1
0
mirror of https://github.com/doitsujin/dxvk.git synced 2024-12-14 18:23:52 +01:00
dxvk/src/dxso/dxso_compiler.cpp

3679 lines
122 KiB
C++
Raw Normal View History

#include "dxso_compiler.h"
#include "dxso_analysis.h"
#include "../d3d9/d3d9_caps.h"
#include "../d3d9/d3d9_constant_set.h"
#include "../d3d9/d3d9_state.h"
#include "../d3d9/d3d9_spec_constants.h"
#include "../d3d9/d3d9_fixed_function.h"
#include "dxso_util.h"
#include "../dxvk/dxvk_spec_const.h"
#include <cfloat>
namespace dxvk {
DxsoCompiler::DxsoCompiler(
const std::string& fileName,
const DxsoModuleInfo& moduleInfo,
const DxsoProgramInfo& programInfo,
const DxsoAnalysisInfo& analysis,
const D3D9ConstantLayout& layout)
: m_moduleInfo ( moduleInfo )
, m_programInfo( programInfo )
, m_analysis ( &analysis )
, m_layout ( &layout )
, m_module ( spvVersion(1, 3) ) {
// Declare an entry point ID. We'll need it during the
// initialization phase where the execution mode is set.
m_entryPointId = m_module.allocateId();
// Set the shader name so that we recognize it in renderdoc
m_module.setDebugSource(
spv::SourceLanguageUnknown, 0,
m_module.addDebugString(fileName.c_str()),
nullptr);
// Set the memory model. This is the same for all shaders.
m_module.setMemoryModel(
spv::AddressingModelLogical,
spv::MemoryModelGLSL450);
m_usedSamplers = 0;
m_usedRTs = 0;
for (uint32_t i = 0; i < m_rRegs.size(); i++)
m_rRegs.at(i) = DxsoRegisterPointer{ };
for (uint32_t i = 0; i < m_cFloat.size(); i++)
m_cFloat.at(i) = 0;
for (uint32_t i = 0; i < m_cInt.size(); i++)
m_cInt.at(i) = 0;
for (uint32_t i = 0; i < m_cBool.size(); i++)
m_cBool.at(i) = 0;
m_vs.addr = DxsoRegisterPointer{ };
m_vs.oPos = DxsoRegisterPointer{ };
m_fog = DxsoRegisterPointer{ };
m_vs.oPSize = DxsoRegisterPointer{ };
for (uint32_t i = 0; i < m_ps.oColor.size(); i++)
m_ps.oColor.at(i) = DxsoRegisterPointer{ };
m_ps.oDepth = DxsoRegisterPointer{ };
m_ps.vFace = DxsoRegisterPointer{ };
m_ps.vPos = DxsoRegisterPointer{ };
m_loopCounter = DxsoRegisterPointer{ };
this->emitInit();
}
void DxsoCompiler::processInstruction(
const DxsoInstructionContext& ctx,
uint32_t currentCoissueIdx) {
const DxsoOpcode opcode = ctx.instruction.opcode;
for (const auto& coissue : m_analysis->coissues) {
if (coissue.instructionIdx == ctx.instructionIdx &&
coissue.instructionIdx != currentCoissueIdx)
return;
if (coissue.instructionIdx == ctx.instructionIdx + 1)
processInstruction(coissue, coissue.instructionIdx);
}
switch (opcode) {
case DxsoOpcode::Nop:
return;
case DxsoOpcode::Dcl:
return this->emitDcl(ctx);
case DxsoOpcode::Def:
case DxsoOpcode::DefI:
case DxsoOpcode::DefB:
return this->emitDef(ctx);
case DxsoOpcode::Mov:
case DxsoOpcode::Mova:
return this->emitMov(ctx);
case DxsoOpcode::Add:
case DxsoOpcode::Sub:
case DxsoOpcode::Mad:
case DxsoOpcode::Mul:
case DxsoOpcode::Rcp:
case DxsoOpcode::Rsq:
case DxsoOpcode::Dp3:
case DxsoOpcode::Dp4:
case DxsoOpcode::Slt:
case DxsoOpcode::Sge:
case DxsoOpcode::Min:
case DxsoOpcode::ExpP:
case DxsoOpcode::Exp:
case DxsoOpcode::Max:
case DxsoOpcode::Pow:
case DxsoOpcode::Crs:
case DxsoOpcode::Abs:
case DxsoOpcode::Nrm:
case DxsoOpcode::SinCos:
case DxsoOpcode::Lit:
case DxsoOpcode::Dst:
case DxsoOpcode::LogP:
case DxsoOpcode::Log:
case DxsoOpcode::Lrp:
case DxsoOpcode::Frc:
case DxsoOpcode::Cmp:
case DxsoOpcode::Cnd:
case DxsoOpcode::Dp2Add:
case DxsoOpcode::DsX:
case DxsoOpcode::DsY:
return this->emitVectorAlu(ctx);
case DxsoOpcode::SetP:
return this->emitPredicateOp(ctx);
case DxsoOpcode::M3x2:
case DxsoOpcode::M3x3:
case DxsoOpcode::M3x4:
case DxsoOpcode::M4x3:
case DxsoOpcode::M4x4:
return this->emitMatrixAlu(ctx);
case DxsoOpcode::Loop:
return this->emitControlFlowLoop(ctx);
case DxsoOpcode::EndLoop:
return this->emitControlFlowEndLoop(ctx);
case DxsoOpcode::Rep:
return this->emitControlFlowRep(ctx);
case DxsoOpcode::EndRep:
return this->emitControlFlowEndRep(ctx);
case DxsoOpcode::Break:
return this->emitControlFlowBreak(ctx);
case DxsoOpcode::BreakC:
return this->emitControlFlowBreakC(ctx);
case DxsoOpcode::If:
case DxsoOpcode::Ifc:
return this->emitControlFlowIf(ctx);
case DxsoOpcode::Else:
return this->emitControlFlowElse(ctx);
case DxsoOpcode::EndIf:
return this->emitControlFlowEndIf(ctx);
case DxsoOpcode::TexCoord:
return this->emitTexCoord(ctx);
case DxsoOpcode::Tex:
case DxsoOpcode::TexLdl:
case DxsoOpcode::TexLdd:
case DxsoOpcode::TexDp3Tex:
case DxsoOpcode::TexReg2Ar:
case DxsoOpcode::TexReg2Gb:
case DxsoOpcode::TexReg2Rgb:
case DxsoOpcode::TexBem:
case DxsoOpcode::TexM3x2Tex:
case DxsoOpcode::TexM3x3Tex:
case DxsoOpcode::TexM3x3Spec:
case DxsoOpcode::TexM3x3VSpec:
return this->emitTextureSample(ctx);
case DxsoOpcode::TexKill:
return this->emitTextureKill(ctx);
case DxsoOpcode::TexM3x3Pad:
case DxsoOpcode::TexM3x2Pad:
// We don't need to do anything here, these are just padding instructions
break;
case DxsoOpcode::End:
case DxsoOpcode::Comment:
break;
default:
Logger::warn(str::format("DxsoCompiler::processInstruction: unhandled opcode: ", opcode));
break;
}
}
void DxsoCompiler::finalize() {
if (m_programInfo.type() == DxsoProgramTypes::VertexShader)
