1
0
mirror of https://github.com/doitsujin/dxvk.git synced 2025-02-08 10:54:15 +01:00
dxvk/src/util/util_fps_limiter.cpp

141 lines
4.2 KiB
C++
Raw Normal View History

#include <thread>
#include "thread.h"
#include "util_env.h"
#include "util_fps_limiter.h"
#include "util_sleep.h"
#include "util_string.h"
#include "./log/log.h"
using namespace std::chrono_literals;
namespace dxvk {
FpsLimiter::FpsLimiter() {
std::string env = env::getEnvVar("DXVK_FRAME_RATE");
if (!env.empty()) {
try {
setTargetFrameRate(std::stod(env));
m_envOverride = true;
} catch (const std::invalid_argument&) {
// no-op
}
}
}
FpsLimiter::~FpsLimiter() {
}
void FpsLimiter::setTargetFrameRate(double frameRate) {
2021-06-28 19:19:29 +02:00
std::lock_guard<dxvk::mutex> lock(m_mutex);
if (!m_envOverride) {
TimerDuration interval = frameRate != 0.0
? TimerDuration(int64_t(double(TimerDuration::period::den) / frameRate))
: TimerDuration::zero();
if (m_targetInterval != interval) {
m_targetInterval = interval;
m_heuristicFrameCount = 0;
m_heuristicEnable = false;
if (m_targetInterval != TimerDuration::zero() && !m_initialized)
initialize();
}
}
}
void FpsLimiter::delay() {
std::unique_lock<dxvk::mutex> lock(m_mutex);
auto interval = m_targetInterval;
if (interval == TimerDuration::zero())
return;
auto t0 = m_lastFrame;
auto t1 = dxvk::high_resolution_clock::now();
if (interval < TimerDuration::zero()) {
interval = -interval;
if (!testRefreshHeuristic(interval, t1))
return;
}
// Subsequent code must not access any class members
// that can be written by setTargetFrameRate
lock.unlock();
auto frameTime = std::chrono::duration_cast<TimerDuration>(t1 - t0);
if (frameTime * 100 > interval * 103 - m_deviation * 100) {
// If we have a slow frame, reset the deviation since we
// do not want to compensate for low performance later on
m_deviation = TimerDuration::zero();
} else {
// Don't call sleep if the amount of time to sleep is shorter
// than the time the function calls are likely going to take
TimerDuration sleepDuration = interval - m_deviation - frameTime;
t1 = Sleep::sleepFor(t1, sleepDuration);
// Compensate for any sleep inaccuracies in the next frame, and
// limit cumulative deviation in order to avoid stutter in case we
// have a number of slow frames immediately followed by a fast one.
frameTime = std::chrono::duration_cast<TimerDuration>(t1 - t0);
m_deviation += frameTime - interval;
m_deviation = std::min(m_deviation, interval / 16);
}
m_lastFrame = t1;
}
bool FpsLimiter::testRefreshHeuristic(TimerDuration interval, TimePoint now) {
if (m_heuristicEnable)
return true;
// Use a sliding window to determine whether the current
// frame rate is higher than the targeted refresh rate
uint32_t heuristicWindow = m_heuristicFrameTimes.size();
auto windowStart = m_heuristicFrameTimes[m_heuristicFrameCount % heuristicWindow];
auto windowDuration = std::chrono::duration_cast<TimerDuration>(now - windowStart);
m_heuristicFrameTimes[m_heuristicFrameCount % heuristicWindow] = now;
m_heuristicFrameCount += 1;
// The first window of frames may contain faster frames as the
// internal swap chain queue fills up, so we should ignore it.
if (m_heuristicFrameCount < 2 * heuristicWindow)
return false;
// Test whether we should engage the frame rate limiter. It will
// stay enabled until the refresh rate or vsync enablement change.
m_heuristicEnable = (103 * windowDuration) < (100 * heuristicWindow) * interval;
if (m_heuristicEnable) {
double got = (double(heuristicWindow) * double(TimerDuration::period::den))
/ (double(windowDuration.count()) * double(TimerDuration::period::num));
double refresh = double(TimerDuration::period::den) / (double(TimerDuration::period::num) * double(interval.count()));
Logger::info(str::format("Detected frame rate (~", uint32_t(got), ") higher than selected refresh rate of ~",
uint32_t(refresh), " Hz.\n", "Engaging frame rate limiter."));
}
return m_heuristicEnable;
}
void FpsLimiter::initialize() {
m_lastFrame = dxvk::high_resolution_clock::now();
m_initialized = true;
}
}