1
0
mirror of https://github.com/doitsujin/dxvk.git synced 2024-12-14 00:48:44 +01:00
dxvk/src/dxgi/dxgi_presenter.cpp

316 lines
11 KiB
C++
Raw Normal View History

#include "dxgi_presenter.h"
#include "../spirv/spirv_module.h"
namespace dxvk {
DxgiPresenter::DxgiPresenter(
const Rc<DxvkDevice>& device,
HWND window,
UINT bufferWidth,
UINT bufferHeight)
: m_device (device),
m_context (device->createContext()) {
// Create Vulkan surface for the window
HINSTANCE instance = reinterpret_cast<HINSTANCE>(
GetWindowLongPtr(window, GWLP_HINSTANCE));
m_surface = m_device->adapter()->createSurface(instance, window);
// Create swap chain for the surface
DxvkSwapchainProperties swapchainProperties;
swapchainProperties.preferredSurfaceFormat.format = VK_FORMAT_B8G8R8A8_SNORM;
swapchainProperties.preferredSurfaceFormat.colorSpace = VK_COLOR_SPACE_SRGB_NONLINEAR_KHR;
swapchainProperties.preferredPresentMode = VK_PRESENT_MODE_FIFO_KHR;
swapchainProperties.preferredBufferSize.width = bufferWidth;
swapchainProperties.preferredBufferSize.height = bufferHeight;
m_swapchain = m_device->createSwapchain(
m_surface, swapchainProperties);
// Synchronization semaphores for swap chain operations
m_acquireSync = m_device->createSemaphore();
m_presentSync = m_device->createSemaphore();
// Set up context state. The shader bindings and the
// constant state objects will never be modified.
m_context->bindShader(VK_SHADER_STAGE_VERTEX_BIT, createVertexShader());
m_context->bindShader(VK_SHADER_STAGE_FRAGMENT_BIT, createFragmentShader());
m_context->setInputAssemblyState(
new DxvkInputAssemblyState(
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
VK_FALSE));
m_context->setInputLayout(
new DxvkInputLayout(
0, nullptr, 0, nullptr));
m_context->setRasterizerState(
new DxvkRasterizerState(
VK_FALSE, VK_FALSE,
VK_POLYGON_MODE_FILL,
VK_CULL_MODE_NONE,
VK_FRONT_FACE_COUNTER_CLOCKWISE,
VK_FALSE, 0.0f, 0.0f, 0.0f, 1.0f));
m_context->setMultisampleState(
new DxvkMultisampleState(
VK_SAMPLE_COUNT_1_BIT, 0xFFFFFFFF,
VK_FALSE, VK_FALSE, VK_FALSE, 0.0f));
VkStencilOpState stencilOp;
stencilOp.failOp = VK_STENCIL_OP_KEEP;
stencilOp.passOp = VK_STENCIL_OP_KEEP;
stencilOp.depthFailOp = VK_STENCIL_OP_KEEP;
stencilOp.compareOp = VK_COMPARE_OP_ALWAYS;
stencilOp.compareMask = 0xFFFFFFFF;
stencilOp.writeMask = 0xFFFFFFFF;
stencilOp.reference = 0;
m_context->setDepthStencilState(
new DxvkDepthStencilState(
VK_FALSE, VK_FALSE, VK_FALSE, VK_FALSE,
VK_COMPARE_OP_ALWAYS, stencilOp, stencilOp,
0.0f, 1.0f));
VkPipelineColorBlendAttachmentState blendAttachment;
blendAttachment.blendEnable = VK_FALSE;
blendAttachment.srcColorBlendFactor = VK_BLEND_FACTOR_ONE;
blendAttachment.dstColorBlendFactor = VK_BLEND_FACTOR_ZERO;
blendAttachment.colorBlendOp = VK_BLEND_OP_ADD;
blendAttachment.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE;
blendAttachment.dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO;
blendAttachment.alphaBlendOp = VK_BLEND_OP_ADD;
blendAttachment.colorWriteMask = VK_COLOR_COMPONENT_R_BIT
| VK_COLOR_COMPONENT_G_BIT
| VK_COLOR_COMPONENT_B_BIT
| VK_COLOR_COMPONENT_A_BIT;
m_context->setBlendState(
new DxvkBlendState(
VK_FALSE, VK_LOGIC_OP_NO_OP,
1, &blendAttachment));
}
DxgiPresenter::~DxgiPresenter() {
}
void DxgiPresenter::presentImage(const Rc<DxvkImageView>& view) {
m_context->beginRecording(
m_device->createCommandList());
