1
0
mirror of https://github.com/doitsujin/dxvk.git synced 2024-12-13 16:08:50 +01:00
dxvk/src/dxgi/dxgi_presenter.cpp

481 lines
18 KiB
C++
Raw Normal View History

#include "dxgi_presenter.h"
#include "../spirv/spirv_module.h"
#include <dxgi_presenter_frag.h>
#include <dxgi_presenter_vert.h>
namespace dxvk {
DxgiVkPresenter::DxgiVkPresenter(
const DxgiOptions* pOptions,
const Rc<DxvkDevice>& device,
HWND window)
: m_window (window),
m_device (device),
m_context (device->createContext()),
m_syncMode(pOptions->syncMode) {
// Some games don't work with deferred surface creation,
// so we should default to initializing it immediately.
if (!pOptions->deferSurfaceCreation)
m_surface = CreateSurface();
// Reset options for the swap chain itself. We will
// create a swap chain object before presentation.
m_options.preferredSurfaceFormat = { VK_FORMAT_UNDEFINED, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR };
m_options.preferredPresentMode = VK_PRESENT_MODE_FIFO_KHR;
m_options.preferredBufferSize = { 0u, 0u };
m_options.preferredBufferCount = 0;
// Samplers for presentation. We'll create one with point sampling that will
// be used when the back buffer resolution matches the output resolution, and
// one with linar sampling that will be used when the image will be scaled.
m_samplerFitting = CreateSampler(VK_FILTER_NEAREST, VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER);
m_samplerScaling = CreateSampler(VK_FILTER_LINEAR, VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER);
// Create objects required for the gamma ramp. This is implemented partially
// with an UBO, which stores global parameters, and a lookup texture, which
// stores the actual gamma ramp and can be sampled with a linear filter.
m_gammaSampler = CreateSampler(VK_FILTER_LINEAR, VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE);
m_gammaTexture = CreateGammaTexture();
m_gammaTextureView = CreateGammaTextureView();
// Set up context state. The shader bindings and the
// constant state objects will never be modified.
m_iaState.primitiveTopology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP;
m_iaState.primitiveRestart = VK_FALSE;
m_iaState.patchVertexCount = 0;
m_rsState.polygonMode = VK_POLYGON_MODE_FILL;
m_rsState.cullMode = VK_CULL_MODE_BACK_BIT;
m_rsState.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
m_rsState.depthClampEnable = VK_FALSE;
m_rsState.depthBiasEnable = VK_FALSE;
m_rsState.depthBiasConstant = 0.0f;
m_rsState.depthBiasClamp = 0.0f;
m_rsState.depthBiasSlope = 0.0f;
m_msState.sampleMask = 0xffffffff;
m_msState.enableAlphaToCoverage = VK_FALSE;
m_msState.enableAlphaToOne = VK_FALSE;
VkStencilOpState stencilOp;
stencilOp.failOp = VK_STENCIL_OP_KEEP;
stencilOp.passOp = VK_STENCIL_OP_KEEP;
stencilOp.depthFailOp = VK_STENCIL_OP_KEEP;
stencilOp.compareOp = VK_COMPARE_OP_ALWAYS;
stencilOp.compareMask = 0xFFFFFFFF;
stencilOp.writeMask = 0xFFFFFFFF;
stencilOp.reference = 0;
m_dsState.enableDepthTest = VK_FALSE;
m_dsState.enableDepthWrite = VK_FALSE;
m_dsState.enableStencilTest = VK_FALSE;
m_dsState.depthCompareOp = VK_COMPARE_OP_ALWAYS;
m_dsState.stencilOpFront = stencilOp;
m_dsState.stencilOpBack = stencilOp;
2017-12-08 01:06:48 +01:00
m_loState.enableLogicOp = VK_FALSE;