this->emitVsFinalize();
else
this->emitPsFinalize();
// Declare the entry point, we now have all the
// information we need, including the interfaces
m_module.addEntryPoint(m_entryPointId,
m_programInfo.executionModel(), "main",
m_entryPointInterfaces.size(),
m_entryPointInterfaces.data());
m_module.setDebugName(m_entryPointId, "main");
}
DxsoPermutations DxsoCompiler::compile() {
DxsoPermutations permutations = { };
// Create the shader module object
permutations[D3D9ShaderPermutations::None] = compileShader();
// If we need to add more permuations, might be worth making a copy of module
// before we do anything more. :-)
if (m_programInfo.type() == DxsoProgramType::PixelShader) {
if (m_ps.diffuseColorIn)
m_module.decorate(m_ps.diffuseColorIn, spv::DecorationFlat);
if (m_ps.specularColorIn)
m_module.decorate(m_ps.specularColorIn, spv::DecorationFlat);
permutations[D3D9ShaderPermutations::FlatShade] = compileShader();
}
return permutations;
}
Rc<DxvkShader> DxsoCompiler::compileShader() {
DxvkShaderOptions shaderOptions = { };
DxvkShaderConstData constData = { };
return new DxvkShader(
m_programInfo.shaderStage(),
m_resourceSlots.size(),
m_resourceSlots.data(),
m_interfaceSlots,
m_module.compile(),
shaderOptions,
std::move(constData));
}
void DxsoCompiler::emitInit() {
// Set up common capabilities for all shaders
m_module.enableCapability(spv::CapabilityShader);
m_module.enableCapability(spv::CapabilityImageQuery);
this->emitDclConstantBuffer();
this->emitDclInputArray();
// Initialize the shader module with capabilities
// etc. Each shader type has its own peculiarities.
switch (m_programInfo.type()) {
case DxsoProgramTypes::VertexShader: return this->emitVsInit();
case DxsoProgramTypes::PixelShader: return this->emitPsInit();
default: break;
}
}
void DxsoCompiler::emitDclConstantBuffer() {
std::array<uint32_t, 3> members = {
// float f[256 or 224 or 8192]
m_module.defArrayTypeUnique(
getVectorTypeId({ DxsoScalarType::Float32, 4 }),
m_module.constu32(m_layout->floatCount)),
// int i[16 or 2048]
m_module.defArrayTypeUnique(
getVectorTypeId({ DxsoScalarType::Sint32, 4 }),
m_module.constu32(m_layout->intCount)),
// uint32_t boolBitmask
// or uvec4 boolBitmask[512]
// Defined later...
0
};
// Decorate array strides, this is required.
m_module.decorateArrayStride(members[0], 16);
m_module.decorateArrayStride(members[1], 16);
const bool swvp = m_layout->bitmaskCount != 1;
if (swvp) {
// Must be a multiple of 4 otherwise.
members[2] = m_module.defArrayTypeUnique(
getVectorTypeId({ DxsoScalarType::Uint32, 4 }),
m_module.constu32(m_layout->bitmaskCount / 4));
m_module.decorateArrayStride(members[2], 16);
}
const uint32_t structType =
m_module.defStructType(swvp ? 3 : 2, members.data());
m_module.decorateBlock(structType);
m_module.memberDecorateOffset(structType, 0, m_layout->floatOffset());
m_module.memberDecorateOffset(structType, 1, m_layout->intOffset());
if (swvp)
m_module.memberDecorateOffset(structType, 2, m_layout->bitmaskOffset());
m_module.setDebugName(structType, "cbuffer_t");
m_module.setDebugMemberName(structType, 0, "f");
m_module.setDebugMemberName(structType, 1, "i");
if (swvp)
m_module.setDebugMemberName(structType, 2, "b");
m_cBuffer = m_module.newVar(
m_module.defPointerType(structType, spv::StorageClassUniform),
spv::StorageClassUniform);
m_module.setDebugName(m_cBuffer, "c");
const uint32_t bindingId = computeResourceSlotId(
m_programInfo.type(), DxsoBindingType::ConstantBuffer,
0);
m_module.decorateDescriptorSet(m_cBuffer, 0);
m_module.decorateBinding(m_cBuffer, bindingId);
DxvkResourceSlot resource;
resource.slot = bindingId;
resource.type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
resource.view = VK_IMAGE_VIEW_TYPE_MAX_ENUM;
resource.access = VK_ACCESS_UNIFORM_READ_BIT;
m_resourceSlots.push_back(resource);
m_boolSpecConstant = m_module.specConst32(m_module.defIntType(32, 0), 0);
m_module.decorateSpecId(m_boolSpecConstant, getSpecId(
m_programInfo.type() == DxsoProgramType::VertexShader
? D3D9SpecConstantId::VertexShaderBools
: D3D9SpecConstantId::PixelShaderBools));
m_module.setDebugName(m_boolSpecConstant, "boolConstants");
}
void DxsoCompiler::emitDclInputArray() {
DxsoArrayType info;
info.ctype = DxsoScalarType::Float32;
info.ccount = 4;
info.alength = DxsoMaxInterfaceRegs;
uint32_t arrayTypeId = getArrayTypeId(info);
// Define the actual variable. Note that this is private
// because we will copy input registers
// to the array during the setup phase.
const uint32_t ptrTypeId = m_module.defPointerType(
arrayTypeId, spv::StorageClassPrivate);
m_vArray = m_module.newVar(
ptrTypeId, spv::StorageClassPrivate);
m_module.setDebugName(m_vArray, "v");
}
void DxsoCompiler::emitDclOutputArray() {
DxsoArrayType info;
info.ctype = DxsoScalarType::Float32;
info.ccount = 4;
info.alength = m_programInfo.type() == DxsoProgramTypes::VertexShader
? DxsoMaxInterfaceRegs
: caps::MaxSimultaneousRenderTargets;
uint32_t arrayTypeId = getArrayTypeId(info);
// Define the actual variable. Note that this is private
// because we will copy input registers
// to the array during the setup phase.