auto framebuffer = m_swapchain->getFramebuffer(m_acquireSync);
auto framebufferSize = framebuffer->size();
m_context->bindFramebuffer(framebuffer);
VkViewport viewport;
viewport.x = 0.0f;
viewport.y = 0.0f;
viewport.width = static_cast<float>(framebufferSize.width);
viewport.height = static_cast<float>(framebufferSize.height);
viewport.minDepth = 0.0f;
viewport.maxDepth = 1.0f;
VkRect2D scissor;
scissor.offset.x = 0;
scissor.offset.y = 0;
scissor.extent.width = framebufferSize.width;
scissor.extent.height = framebufferSize.height;
m_context->setViewports(1, &viewport, &scissor);
// TODO bind back buffer as a shader resource
m_context->draw(4, 1, 0, 0);
m_device->submitCommandList(
m_context->endRecording(),
m_acquireSync, m_presentSync);
m_swapchain->present(m_presentSync);
// FIXME Make sure that the semaphores and the command
// list can be safely used without stalling the device.
m_device->waitForIdle();
}
Rc<DxvkShader> DxgiPresenter::createVertexShader() {
SpirvModule module;
// Set up basic vertex shader capabilities
module.enableCapability(spv::CapabilityShader);
module.setMemoryModel(
spv::AddressingModelLogical,
spv::MemoryModelGLSL450);
// ID of the entry point (function)
uint32_t entryPointId = module.allocateId();
// Data type definitions
uint32_t typeVoid = module.defVoidType();
uint32_t typeU32 = module.defIntType(32, 0);
uint32_t typeF32 = module.defFloatType(32);
uint32_t typeVec2 = module.defVectorType(typeF32, 2);
uint32_t typeVec4 = module.defVectorType(typeF32, 4);
uint32_t typeVec4Arr4 = module.defArrayType(typeVec4, module.constu32(4));
uint32_t typeFn = module.defFunctionType(typeVoid, 0, nullptr);
// Pointer type definitions
uint32_t ptrInputU32 = module.defPointerType(typeU32, spv::StorageClassInput);
uint32_t ptrOutputVec2 = module.defPointerType(typeVec2, spv::StorageClassOutput);
uint32_t ptrOutputVec4 = module.defPointerType(typeVec4, spv::StorageClassOutput);
uint32_t ptrPrivateVec4 = module.defPointerType(typeVec4, spv::StorageClassPrivate);
uint32_t ptrPrivateArr4 = module.defPointerType(typeVec4Arr4, spv::StorageClassPrivate);
// Input variable: VertexIndex
uint32_t inVertexId = module.newVar(
ptrInputU32, spv::StorageClassInput);
module.decorateBuiltIn(inVertexId, spv::BuiltInVertexIndex);
// Output variable: Position
uint32_t outPosition = module.newVar(
ptrOutputVec4, spv::StorageClassOutput);
module.decorateBuiltIn(outPosition, spv::BuiltInPosition);
// Output variable: Texture coordinates
uint32_t outTexCoord = module.newVar(
ptrOutputVec2, spv::StorageClassOutput);
module.decorateLocation(outTexCoord, 0);
// Temporary variable: Vertex array
uint32_t varVertexArray = module.newVar(
ptrPrivateArr4, spv::StorageClassPrivate);
// Scalar constants
uint32_t constF32Zero = module.constf32( 0.0f);
uint32_t constF32Half = module.constf32( 0.5f);
uint32_t constF32Pos1 = module.constf32( 1.0f);
uint32_t constF32Neg1 = module.constf32(-1.0f);
// Vector constants
uint32_t constVec2HalfIds[2] = { constF32Half, constF32Half };
uint32_t constVec2Half = module.constComposite(typeVec2, 2, constVec2HalfIds);
// Construct vertex array
uint32_t vertexData[16] = {
constF32Neg1, constF32Neg1, constF32Zero, constF32Pos1,
constF32Neg1, constF32Pos1, constF32Zero, constF32Pos1,
constF32Pos1, constF32Neg1, constF32Zero, constF32Pos1,
constF32Pos1, constF32Pos1, constF32Zero, constF32Pos1,
};