m_loState.logicOp = VK_LOGIC_OP_NO_OP;
2017-12-08 01:06:48 +01:00
m_blendMode.enableBlending = VK_FALSE;
m_blendMode.colorSrcFactor = VK_BLEND_FACTOR_ONE;
m_blendMode.colorDstFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
m_blendMode.colorBlendOp = VK_BLEND_OP_ADD;
m_blendMode.alphaSrcFactor = VK_BLEND_FACTOR_ONE;
m_blendMode.alphaDstFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
m_blendMode.alphaBlendOp = VK_BLEND_OP_ADD;
m_blendMode.writeMask = VK_COLOR_COMPONENT_R_BIT
| VK_COLOR_COMPONENT_G_BIT
| VK_COLOR_COMPONENT_B_BIT
| VK_COLOR_COMPONENT_A_BIT;
m_vertShader = CreateVertexShader();
m_fragShader = CreateFragmentShader();
m_hud = hud::Hud::createHud(m_device);
}
DxgiVkPresenter::~DxgiVkPresenter() {
m_device->waitForIdle();
}
void DxgiVkPresenter::InitBackBuffer(const Rc<DxvkImage>& Image) {
m_context->beginRecording(
m_device->createCommandList());
VkImageSubresourceRange sr;
sr.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
sr.baseMipLevel = 0;
sr.levelCount = Image->info().mipLevels;
sr.baseArrayLayer = 0;
sr.layerCount = Image->info().numLayers;
m_context->initImage(Image, sr);
m_device->submitCommandList(
m_context->endRecording(),
nullptr, nullptr);
}
void DxgiVkPresenter::PresentImage(UINT SyncInterval, const Rc<DxvkEvent>& SyncEvent) {
if (m_hud != nullptr)
m_hud->update();
// Wait for frame event to be signaled. This is used
// to enforce the device's frame latency requirement.
SyncEvent->wait();
// Check whether the back buffer size is the same
// as the window size, in which case we should use
// VK_FILTER_NEAREST to avoid blurry output
const bool fitSize =
m_backBuffer->info().extent.width == m_options.preferredBufferSize.width
&& m_backBuffer->info().extent.height == m_options.preferredBufferSize.height;
for (uint32_t i = 0; i < SyncInterval || i < 1; i++) {
m_context->beginRecording(
m_device->createCommandList());
// Resolve back buffer if it is multisampled. We
// only have to do it only for the first frame.
if (m_backBufferResolve != nullptr && i == 0) {
VkImageSubresourceLayers resolveSubresources;
resolveSubresources.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
resolveSubresources.mipLevel = 0;
resolveSubresources.baseArrayLayer = 0;
resolveSubresources.layerCount = 1;
m_context->resolveImage(
m_backBufferResolve, resolveSubresources,
m_backBuffer, resolveSubresources,
VK_FORMAT_UNDEFINED);
}
auto swapSemas = m_swapchain->getSemaphorePair();
auto swapImage = m_swapchain->getImageView(swapSemas.acquireSync);
m_context->bindShader(VK_SHADER_STAGE_VERTEX_BIT, m_vertShader);
m_context->bindShader(VK_SHADER_STAGE_FRAGMENT_BIT, m_fragShader);
DxvkRenderTargets renderTargets;
renderTargets.color[0].view = swapImage;
renderTargets.color[0].layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
m_context->bindRenderTargets(renderTargets, false);
VkViewport viewport;
viewport.x = 0.0f;
viewport.y = 0.0f;
viewport.width = float(swapImage->imageInfo().extent.width);
viewport.height = float(swapImage->imageInfo().extent.height);
viewport.minDepth = 0.0f;
viewport.maxDepth = 1.0f;
VkRect2D scissor;
scissor.offset.x = 0;
scissor.offset.y = 0;
scissor.extent.width = swapImage->imageInfo().extent.width;