const uint32_t ptrTypeId = m_module.defPointerType(
arrayTypeId, spv::StorageClassPrivate);
m_oArray = m_module.newVar(
ptrTypeId, spv::StorageClassPrivate);
m_module.setDebugName(m_oArray, "o");
}
void DxsoCompiler::emitVsInit() {
m_module.enableCapability(spv::CapabilityClipDistance);
// Only VS needs this, because PS has
// non-indexable specialized output regs
this->emitDclOutputArray();
// Main function of the vertex shader
m_vs.functionId = m_module.allocateId();
m_module.setDebugName(m_vs.functionId, "vs_main");
this->setupRenderStateInfo();
this->emitFunctionBegin(
m_vs.functionId,
m_module.defVoidType(),
m_module.defFunctionType(
m_module.defVoidType(), 0, nullptr));
this->emitFunctionLabel();
}
void DxsoCompiler::emitPsSharedConstants() {
m_ps.sharedState = GetSharedConstants(m_module);
const uint32_t bindingId = computeResourceSlotId(
m_programInfo.type(), DxsoBindingType::ConstantBuffer,
PSShared);
m_module.decorateDescriptorSet(m_ps.sharedState, 0);
m_module.decorateBinding(m_ps.sharedState, bindingId);
DxvkResourceSlot resource;
resource.slot = bindingId;
resource.type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
resource.view = VK_IMAGE_VIEW_TYPE_MAX_ENUM;
resource.access = VK_ACCESS_UNIFORM_READ_BIT;
m_resourceSlots.push_back(resource);
}
void DxsoCompiler::emitPsInit() {
m_module.enableCapability(spv::CapabilityDerivativeControl);
m_module.setExecutionMode(m_entryPointId,
spv::ExecutionModeOriginUpperLeft);
// Main function of the pixel shader
m_ps.functionId = m_module.allocateId();
m_module.setDebugName(m_ps.functionId, "ps_main");
if (m_programInfo.majorVersion() < 2 || m_moduleInfo.options.forceSamplerTypeSpecConstants) {
m_ps.samplerTypeSpec = m_module.specConst32(m_module.defIntType(32, 0), 0);
m_module.decorateSpecId(m_ps.samplerTypeSpec, getSpecId(D3D9SpecConstantId::SamplerType));
m_module.setDebugName(m_ps.samplerTypeSpec, "s_sampler_types");
if (m_programInfo.majorVersion() < 2) {
m_ps.projectionSpec = m_module.specConst32(m_module.defIntType(32, 0), 0);
m_module.decorateSpecId(m_ps.projectionSpec, getSpecId(D3D9SpecConstantId::ProjectionType));
m_module.setDebugName(m_ps.projectionSpec, "s_projections");
}
}
this->setupRenderStateInfo();
this->emitPsSharedConstants();
this->emitFunctionBegin(
m_ps.functionId,
m_module.defVoidType(),
m_module.defFunctionType(
m_module.defVoidType(), 0, nullptr));
this->emitFunctionLabel();
// We may have to defer kill operations to the end of
// the shader in order to keep derivatives correct.
if (m_analysis->usesKill && m_moduleInfo.options.useDemoteToHelperInvocation) {
// This extension basically implements D3D-style discard
m_module.enableExtension("SPV_EXT_demote_to_helper_invocation");
m_module.enableCapability(spv::CapabilityDemoteToHelperInvocationEXT);
}
else if (m_analysis->usesKill && m_analysis->usesDerivatives) {
m_ps.killState = m_module.newVarInit(
m_module.defPointerType(m_module.defBoolType(), spv::StorageClassPrivate),
spv::StorageClassPrivate, m_module.constBool(false));
m_module.setDebugName(m_ps.killState, "ps_kill");
if (m_moduleInfo.options.useSubgroupOpsForEarlyDiscard) {
m_module.enableCapability(spv::CapabilityGroupNonUniform);
m_module.enableCapability(spv::CapabilityGroupNonUniformBallot);
DxsoRegisterInfo laneId;
laneId.type = { DxsoScalarType::Uint32, 1, 0 };
laneId.sclass = spv::StorageClassInput;
m_ps.builtinLaneId = emitNewBuiltinVariable(
laneId, spv::BuiltInSubgroupLocalInvocationId,
"fLaneId", 0);
}
}
}
void DxsoCompiler::emitFunctionBegin(
uint32_t entryPoint,
uint32_t returnType,
uint32_t funcType) {
this->emitFunctionEnd();
m_module.functionBegin(
returnType, entryPoint, funcType,
spv::FunctionControlMaskNone);
m_insideFunction = true;
}
void DxsoCompiler::emitFunctionEnd() {
if (m_insideFunction) {
m_module.opReturn();
m_module.functionEnd();
}
m_insideFunction = false;
}
uint32_t DxsoCompiler::emitFunctionLabel() {
uint32_t labelId = m_module.allocateId();
m_module.opLabel(labelId);
return labelId;
}
void DxsoCompiler::emitMainFunctionBegin() {
this->emitFunctionBegin(
m_entryPointId,
m_module.defVoidType(),
m_module.defFunctionType(
m_module.defVoidType(), 0, nullptr));
m_mainFuncLabel = this->emitFunctionLabel();
}
uint32_t DxsoCompiler::emitNewVariable(const DxsoRegisterInfo& info) {
const uint32_t ptrTypeId = this->getPointerTypeId(info);
return m_module.newVar(ptrTypeId, info.sclass);
}
uint32_t DxsoCompiler::emitNewVariableDefault(
const DxsoRegisterInfo& info,
uint32_t value) {
const uint32_t ptrTypeId = this->getPointerTypeId(info);
if (value == 0)
return m_module.newVar(ptrTypeId, info.sclass);
else
return m_module.newVarInit(ptrTypeId, info.sclass, value);
}
uint32_t DxsoCompiler::emitNewBuiltinVariable(
const DxsoRegisterInfo& info,
spv::BuiltIn builtIn,
const char* name,
uint32_t value) {
const uint32_t varId = emitNewVariableDefault(info, value);
m_module.setDebugName(varId, name);
m_module.decorateBuiltIn(varId, builtIn);
if (m_programInfo.type() == DxsoProgramTypes::PixelShader
&& info.type.ctype != DxsoScalarType::Float32
&& info.type.ctype != DxsoScalarType::Bool
&& info.sclass == spv::StorageClassInput)
m_module.decorate(varId, spv::DecorationFlat);
m_entryPointInterfaces.push_back(varId);
return varId;
}
DxsoCfgBlock* DxsoCompiler::cfgFindBlock(
const std::initializer_list<DxsoCfgBlockType>& types) {
for (auto cur = m_controlFlowBlocks.rbegin();
cur != m_controlFlowBlocks.rend(); cur++) {
for (auto type : types) {
if (cur->type == type)
return &(*cur);
}
}
return nullptr;
}
spv::BuiltIn semanticToBuiltIn(bool input, DxsoSemantic semantic) {
if (input)
return spv::BuiltInMax;
if (semantic == DxsoSemantic{ DxsoUsage::Position, 0 })
return spv::BuiltInPosition;
if (semantic == DxsoSemantic{ DxsoUsage::PointSize, 0 })
return spv::BuiltInPointSize;
return spv::BuiltInMax;
}
void DxsoCompiler::emitDclInterface(
bool input,
uint32_t regNumber,
DxsoSemantic semantic,
DxsoRegMask mask,
bool centroid) {
auto& sgn = input
? m_isgn : m_osgn;
const bool pixel = m_programInfo.type() == DxsoProgramTypes::PixelShader;
const bool vertex = !pixel;
uint32_t slot = 0;
uint32_t& slots = input
? m_interfaceSlots.inputSlots
: m_interfaceSlots.outputSlots;
uint16_t& explicits = input
? m_explicitInputs
: m_explicitOutputs;
// Some things we consider builtins could be packed in an output reg.
