In order to install a DXVK package obtained from the [release](https://github.com/doitsujin/dxvk/releases) page into a given wine prefix, copy or symlink the DLLs into the following directories as follows, then open `winecfg` and manually add `native` DLL overrides for `d3d8`, `d3d9`, `d3d10core`, `d3d11` and `dxgi` under the Libraries tab.
Before reporting an issue, please check the [Wiki](https://github.com/doitsujin/dxvk/wiki/Driver-support) page on the current driver status and make sure you run a recent enough driver version for your hardware.
Manipulation of Direct3D libraries in multi-player games may be considered cheating and can get your account **banned**. This may also apply to single-player games with an embedded or dedicated multiplayer portion. **Use at your own risk.**
The `DXVK_HUD` environment variable controls a HUD which can display the framerate and some stat counters. It accepts a comma-separated list of the following options:
-`devinfo`: Displays the name of the GPU and the driver version.
When used with Wine, DXVK will print log messages to `stderr`. Additionally, standalone log files can optionally be generated by setting the `DXVK_LOG_PATH` variable, where log files in the given directory will be called `app_d3d11.log`, `app_dxgi.log` etc., where `app` is the name of the game executable.
On Windows, log files will be created in the game's working directory by default, which is usually next to the game executable.
The `DXVK_FRAME_RATE` environment variable can be used to limit the frame rate. A value of `0` uncaps the frame rate, while any positive value will limit rendering to the given number of frames per second. Alternatively, the configuration file can be used.
-`DXVK_FILTER_DEVICE_NAME="Device Name"` Selects devices with a matching Vulkan device name, which can be retrieved with tools such as `vulkaninfo`. Matches on substrings, so "VEGA" or "AMD RADV VEGA10" is supported if the full device name is "AMD RADV VEGA10 (LLVM 9.0.0)", for example. If the substring matches more than one device, the first device matched will be used.
The following environment variables can be used for **debugging** purposes.
-`VK_INSTANCE_LAYERS=VK_LAYER_KHRONOS_validation` Enables Vulkan debug layers. Highly recommended for troubleshooting rendering issues and driver crashes. Requires the Vulkan SDK to be installed on the host system.
-`DXVK_LOG_PATH=/some/directory` Changes path where log files are stored. Set to `none` to disable log file creation entirely, without disabling logging.
-`DXVK_DEBUG=markers|validation` Enables use of the `VK_EXT_debug_utils` extension for translating performance event markers, or to enable Vulkan validation, respecticely.
-`DXVK_CONFIG_FILE=/xxx/dxvk.conf` Sets path to the configuration file.
-`DXVK_CONFIG="dxgi.hideAmdGpu = True; dxgi.syncInterval = 0"` Can be used to set config variables through the environment instead of a configuration file using the same syntax. `;` is used as a seperator.
On drivers which support `VK_EXT_graphics_pipeline_library` Vulkan shaders will be compiled at the time the game loads its D3D shaders, rather than at draw time. This reduces or eliminates shader compile stutter in many games when compared to the previous system.
In games that load their shaders during loading screens or in the menu, this can lead to prolonged periods of very high CPU utilization, especially on weaker CPUs. For affected games it is recommended to wait for shader compilation to finish before starting the game to avoid stutter and low performance. Shader compiler activity can be monitored with `DXVK_HUD=compiler`.
This feature largely replaces the state cache.
**Note:** Games which only load their D3D shaders at draw time (e.g. most Unreal Engine games) will still exhibit some stutter, although it should still be less severe than without this feature.
DXVK caches pipeline state by default, so that shaders can be recompiled ahead of time on subsequent runs of an application, even if the driver's own shader cache got invalidated in the meantime. This cache is enabled by default, and generally reduces stuttering.
The following environment variables can be used to control the cache:
-`DXVK_STATE_CACHE_PATH=/some/directory` Specifies a directory where to put the cache files. Defaults to the current working directory of the application.
This will create a folder `dxvk-master` in `/your/target/directory`, which contains both 32-bit and 64-bit versions of DXVK, which can be set up in the same way as the release versions as noted above.
In order to preserve the build directories for development, pass `--dev-build` to the script. This option implies `--no-package`. After making changes to the source code, you can then do the following to rebuild DXVK:
DXVK Native is a version of DXVK which allows it to be used natively without Wine.
This is primarily useful for game and application ports to either avoid having to write another rendering backend, or to help with port bringup during development.
[Release builds](https://github.com/doitsujin/dxvk/releases) are built using the Steam Runtime.
### How does it work?
DXVK Native replaces certain Windows-isms with a platform and framework-agnostic replacement, for example, `HWND`s can become `SDL_Window*`s, etc.
All it takes to do that is to add another WSI backend.
**Note:** DXVK Native requires a backend to be explicitly set via the `DXVK_WSI_DRIVER` environment variable. The current built-in options are `SDL2` and `GLFW`.
DXVK Native comes with a slim set of Windows header definitions required for D3D9/11 and the MinGW headers for D3D9/11.
In most cases, it will end up being plug and play with your renderer, but there may be certain teething issues such as:
-`__uuidof(type)` is supported, but `__uuidof(variable)` is not supported. Use `__uuidof_var(variable)` instead.