scissor.extent.height = swapImage->imageInfo().extent.height;
m_context->setViewports(1, &viewport, &scissor);
m_context->setRasterizerState(m_rsState);
m_context->setMultisampleState(m_msState);
m_context->setDepthStencilState(m_dsState);
m_context->setLogicOpState(m_loState);
m_context->setBlendMode(0, m_blendMode);
m_context->setInputAssemblyState(m_iaState);
m_context->setInputLayout(0, nullptr, 0, nullptr);
m_context->bindResourceSampler(BindingIds::Sampler, fitSize ? m_samplerFitting : m_samplerScaling);
m_context->bindResourceSampler(BindingIds::GammaSmp, m_gammaSampler);
m_context->bindResourceView(BindingIds::Texture, m_backBufferView, nullptr);
m_context->bindResourceView(BindingIds::GammaTex, m_gammaTextureView, nullptr);
m_context->draw(4, 1, 0, 0);
if (m_hud != nullptr)
m_hud->render(m_context, m_options.preferredBufferSize);
if (i == SyncInterval - 1) {
DxvkEventRevision eventRev;
eventRev.event = SyncEvent;
eventRev.revision = SyncEvent->reset();
m_context->signalEvent(eventRev);
}
m_device->submitCommandList(
m_context->endRecording(),
swapSemas.acquireSync,
swapSemas.presentSync);
m_swapchain->present(
swapSemas.presentSync);
}
}
void DxgiVkPresenter::UpdateBackBuffer(const Rc<DxvkImage>& Image) {
// Explicitly destroy the old stuff
m_backBuffer = Image;
m_backBufferResolve = nullptr;
m_backBufferView = nullptr;
// If a multisampled back buffer was requested, we also need to
// create a resolve image with otherwise identical properties.
// Multisample images cannot be sampled from.
if (Image->info().sampleCount != VK_SAMPLE_COUNT_1_BIT) {
DxvkImageCreateInfo resolveInfo;
resolveInfo.type = VK_IMAGE_TYPE_2D;
resolveInfo.format = Image->info().format;
resolveInfo.flags = 0;
resolveInfo.sampleCount = VK_SAMPLE_COUNT_1_BIT;
resolveInfo.extent = Image->info().extent;
resolveInfo.numLayers = 1;
resolveInfo.mipLevels = 1;
resolveInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT
| VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT
| VK_IMAGE_USAGE_TRANSFER_DST_BIT;
resolveInfo.stages = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT
| VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT
| VK_PIPELINE_STAGE_TRANSFER_BIT;
resolveInfo.access = VK_ACCESS_SHADER_READ_BIT
| VK_ACCESS_TRANSFER_WRITE_BIT
| VK_ACCESS_COLOR_ATTACHMENT_READ_BIT
| VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
resolveInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
resolveInfo.layout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
m_backBufferResolve = m_device->createImage(
resolveInfo, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
}
// Create an image view that allows the
// image to be bound as a shader resource.
DxvkImageViewCreateInfo viewInfo;
viewInfo.type = VK_IMAGE_VIEW_TYPE_2D;
viewInfo.format = Image->info().format;
viewInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT;
viewInfo.aspect = VK_IMAGE_ASPECT_COLOR_BIT;
viewInfo.minLevel = 0;
viewInfo.numLevels = 1;
viewInfo.minLayer = 0;
viewInfo.numLayers = 1;
m_backBufferView = m_device->createImageView(
m_backBufferResolve != nullptr
? m_backBufferResolve
: m_backBuffer,
viewInfo);
InitBackBuffer(m_backBuffer);
}
void DxgiVkPresenter::SetGammaControl(
const DXGI_VK_GAMMA_CURVE* pGammaCurve) {
m_context->beginRecording(