bool builtin = semanticToBuiltIn(input, semantic) != spv::BuiltInMax;
uint32_t i = sgn.elemCount++;
if (input && vertex) {
// Any slot will do! Let's chose the next one
slot = i;
}
else if ( (!input && vertex)
|| (input && pixel ) ) {
// Don't register the slot if it belongs to a builtin
if (!builtin)
slot = RegisterLinkerSlot(semantic);
}
else { //if (!input && pixel)
// We want to make the output slot the same as the
// output register for pixel shaders so they go to
// the right render target.
slot = regNumber;
}
// Don't want to mark down any of these builtins.
if (!builtin)
slots |= 1u << slot;
explicits |= 1u << regNumber;
auto& elem = sgn.elems[i];
elem.slot = slot;
elem.regNumber = regNumber;
elem.semantic = semantic;
elem.mask = mask;
elem.centroid = centroid;
}
void DxsoCompiler::emitDclSampler(
uint32_t idx,
DxsoTextureType type) {
m_usedSamplers |= (1u << idx);
auto DclSampler = [this](
uint32_t idx,
DxsoSamplerType type,
bool depth,
bool implicit) {
// Setup our combines sampler.
DxsoSamplerInfo& sampler = !depth
? m_samplers[idx].color[type]
: m_samplers[idx].depth[type];
spv::Dim dimensionality;
VkImageViewType viewType;
const char* suffix = "_2d";
switch (type) {
default:
case SamplerTypeTexture2D:
sampler.dimensions = 2;
dimensionality = spv::Dim2D;
viewType = VK_IMAGE_VIEW_TYPE_2D;
break;
case SamplerTypeTextureCube:
suffix = "_cube";
sampler.dimensions = 3;
dimensionality = spv::DimCube;
viewType = VK_IMAGE_VIEW_TYPE_CUBE;
break;
case SamplerTypeTexture3D:
suffix = "_3d";
sampler.dimensions = 3;
dimensionality = spv::Dim3D;
viewType = VK_IMAGE_VIEW_TYPE_3D;
break;
}
sampler.typeId = m_module.defImageType(
m_module.defFloatType(32),
dimensionality, depth ? 1 : 0, 0, 0, 1,
spv::ImageFormatUnknown);
sampler.typeId = m_module.defSampledImageType(sampler.typeId);
sampler.varId = m_module.newVar(
m_module.defPointerType(
sampler.typeId, spv::StorageClassUniformConstant),
spv::StorageClassUniformConstant);
std::string name = str::format("s", idx, suffix, depth ? "_shadow" : "");
m_module.setDebugName(sampler.varId, name.c_str());
const uint32_t bindingId = computeResourceSlotId(m_programInfo.type(),
!depth ? DxsoBindingType::ColorImage : DxsoBindingType::DepthImage,
idx);
m_module.decorateDescriptorSet(sampler.varId, 0);
m_module.decorateBinding (sampler.varId, bindingId);
// Store descriptor info for the shader interface
DxvkResourceSlot resource;
resource.slot = bindingId;
resource.type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
resource.view = implicit ? VK_IMAGE_VIEW_TYPE_MAX_ENUM : viewType;
resource.access = VK_ACCESS_SHADER_READ_BIT;
m_resourceSlots.push_back(resource);
};
if (m_programInfo.majorVersion() >= 2 && !m_moduleInfo.options.forceSamplerTypeSpecConstants) {
DxsoSamplerType samplerType =
SamplerTypeFromTextureType(type);
DclSampler(idx, samplerType, false, false);
if (samplerType != SamplerTypeTexture3D) {
// We could also be depth compared!
DclSampler(idx, samplerType, true, false);
}
}
else {
// Could be any of these!
// We will check with the spec constant at sample time.
for (uint32_t i = 0; i < SamplerTypeCount; i++) {
auto samplerType = static_cast<DxsoSamplerType>(i);
DclSampler(idx, samplerType, false, true);
if (samplerType != SamplerTypeTexture3D)
DclSampler(idx, samplerType, true, true);
}
}
// Declare a specialization constant which will
// store whether or not the depth/color views are bound.
const uint32_t colorBinding = computeResourceSlotId(m_programInfo.type(),
DxsoBindingType::ColorImage, idx);
const uint32_t depthBinding = computeResourceSlotId(m_programInfo.type(),
DxsoBindingType::DepthImage, idx);
DxsoSampler& sampler = m_samplers[idx];
sampler.colorSpecConst = m_module.specConstBool(true);
sampler.depthSpecConst = m_module.specConstBool(true);
sampler.type = type;
m_module.decorateSpecId(sampler.colorSpecConst, colorBinding);
m_module.decorateSpecId(sampler.depthSpecConst, depthBinding);
m_module.setDebugName(sampler.colorSpecConst,
str::format("s", idx, "_useColor").c_str());
m_module.setDebugName(sampler.depthSpecConst,
str::format("s", idx, "_useShadow").c_str());
}
uint32_t DxsoCompiler::emitArrayIndex(
uint32_t idx,
const DxsoBaseRegister* relative) {
uint32_t result = m_module.consti32(idx);
if (relative != nullptr) {
DxsoRegisterValue offset = emitRegisterLoad(*relative, DxsoRegMask(true, false, false, false), nullptr);
result = m_module.opIAdd(
getVectorTypeId(offset.type),
result, offset.id);
}
return result;
}
DxsoRegisterPointer DxsoCompiler::emitInputPtr(
bool texture,
const DxsoBaseRegister& reg,
const DxsoBaseRegister* relative) {
uint32_t idx = reg.id.num;
// Account for the two color regs.
