t)(ctl->cb + i + 1) & 0x7fffffff;
// Set gpio lo
i++;
ctl->cb[i].info = BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP;
ctl->cb[i].src = (uint32_t)(&ctl->gpiodata[s]) & 0x7fffffff;
ctl->cb[i].dst = ((GPIO_BASE + GPCLR0*4) & 0x00ffffff) | 0x7e000000;
ctl->cb[i].length = sizeof(uint32_t);
ctl->cb[i].stride = 0;
ctl->cb[i].next = (uint32_t)(ctl->cb + i + 1) & 0x7fffffff;
// delay
i++;
ctl->cb[i].info = BCM2708_DMA_NO_WIDE_BURSTS | BCM2708_DMA_WAIT_RESP | BCM2708_DMA_D_DREQ | BCM2708_DMA_PER_MAP(5);
ctl->cb[i].src = (uint32_t)(&ctl->pwmdata) & 0x7fffffff;
ctl->cb[i].dst = ((PWM_BASE + PWM_FIFO*4) & 0x00ffffff) | 0x7e000000;
ctl->cb[i].length = sizeof(uint32_t) * (cycle_ticks / 8 - 1);
ctl->cb[i].stride = 0;
ctl->cb[i].next = (uint32_t)(ctl->cb + i + 1) & 0x7fffffff;
}
// Point last cb back to first one so it loops continuously
ctl->cb[NUM_SERVOS*4-1].next = (uint32_t)(ctl->cb) & 0x7fffffff;
// Initialise PWM
pwm_reg[PWM_CTL] = 0;
udelay(10);
clk_reg[PWMCLK_DIV] = 0x5A000000 | (32<<12); // set pwm div to 32 (19.2MHz/32 = 600KHz)
clk_reg[PWMCLK_CNTL] = 0x5A000011; // Source=osc and enable
pwm_reg[PWM_RNG1] = tick_scale; // 600KHz/6 = 10us per FIFO write
udelay(10);
ctl->pwmdata = 1; // Give a pulse of one clock width for each fifo write
pwm_reg[PWM_DMAC] = PWMDMAC_ENAB | PWMDMAC_THRSHLD;
udelay(10);
pwm_reg[PWM_CTL] = PWMCTL_CLRF;
udelay(10);
pwm_reg[PWM_CTL] = PWMCTL_USEF1 | PWMCTL_PWEN1;
udelay(10);
// Initialise the DMA
dma_reg[DMA_CS] = BCM2708_DMA_RESET;
udelay(10);
dma_reg[DMA_CS] = BCM2708_DMA_INT | BCM2708_DMA_END;
dma_reg[DMA_CONBLK_AD] = (uint32_t)(ctl->cb) & 0x7fffffff;
dma_reg[DMA_DEBUG] = 7; // clear debug error flags
dma_reg[DMA_CS] = 0x10880001; // go, mid priority, wait for outstanding writes
return 0;
}
void cleanup_module(void)
{
int servo;
// Take care to stop servos with outputs low, so we don't get
// spurious movement on module unload
for (servo = 0; servo < NUM_SERVOS; servo++) {
// Wait until we're not driving this servo
if (wait_for_servo(servo))
break;
// Patch the control block so it stays low
ctl->cb[servo*4+0].dst = ((GPIO_BASE + GPCLR0*4) & 0x00ffffff) | 0x7e000000;
local_irq_enable();
}
// Wait 20ms to be sure it has finished it's cycle an all outputs are low
msleep(20);
// Now we can kill everything
dma_reg[DMA_CS] = BCM2708_DMA_RESET;
pwm_reg[PWM_CTL] = 0;
udelay(10);
free_pages(ctldatabase, 0);
iounmap(gpio_reg);
iounmap(dma_reg);
iounmap(clk_reg);
iounmap(pwm_reg);
cdev_del(&my_cdev);
unregister_chrdev_region(devno, 1);
}
// This struct is used to store all temporary data required per process
// which reads/writes the device file.
struct process_data
{
// Stores the /dev/servoblaster content for a given user process.
// Allowing 10 chars per line.
int ret_idx;
char ret_data[NUM_SERVOS * 10];
// Stores one user command (single line) for a given user process.