m_device->createCommandList());
m_context->updateImage(m_gammaTexture,
VkImageSubresourceLayers { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 },
VkOffset3D { 0, 0, 0 },
VkExtent3D { DXGI_VK_GAMMA_CP_COUNT, 1, 1 },
pGammaCurve, 0, 0);
m_device->submitCommandList(
m_context->endRecording(),
nullptr, nullptr);
}
void DxgiVkPresenter::RecreateSwapchain(DXGI_FORMAT Format, BOOL Vsync, VkExtent2D WindowSize, UINT BufferCount) {
if (m_surface == nullptr)
m_surface = CreateSurface();
DxvkSwapchainProperties options;
options.preferredSurfaceFormat = PickSurfaceFormat(Format);
options.preferredPresentMode = PickPresentMode(Vsync);
options.preferredBufferSize = WindowSize;
options.preferredBufferCount = BufferCount;
const bool doRecreate =
options.preferredSurfaceFormat.format != m_options.preferredSurfaceFormat.format
|| options.preferredSurfaceFormat.colorSpace != m_options.preferredSurfaceFormat.colorSpace
|| options.preferredPresentMode != m_options.preferredPresentMode
|| options.preferredBufferSize.width != m_options.preferredBufferSize.width
|| options.preferredBufferSize.height != m_options.preferredBufferSize.height;
if (doRecreate) {
Logger::info(str::format(
"DxgiVkPresenter: Recreating swap chain: ",
"\n Format: ", options.preferredSurfaceFormat.format,
"\n Present mode: ", options.preferredPresentMode,
"\n Buffer size: ", options.preferredBufferSize.width, "x", options.preferredBufferSize.height));
if (m_swapchain == nullptr)
m_swapchain = m_device->createSwapchain(m_surface, options);
else
m_swapchain->changeProperties(options);
m_options = options;
}
}
VkSurfaceFormatKHR DxgiVkPresenter::PickSurfaceFormat(DXGI_FORMAT Fmt) const {
std::vector<VkSurfaceFormatKHR> formats;
switch (Fmt) {
case DXGI_FORMAT_R8G8B8A8_UNORM:
case DXGI_FORMAT_B8G8R8A8_UNORM: {
formats.push_back({ VK_FORMAT_R8G8B8A8_UNORM, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR });
formats.push_back({ VK_FORMAT_B8G8R8A8_UNORM, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR });
} break;
case DXGI_FORMAT_R8G8B8A8_UNORM_SRGB:
case DXGI_FORMAT_B8G8R8A8_UNORM_SRGB: {
formats.push_back({ VK_FORMAT_R8G8B8A8_SRGB, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR });
formats.push_back({ VK_FORMAT_B8G8R8A8_SRGB, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR });
} break;
case DXGI_FORMAT_R10G10B10A2_UNORM: {
formats.push_back({ VK_FORMAT_A2B10G10R10_UNORM_PACK32, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR });
formats.push_back({ VK_FORMAT_A2R10G10B10_UNORM_PACK32, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR });
} break;
case DXGI_FORMAT_R16G16B16A16_FLOAT: {
formats.push_back({ VK_FORMAT_R16G16B16A16_SFLOAT, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR });
} break;
default:
Logger::warn(str::format("DxgiVkPresenter: Unknown format: ", Fmt));
}
return m_surface->pickSurfaceFormat(
formats.size(), formats.data());
}
VkPresentModeKHR DxgiVkPresenter::PickPresentMode(BOOL Vsync) const {
std::array<VkPresentModeKHR, 4> modes;
size_t n = 0;
if (Vsync) {
if (m_syncMode == DxgiSyncMode::Mailbox)
modes[n++] = VK_PRESENT_MODE_MAILBOX_KHR;
modes[n++] = VK_PRESENT_MODE_FIFO_KHR;
} else {
modes[n++] = VK_PRESENT_MODE_IMMEDIATE_KHR;
modes[n++] = VK_PRESENT_MODE_MAILBOX_KHR;