if (texture)
idx += 2;
DxsoRegisterPointer input;
input.type = DxsoVectorType{ DxsoScalarType::Float32, 4 };
uint32_t index = this->emitArrayIndex(idx, relative);
const uint32_t typeId = getVectorTypeId(input.type);
input.id = m_module.opAccessChain(
m_module.defPointerType(typeId, spv::StorageClassPrivate),
m_vArray,
1, &index);
return input;
}
DxsoRegisterPointer DxsoCompiler::emitRegisterPtr(
const char* name,
DxsoScalarType ctype,
uint32_t ccount,
uint32_t defaultVal,
spv::StorageClass storageClass,
spv::BuiltIn builtIn) {
DxsoRegisterPointer result;
DxsoRegisterInfo info;
info.type.ctype = ctype;
info.type.ccount = ccount;
info.type.alength = 1;
info.sclass = storageClass;
result.type = DxsoVectorType{ ctype, ccount };
if (builtIn == spv::BuiltInMax) {
result.id = this->emitNewVariableDefault(info, defaultVal);
m_module.setDebugName(result.id, name);
}
else {
result.id = this->emitNewBuiltinVariable(
info, builtIn, name, defaultVal);
}
return result;
}
DxsoRegisterValue DxsoCompiler::emitLoadConstant(
const DxsoBaseRegister& reg,
const DxsoBaseRegister* relative) {
// struct cBuffer_t {
//
// Type Member Index
//
// float f[256 or 224]; 0
// int32_t i[16]; 1
// uint32_t boolBitmask; 2
// }
DxsoRegisterValue result = { };
switch (reg.id.type) {
case DxsoRegisterType::Const:
result.type = { DxsoScalarType::Float32, 4 };
if (!relative)
result.id = m_cFloat.at(reg.id.num);
break;
case DxsoRegisterType::ConstInt:
result.type = { DxsoScalarType::Sint32, 4 };
result.id = m_cInt.at(reg.id.num);
break;
case DxsoRegisterType::ConstBool:
result.type = { DxsoScalarType::Bool, 1 };
result.id = m_cBool.at(reg.id.num);
break;
default: break;
}
if (result.id)
return result;
switch (reg.id.type) {
case DxsoRegisterType::Const:
if (!relative) {
m_meta.maxConstIndexF = std::max(m_meta.maxConstIndexF, reg.id.num + 1);
m_meta.maxConstIndexF = std::min(m_meta.maxConstIndexF, m_layout->floatCount);
} else {
m_meta.maxConstIndexF = m_layout->floatCount;
m_meta.needsConstantCopies |= m_moduleInfo.options.strictConstantCopies
|| m_cFloat.at(reg.id.num) != 0;
}
break;
case DxsoRegisterType::ConstInt:
m_meta.maxConstIndexI = std::max(m_meta.maxConstIndexI, reg.id.num + 1);
m_meta.maxConstIndexI = std::min(m_meta.maxConstIndexI, m_layout->intCount);
break;
case DxsoRegisterType::ConstBool:
m_meta.maxConstIndexB = std::max(m_meta.maxConstIndexB, reg.id.num + 1);
m_meta.maxConstIndexB = std::min(m_meta.maxConstIndexB, m_layout->boolCount);
m_meta.boolConstantMask |= 1 << reg.id.num;
break;
default: break;
}
uint32_t relativeIdx = this->emitArrayIndex(reg.id.num, relative);
if (reg.id.type != DxsoRegisterType::ConstBool) {
uint32_t structIdx = reg.id.type == DxsoRegisterType::Const
? m_module.constu32(0)
: m_module.constu32(1);
std::array<uint32_t, 2> indices = { structIdx, relativeIdx };
uint32_t typeId = getVectorTypeId(result.type);
uint32_t ptrId = m_module.opAccessChain(
m_module.defPointerType(typeId, spv::StorageClassUniform),
m_cBuffer, indices.size(), indices.data());
result.id = m_module.opLoad(typeId, ptrId);
if (relative) {
uint32_t constCount = m_module.constu32(m_layout->floatCount);
// Expand condition to bvec4 since the result has four components
uint32_t cond = m_module.opULessThan(m_module.defBoolType(), relativeIdx, constCount);
std::array<uint32_t, 4> condIds = { cond, cond, cond, cond };
cond = m_module.opCompositeConstruct(
m_module.defVectorType(m_module.defBoolType(), 4),
condIds.size(), condIds.data());
result.id = m_module.opSelect(typeId, cond, result.id,
m_module.constvec4f32(0.0f, 0.0f, 0.0f, 0.0f));
}
} else {
// Bool constants have no relative indexing, so we can do the bitfield
// magic for SWVP at compile time.
uint32_t uintType = getScalarTypeId(DxsoScalarType::Uint32);
uint32_t uvec4Type = getVectorTypeId({ DxsoScalarType::Uint32, 4 });
// If not SWVP, spec const this
uint32_t bitfield;
if (m_layout->bitmaskCount != 1) {
std::array<uint32_t, 2> indices = { m_module.constu32(2), m_module.constu32(reg.id.num / 128) };
uint32_t indexCount = m_layout->bitmaskCount == 1 ? 1 : 2;
uint32_t accessType = m_layout->bitmaskCount == 1 ? uintType : uvec4Type;
uint32_t ptrId = m_module.opAccessChain(
m_module.defPointerType(accessType, spv::StorageClassUniform),
m_cBuffer, indexCount, indices.data());
bitfield = m_module.opLoad(accessType, ptrId);
}
else
bitfield = m_boolSpecConstant;
uint32_t bitIdx = m_module.consti32(reg.id.num % 32);
if (m_layout->bitmaskCount != 1) {
uint32_t index = (reg.id.num % 128) / 32;
bitfield = m_module.opCompositeExtract(uintType, bitfield, 1, &index);
}
uint32_t bit = m_module.opBitFieldUExtract(
uintType, bitfield, bitIdx, m_module.consti32(1));
result.id = m_module.opINotEqual(
getVectorTypeId(result.type),
bit, m_module.constu32(0));
}
return result;
}
DxsoRegisterPointer DxsoCompiler::emitOutputPtr(
bool texcrdOut,
const DxsoBaseRegister& reg,
const DxsoBaseRegister* relative) {
uint32_t idx = reg.id.num;
// Account for the two color regs.