uint32_t vertexConstants[4] = {
module.constComposite(typeVec4, 4, vertexData + 0),
module.constComposite(typeVec4, 4, vertexData + 4),
module.constComposite(typeVec4, 4, vertexData + 8),
module.constComposite(typeVec4, 4, vertexData + 12),
};
uint32_t vertexArray = module.constComposite(
typeVec4Arr4, 4, vertexConstants);
// Function header
module.functionBegin(typeVoid, entryPointId, typeFn, spv::FunctionControlMaskNone);
module.opLabel(module.allocateId());
module.opStore(varVertexArray, vertexArray);
// Load position of the current vertex
uint32_t tmpVertexId = module.opLoad(typeU32, inVertexId);
uint32_t tmpVertexPtr = module.opAccessChain(
ptrPrivateVec4, varVertexArray, 1, &tmpVertexId);
uint32_t tmpVertexPos = module.opLoad(typeVec4, tmpVertexPtr);
module.opStore(outPosition, tmpVertexPos);
// Compute texture coordinates
uint32_t swizzleIndices[2] = { 0, 1 };
uint32_t tmpTexCoord = module.opVectorShuffle(typeVec2,
tmpVertexPos, tmpVertexPos, 2, swizzleIndices);
tmpTexCoord = module.opFMul(typeVec2, tmpTexCoord, constVec2Half);
tmpTexCoord = module.opFAdd(typeVec2, tmpTexCoord, constVec2Half);
module.opStore(outTexCoord, tmpTexCoord);
module.opReturn();
module.functionEnd();
// Register function entry point
std::array<uint32_t, 3> interfaces = {
inVertexId, outPosition, outTexCoord,
};
module.addEntryPoint(entryPointId, spv::ExecutionModelVertex,
"main", interfaces.size(), interfaces.data());
// Create the actual shader module
return m_device->createShader(
VK_SHADER_STAGE_VERTEX_BIT, module.compile());
}
Rc<DxvkShader> DxgiPresenter::createFragmentShader() {
SpirvModule module;
module.enableCapability(spv::CapabilityShader);
module.setMemoryModel(
spv::AddressingModelLogical,
spv::MemoryModelGLSL450);
uint32_t entryPointId = module.allocateId();
// Data type definitions
uint32_t typeVoid = module.defVoidType();
uint32_t typeF32 = module.defFloatType(32);
uint32_t typeVec2 = module.defVectorType(typeF32, 2);
uint32_t typeVec4 = module.defVectorType(typeF32, 4);
uint32_t typeFn = module.defFunctionType(typeVoid, 0, nullptr);
// Pointer type definitions
uint32_t ptrInputVec2 = module.defPointerType(typeVec2, spv::StorageClassInput);
uint32_t ptrOutputVec4 = module.defPointerType(typeVec4, spv::StorageClassOutput);
// Input variable: Texture coordinates
uint32_t inTexCoord = module.newVar(
ptrInputVec2, spv::StorageClassInput);
module.decorateLocation(inTexCoord, 0);
// Output variable: Final color
uint32_t outColor = module.newVar(
ptrOutputVec4, spv::StorageClassOutput);
module.decorateLocation(outColor, 0);
// Function header
module.functionBegin(typeVoid, entryPointId, typeFn, spv::FunctionControlMaskNone);
module.opLabel(module.allocateId());
// Load texture coordinates
uint32_t tmpTexCoord = module.opLoad(typeVec2, inTexCoord);
// Compute final color
uint32_t swizzleIndices[4] = { 0, 1, 2, 3 };
uint32_t tmpColor = module.opVectorShuffle(
typeVec4, tmpTexCoord, tmpTexCoord, 4, swizzleIndices);
module.opStore(outColor, tmpColor);
module.opReturn();
module.functionEnd();
// Register function entry point
std::array<uint32_t, 2> interfaces = { inTexCoord, outColor };
module.addEntryPoint(entryPointId, spv::ExecutionModelFragment,
"main", interfaces.size(), interfaces.data());
// Create the actual shader module
return m_device->createShader(
VK_SHADER_STAGE_FRAGMENT_BIT, module.compile());
}
}