modes[n++] = VK_PRESENT_MODE_FIFO_RELAXED_KHR;
}
return m_surface->pickPresentMode(n, modes.data());
}
Rc<DxvkSurface> DxgiVkPresenter::CreateSurface() {
HINSTANCE instance = reinterpret_cast<HINSTANCE>(
GetWindowLongPtr(m_window, GWLP_HINSTANCE));
return m_device->adapter()->createSurface(instance, m_window);
}
Rc<DxvkSampler> DxgiVkPresenter::CreateSampler(
VkFilter Filter,
VkSamplerAddressMode AddressMode) {
DxvkSamplerCreateInfo samplerInfo;
samplerInfo.magFilter = Filter;
samplerInfo.minFilter = Filter;
samplerInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST;
samplerInfo.mipmapLodBias = 0.0f;
samplerInfo.mipmapLodMin = 0.0f;
samplerInfo.mipmapLodMax = 0.0f;
samplerInfo.useAnisotropy = VK_FALSE;
samplerInfo.maxAnisotropy = 1.0f;
samplerInfo.addressModeU = AddressMode;
samplerInfo.addressModeV = AddressMode;
samplerInfo.addressModeW = AddressMode;
samplerInfo.compareToDepth = VK_FALSE;
samplerInfo.compareOp = VK_COMPARE_OP_ALWAYS;
samplerInfo.borderColor = VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK;
samplerInfo.usePixelCoord = VK_FALSE;
return m_device->createSampler(samplerInfo);
}
Rc<DxvkImage> DxgiVkPresenter::CreateGammaTexture() {
DxvkImageCreateInfo info;
info.type = VK_IMAGE_TYPE_1D;
info.format = VK_FORMAT_R16G16B16A16_UNORM;
info.flags = 0;
info.sampleCount = VK_SAMPLE_COUNT_1_BIT;
info.extent = { DXGI_VK_GAMMA_CP_COUNT, 1, 1 };
info.numLayers = 1;
info.mipLevels = 1;
info.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT
| VK_IMAGE_USAGE_SAMPLED_BIT;
info.stages = VK_PIPELINE_STAGE_TRANSFER_BIT
| VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
info.access = VK_ACCESS_TRANSFER_WRITE_BIT
| VK_ACCESS_SHADER_READ_BIT;
info.tiling = VK_IMAGE_TILING_OPTIMAL;
info.layout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
return m_device->createImage(info, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
}
Rc<DxvkImageView> DxgiVkPresenter::CreateGammaTextureView() {
DxvkImageViewCreateInfo info;
info.type = VK_IMAGE_VIEW_TYPE_1D;
info.format = VK_FORMAT_R16G16B16A16_UNORM;
info.usage = VK_IMAGE_USAGE_SAMPLED_BIT;
info.aspect = VK_IMAGE_ASPECT_COLOR_BIT;
info.minLevel = 0;
info.numLevels = 1;
info.minLayer = 0;
info.numLayers = 1;
return m_device->createImageView(m_gammaTexture, info);
}
Rc<DxvkShader> DxgiVkPresenter::CreateVertexShader() {
const SpirvCodeBuffer codeBuffer(dxgi_presenter_vert);
return m_device->createShader(
VK_SHADER_STAGE_VERTEX_BIT,
0, nullptr, { 0u, 1u },
codeBuffer);
}
Rc<DxvkShader> DxgiVkPresenter::CreateFragmentShader() {
const SpirvCodeBuffer codeBuffer(dxgi_presenter_frag);
// Shader resource slots
const std::array<DxvkResourceSlot, 4> resourceSlots = {{
{ BindingIds::Sampler, VK_DESCRIPTOR_TYPE_SAMPLER, VK_IMAGE_VIEW_TYPE_MAX_ENUM },
{ BindingIds::Texture, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, VK_IMAGE_VIEW_TYPE_2D },
{ BindingIds::GammaSmp, VK_DESCRIPTOR_TYPE_SAMPLER, VK_IMAGE_VIEW_TYPE_MAX_ENUM },
{ BindingIds::GammaTex, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, VK_IMAGE_VIEW_TYPE_1D },
}};
// Create the actual shader module
return m_device->createShader(
VK_SHADER_STAGE_FRAGMENT_BIT,
resourceSlots.size(),
resourceSlots.data(),
{ 1u, 1u },
codeBuffer);
}
}