if (texcrdOut)
idx += 2;
DxsoRegisterPointer input;
input.type = DxsoVectorType{ DxsoScalarType::Float32, 4 };
uint32_t index = this->emitArrayIndex(idx, relative);
const uint32_t typeId = getVectorTypeId(input.type);
input.id = m_module.opAccessChain(
m_module.defPointerType(typeId, spv::StorageClassPrivate),
m_oArray,
1, &index);
return input;
}
DxsoRegisterPointer DxsoCompiler::emitGetOperandPtr(
const DxsoBaseRegister& reg,
const DxsoBaseRegister* relative) {
switch (reg.id.type) {
case DxsoRegisterType::Temp: {
DxsoRegisterPointer& ptr = m_rRegs.at(reg.id.num);
if (ptr.id == 0) {
std::string name = str::format("r", reg.id.num);
ptr = this->emitRegisterPtr(
name.c_str(), DxsoScalarType::Float32, 4,
m_module.constvec4f32(0.0f, 0.0f, 0.0f, 0.0f));
}
return ptr;
}
case DxsoRegisterType::Input: {
if (!(m_explicitInputs & 1u << reg.id.num)) {
this->emitDclInterface(
true, reg.id.num,
DxsoSemantic{ DxsoUsage::Color, reg.id.num },
IdentityWriteMask, false);
}
return this->emitInputPtr(false, reg, relative);
}
case DxsoRegisterType::PixelTexcoord:
case DxsoRegisterType::Texture: {
if (m_programInfo.type() == DxsoProgramTypes::PixelShader) {
// Texture register
// SM2, or SM 1.4
if (reg.id.type == DxsoRegisterType::PixelTexcoord
|| m_programInfo.majorVersion() >= 2
|| (m_programInfo.majorVersion() == 1
&& m_programInfo.minorVersion() == 4)) {
uint32_t adjustedNumber = reg.id.num + 2;
if (!(m_explicitInputs & 1u << adjustedNumber)) {
this->emitDclInterface(
true, adjustedNumber,
DxsoSemantic{ DxsoUsage::Texcoord, reg.id.num },
IdentityWriteMask, false);
}
return this->emitInputPtr(true, reg, relative);
}
else {
// User must use tex/texcoord to put data in this private register.
// We use the an oob id which fxc never generates for the texcoord data.
DxsoRegisterPointer& ptr = m_tRegs.at(reg.id.num);
if (ptr.id == 0) {
std::string name = str::format("t", reg.id.num);
ptr = this->emitRegisterPtr(
name.c_str(), DxsoScalarType::Float32, 4,
m_module.constvec4f32(0.0f, 0.0f, 0.0f, 0.0f));
}
return ptr;
}
}
else {
// Address register
if (m_vs.addr.id == 0) {
m_vs.addr = this->emitRegisterPtr(
"a0", DxsoScalarType::Sint32, 4,
m_module.constvec4i32(0, 0, 0, 0));
}
return m_vs.addr;
}
}
case DxsoRegisterType::RasterizerOut:
switch (reg.id.num) {
case RasterOutPosition:
if (m_vs.oPos.id == 0) {
m_vs.oPos = this->emitRegisterPtr(
"oPos", DxsoScalarType::Float32, 4,
m_module.constvec4f32(0.0f, 0.0f, 0.0f, 0.0f),
spv::StorageClassOutput, spv::BuiltInPosition);
}
return m_vs.oPos;
case RasterOutFog:
if (m_fog.id == 0) {
bool input = m_programInfo.type() == DxsoProgramType::PixelShader;
DxsoSemantic semantic = DxsoSemantic{ DxsoUsage::Fog, 0 };
uint32_t slot = RegisterLinkerSlot(semantic);
uint32_t& slots = input
? m_interfaceSlots.inputSlots
: m_interfaceSlots.outputSlots;
slots |= 1u << slot;
m_fog = this->emitRegisterPtr(
input ? "vFog" : "oFog",
DxsoScalarType::Float32, 1,
input ? 0 : m_module.constf32(1.0f),
input ? spv::StorageClassInput : spv::StorageClassOutput);
m_entryPointInterfaces.push_back(m_fog.id);
m_module.decorateLocation(m_fog.id, slot);
}
return m_fog;
case RasterOutPointSize:
if (m_vs.oPSize.id == 0) {
m_vs.oPSize = this->emitRegisterPtr(
"oPSize", DxsoScalarType::Float32, 1,
m_module.constf32(0.0f),
spv::StorageClassOutput, spv::BuiltInPointSize);
}
return m_vs.oPSize;
}
case DxsoRegisterType::ColorOut: {
uint32_t idx = std::min(reg.id.num, 4u);
if (m_ps.oColor[idx].id == 0) {
std::string name = str::format("oC", idx);
m_ps.oColor[idx] = this->emitRegisterPtr(
name.c_str(), DxsoScalarType::Float32, 4,
m_module.constvec4f32(0.0f, 0.0f, 0.0f, 0.0f),
spv::StorageClassOutput);
m_interfaceSlots.outputSlots |= 1u << idx;
m_module.decorateLocation(m_ps.oColor[idx].id, idx);
m_module.decorateIndex(m_ps.oColor[idx].id, 0);
m_entryPointInterfaces.push_back(m_ps.oColor[idx].id);
m_usedRTs |= (1u << idx);
}
return m_ps.oColor[idx];
}
case DxsoRegisterType::AttributeOut: {
auto ptr = this->emitOutputPtr(false, reg, nullptr);
if (!(m_explicitOutputs & 1u << reg.id.num)) {
this->emitDclInterface(
false, reg.id.num,
DxsoSemantic{ DxsoUsage::Color, reg.id.num },
IdentityWriteMask, false); // TODO: Do we want to make this centroid?