// e.g. "3=180"
// Line length is expected to be <32
int cmd_idx;
char cmd_data[32];
};
// kmalloc the temporary data required for each user:
static int dev_open(struct inode *inod,struct file *fil)
{
fil->private_data = kmalloc( sizeof(struct process_data), GFP_KERNEL );
if (0 == fil->private_data)
{
printk(KERN_WARNING "ServoBlaster: Failed to allocate user data\n");
return -ENOMEM;
}
memset(fil->private_data, 0, sizeof(struct process_data));
return 0;
}
// This records the written count values. Cannot derive data directly from DMA
// control blocks as current algorithm has a special case for a count of zero.
static int written_data[NUM_SERVOS] = { 0 };
static ssize_t dev_read(struct file *filp,char *buf,size_t count,loff_t *f_pos)
{
ssize_t bytesPrinted = 0;
struct process_data* const pdata = filp->private_data;
// Only proceed if we have private data, else return EOF.
if (0 != pdata)
{
int servo;
int* const idx = &(pdata->ret_idx);
char* const returnedData = pdata->ret_data;
if (0 == *f_pos)
{
// Get fresh data
for (servo=0, *idx=0; servo < NUM_SERVOS; ++servo)
{
*idx += snprintf(returnedData+*idx, sizeof(pdata->ret_data)-*idx,
"%i %i\n",
servo,
written_data[servo]
);
}
}
if (*f_pos >= *idx)
{
//EOF
bytesPrinted=0;
}
else if ( (*f_pos + count) < *idx )
{
// Sufficient data to fulfil request
if (copy_to_user(buf,returnedData+*f_pos,count)) {
return -EFAULT;
}
*f_pos+=count;
bytesPrinted=count;
}
else
{
// Return all the data we have
const int nBytes = *idx-*f_pos;
if (copy_to_user(buf,returnedData+*f_pos, nBytes)) {
return -EFAULT;
}
*f_pos+=nBytes;
bytesPrinted=nBytes;
}
}
return bytesPrinted;
}
static ssize_t dev_write(struct file *filp,const char *buf,size_t count,loff_t *f_pos)
{
int servo;
int cnt;
int n;
char str[32];
char dummy;
cnt = count < 32 ? count : 31;
if (copy_from_user(str, buf, cnt)) {
return -EFAULT;
}
str[cnt] = '\0';
n = sscanf(str, "%d=%d\n%c", &servo, &cnt, &dummy);
if (n != 2) {
printk(KERN_WARNING "ServoBlaster: Failed to parse command (n=%d)\n", n);
return -EINVAL;
}
if (servo < 0 || servo >= NUM_SERVOS) {
printk(KERN_WARNING "ServoBlaster: Bad servo number %d\n", servo);
return -EINVAL;
}
if (cnt < 0 || cnt > cycle_ticks / 8 - 1) {
printk(KERN_WARNING "ServoBlaster: Bad value %d\n", cnt);
return -EINVAL;
}
if (wait_for_servo(servo))
return -EINTR;
// Normally, the first GPIO transfer sets the output, while the second
// clears it after a delay. For the special case of a delay of 0, we
// ensure that the first GPIO transfer also clears the output.
if (cnt == 0) {
ctl->cb[servo*4+0].dst = ((GPIO_BASE + GPCLR0*4) & 0x00ffffff) | 0x7e000000;
} else {
ctl->cb[servo*4+0].dst = ((GPIO_BASE + GPSET0*4) & 0x00ffffff) | 0x7e000000;
ctl->cb[servo*4+1].length = cnt * sizeof(uint32_t);
ctl->cb[servo*4+3].length = (cycle_ticks / 8 - cnt) * sizeof(uint32_t);
}
written_data[servo] = cnt; // Record data for use by dev_read
local_irq_enable();
return count;
}
static int dev_close(struct inode *inod,struct file *fil)
{
if (0 != fil->private_data) kfree(fil->private_data);
return 0;
}
static long dev_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
return -EINVAL;
}
MODULE_DESCRIPTION("ServoBlaster, Multiple Servo Driver for the RaspberryPi");
MODULE_AUTHOR("Richard Hirst <richardghirst@gmail.com>");
MODULE_LICENSE("GPL v2");
module_param(cycle_ticks, int, 0);
MODULE_PARM_DESC(cycle_ticks, "number of ticks per cycle, max pulse is cycle_ticks/8");
module_param(tick_scale, int, 0);
MODULE_PARM_DESC(tick_scale, "scale the tick length, 6 should be 10us");