m_module.opStore(ptr.id, m_module.constfReplicant(0, ptr.type.ccount));
}
return ptr;
}
case DxsoRegisterType::Output: {
bool texcrdOut = m_programInfo.type() == DxsoProgramTypes::VertexShader
&& m_programInfo.majorVersion() != 3;
auto ptr = this->emitOutputPtr(texcrdOut, reg, !texcrdOut ? relative : nullptr);
if (texcrdOut) {
uint32_t adjustedNumber = reg.id.num + 2;
if (!(m_explicitOutputs & 1u << adjustedNumber)) {
this->emitDclInterface(
false, adjustedNumber,
DxsoSemantic{ DxsoUsage::Texcoord, reg.id.num },
IdentityWriteMask, false);
m_module.opStore(ptr.id, m_module.constfReplicant(0, ptr.type.ccount));
}
}
return ptr;
}
case DxsoRegisterType::DepthOut:
if (m_ps.oDepth.id == 0) {
m_module.setExecutionMode(m_entryPointId,
spv::ExecutionModeDepthReplacing);
m_ps.oDepth = this->emitRegisterPtr(
"oDepth", DxsoScalarType::Float32, 1,
m_module.constf32(0.0f),
spv::StorageClassOutput, spv::BuiltInFragDepth);
}
return m_ps.oDepth;
case DxsoRegisterType::Loop:
if (m_loopCounter.id == 0) {
m_loopCounter = this->emitRegisterPtr(
"aL", DxsoScalarType::Sint32, 1,
m_module.consti32(0));
}
return m_loopCounter;
case DxsoRegisterType::MiscType:
if (reg.id.num == MiscTypePosition) {
if (m_ps.vPos.id == 0) {
m_ps.vPos = this->emitRegisterPtr(
"vPos", DxsoScalarType::Float32, 4, 0);
}
return m_ps.vPos;
}
else { // MiscTypeFace
if (m_ps.vFace.id == 0) {
m_ps.vFace = this->emitRegisterPtr(
"vFace", DxsoScalarType::Float32, 4, 0);
}
return m_ps.vFace;
}
case DxsoRegisterType::Predicate: {
DxsoRegisterPointer& ptr = m_pRegs.at(reg.id.num);
if (ptr.id == 0) {
std::string name = str::format("p", reg.id.num);
ptr = this->emitRegisterPtr(
name.c_str(), DxsoScalarType::Bool, 4,
m_module.constvec4b32(false, false, false, false));
}
return ptr;
}
default: {
//Logger::warn(str::format("emitGetOperandPtr: unhandled reg type: ", reg.id.type));
DxsoRegisterPointer nullPointer;
nullPointer.id = 0;
return nullPointer;
}
}
}
uint32_t DxsoCompiler::emitBoolComparison(DxsoVectorType type, DxsoComparison cmp, uint32_t a, uint32_t b) {
const uint32_t typeId = getVectorTypeId(type);
switch (cmp) {
default:
case DxsoComparison::Never: return m_module.constbReplicant(false, type.ccount); break;
case DxsoComparison::GreaterThan: return m_module.opFOrdGreaterThan (typeId, a, b); break;
case DxsoComparison::Equal: return m_module.opFOrdEqual (typeId, a, b); break;
case DxsoComparison::GreaterEqual: return m_module.opFOrdGreaterThanEqual(typeId, a, b); break;
case DxsoComparison::LessThan: return m_module.opFOrdLessThan (typeId, a, b); break;
case DxsoComparison::NotEqual: return m_module.opFOrdNotEqual (typeId, a, b); break;
case DxsoComparison::LessEqual: return m_module.opFOrdLessThanEqual (typeId, a, b); break;
case DxsoComparison::Always: return m_module.constbReplicant(true, type.ccount); break;
}
}
DxsoRegisterValue DxsoCompiler::emitValueLoad(
DxsoRegisterPointer ptr) {
DxsoRegisterValue result;
result.type = ptr.type;
result.id = m_module.opLoad(
getVectorTypeId(result.type),
ptr.id);
return result;
}
DxsoRegisterValue DxsoCompiler::applyPredicate(DxsoRegisterValue pred, DxsoRegisterValue dst, DxsoRegisterValue src) {
if (dst.type.ccount != pred.type.ccount) {
DxsoRegMask mask = DxsoRegMask(
pred.type.ccount > 0,
pred.type.ccount > 1,
pred.type.ccount > 2,
pred.type.ccount > 3);
pred = emitRegisterSwizzle(pred, IdentitySwizzle, mask);
}
dst.id = m_module.opSelect(
getVectorTypeId(dst.type),
pred.id,
src.id, dst.id);
return dst;
}
void DxsoCompiler::emitValueStore(
DxsoRegisterPointer ptr,
DxsoRegisterValue value,
DxsoRegMask writeMask,
DxsoRegisterValue predicate) {
// If the source value consists of only one component,
// it is stored in all components of the destination.
if (value.type.ccount == 1)
value = emitRegisterExtend(value, writeMask.popCount());
if (ptr.type.ccount == writeMask.popCount()) {
if (predicate.id)
value = applyPredicate(predicate, emitValueLoad(ptr), value);
// Simple case: We write to the entire register
m_module.opStore(ptr.id, value.id);
} else {
// We only write to part of the destination
// register, so we need to load and modify it
DxsoRegisterValue tmp = emitValueLoad(ptr);
tmp = emitRegisterInsert(tmp, value, writeMask);
if (predicate.id)
value = applyPredicate(predicate, emitValueLoad(ptr), tmp);
m_module.opStore(ptr.id, tmp.id);
}
}
DxsoRegisterValue DxsoCompiler::emitClampBoundReplicant(
DxsoRegisterValue srcValue,
float lb,
float ub) {
srcValue.id = m_module.opFClamp(getVectorTypeId(srcValue.type), srcValue.id,
m_module.constfReplicant(lb, srcValue.type.ccount),
m_module.constfReplicant(ub, srcValue.type.ccount));
return srcValue;
}
DxsoRegisterValue DxsoCompiler::emitSaturate(
DxsoRegisterValue srcValue) {
return emitClampBoundReplicant(srcValue, 0.0f, 1.0f);
}
DxsoRegisterValue DxsoCompiler::emitDot(
DxsoRegisterValue a,
DxsoRegisterValue b) {
DxsoRegisterValue dot;
dot.type = a.type;
dot.type.ccount = 1;
dot.id = m_module.opDot(getVectorTypeId(dot.type), a.id, b.id);
return dot;
}
DxsoRegisterValue DxsoCompiler::emitRegisterInsert(
DxsoRegisterValue dstValue,
DxsoRegisterValue srcValue,
DxsoRegMask srcMask) {
DxsoRegisterValue result;
result.type = dstValue.type;
const uint32_t typeId = getVectorTypeId(result.type);
if (srcMask.popCount() == 0) {
// Nothing to do if the insertion mask is empty
result.id = dstValue.id;
} else if (dstValue.type.ccount == 1) {
// Both values are scalar, so the first component
// of the write mask decides which one to take.
result.id = srcMask[0] ? srcValue.id : dstValue.id;
} else if (srcValue.type.ccount == 1) {
// The source value is scalar. Since OpVectorShuffle
// requires both arguments to be vectors, we have to
// use OpCompositeInsert to modify the vector instead.
const uint32_t componentId = srcMask.firstSet();
result.id = m_module.opCompositeInsert(typeId,
srcValue.id, dstValue.id, 1, &componentId);
} else {
// Both arguments are vectors. We can determine which
// components to take from which vector and use the
// OpVectorShuffle instruction.
std::array<uint32_t, 4> components;
uint32_t srcComponentId = dstValue.type.ccount;
for (uint32_t i = 0; i < dstValue.type.ccount; i++)
components.at(i) = srcMask[i] ? srcComponentId++ : i;
result.id = m_module.opVectorShuffle(
typeId, dstValue.id, srcValue.id,
dstValue.type.ccount, components.data());
}
return result;
}
DxsoRegisterValue DxsoCompiler::emitRegisterLoadRaw(
const DxsoBaseRegister& reg,
const DxsoBaseRegister* relative) {
switch (reg.id.type) {
case DxsoRegisterType::Const:
case DxsoRegisterType::ConstInt:
case DxsoRegisterType::ConstBool:
return emitLoadConstant(reg, relative);
default:
return emitValueLoad(emitGetOperandPtr(reg, relative));
}
}
DxsoRegisterValue DxsoCompiler::emitRegisterExtend(
DxsoRegisterValue value,
uint32_t size) {
if (size == 1)
return value;
std::array<uint32_t, 4> ids = {{
value.id, value.id,
value.id, value.id,
}};
DxsoRegisterValue result;
result.type.ctype = value.type.ctype;
result.type.ccount = size;
result.id = m_module.opCompositeConstruct(
getVectorTypeId(result.type),
size, ids.data());
return result;
}
DxsoRegisterValue DxsoCompiler::emitRegisterSwizzle(
DxsoRegisterValue value,
DxsoRegSwizzle swizzle,
DxsoRegMask writeMask) {
if (value.type.ccount == 1)
return emitRegisterExtend(value, writeMask.popCount());
std::array<uint32_t, 4> indices;
uint32_t dstIndex = 0;
for (uint32_t i = 0; i < 4; i++) {
if (writeMask[i])
indices[dstIndex++] = swizzle[i];
}
// If the swizzle combined with the mask can be reduced
// to a no-op, we don't need to insert any instructions.
bool isIdentitySwizzle = dstIndex == value.type.ccount;
for (uint32_t i = 0; i < dstIndex && isIdentitySwizzle; i++)
isIdentitySwizzle &= indices[i] == i;
if (isIdentitySwizzle)
return value;
// Use OpCompositeExtract if the resulting vector contains
// only one component, and OpVectorShuffle if it is a vector.
DxsoRegisterValue result;
result.type.ctype = value.type.ctype;
result.type.ccount = dstIndex;
const uint32_t typeId = getVectorTypeId(result.type);
if (dstIndex == 1) {
result.id = m_module.opCompositeExtract(
typeId, value.id, 1, indices.data());
} else {
result.id = m_module.opVectorShuffle(
typeId, value.id, value.id,
dstIndex, indices.data());
}
return result;
}
DxsoRegisterValue DxsoCompiler::emitSrcOperandPreSwizzleModifiers(
DxsoRegisterValue value,
DxsoRegModifier modifier) {
// r / r.z
// r / r.w
if (modifier == DxsoRegModifier::Dz
|| modifier == DxsoRegModifier::Dw) {
const uint32_t index = modifier == DxsoRegModifier::Dz ? 2 : 3;
std::array<uint32_t, 4> indices = { index, index, index, index };
uint32_t component = m_module.opVectorShuffle(
getVectorTypeId(value.type), value.id, value.id, value.type.ccount, indices.data());
value.id = m_module.opFDiv(
getVectorTypeId(value.type), value.id, component);
}
return value;
}
DxsoRegisterValue DxsoCompiler::emitSrcOperandPostSwizzleModifiers(
DxsoRegisterValue value,
DxsoRegModifier modifier) {
// r - 0.5
if (modifier == DxsoRegModifier::Bias
|| modifier == DxsoRegModifier::BiasNeg) {
uint32_t halfVec = m_module.constfReplicant(
0.5f, value.type.ccount);
value.id = m_module.opFSub(
getVectorTypeId(value.type), value.id, halfVec);
}
// fma(r, 2.0f, -1.0f)
if (modifier == DxsoRegModifier::Sign
|| modifier == DxsoRegModifier::SignNeg) {
uint32_t twoVec = m_module.constfReplicant(
2.0f, value.type.ccount);
uint32_t minusOneVec = m_module.constfReplicant(
-1.0f, value.type.ccount);
value.id = m_module.opFFma(
getVectorTypeId(value.type), value.id, twoVec, minusOneVec);
}
// 1 - r
if (modifier == DxsoRegModifier::Comp) {
uint32_t oneVec = m_module.constfReplicant(
1.0f, value.type.ccount);
value.id = m_module.opFSub(
getVectorTypeId(value.type), oneVec, value.id);
}
// r * 2
if (modifier == DxsoRegModifier::X2
|| modifier == DxsoRegModifier::X2Neg) {
uint32_t twoVec = m_module.constfReplicant(
2.0f, value.type.ccount);
value.id = m_module.opFMul(
getVectorTypeId(value.type), value.id, twoVec);
}
// abs( r )
if (modifier == DxsoRegModifier::Abs
|| modifier == DxsoRegModifier::AbsNeg) {
value.id = m_module.opFAbs(
getVectorTypeId(value.type), value.id);
}
// !r
if (modifier == DxsoRegModifier::Not) {
value.id =
m_module.opLogicalNot(getVectorTypeId(value.type), value.id);
}
// -r
// Treating as -r
// Treating as -r
// -r * 2
// -abs(r)
if (modifier == DxsoRegModifier::Neg
|| modifier == DxsoRegModifier::BiasNeg
|| modifier == DxsoRegModifier::SignNeg
|| modifier == DxsoRegModifier::X2Neg
|| modifier == DxsoRegModifier::AbsNeg) {
value.id = m_module.opFNegate(
getVectorTypeId(value.type), value.id);
}
return value;
}
DxsoRegisterValue DxsoCompiler::emitRegisterLoad(
const DxsoBaseRegister& reg,
DxsoRegMask writeMask,
const DxsoBaseRegister* relative) {
// Load operand from the operand pointer
DxsoRegisterValue result = emitRegisterLoadRaw(reg, relative);
// PS 1.x clamps float constants
if (m_programInfo.type() == DxsoProgramType::PixelShader && m_programInfo.majorVersion() == 1
&& reg.id.type == DxsoRegisterType::Const)
result = emitClampBoundReplicant(result, -1.0f, 1.0f);
// Apply operand modifiers
result = emitSrcOperandPreSwizzleModifiers(result, reg.modifier);
// Apply operand swizzle to the operand value
result = emitRegisterSwizzle(result, reg.swizzle, writeMask);
// Apply operand modifiers
result = emitSrcOperandPostSwizzleModifiers(result, reg.modifier);
return result;
}
void DxsoCompiler::emitDcl(const DxsoInstructionContext& ctx) {
auto id = ctx.dst.id;
if (id.type == DxsoRegisterType::Sampler) {
this->emitDclSampler(
ctx.dst.id.num,
ctx.dcl.textureType);
}
else if (id.type == DxsoRegisterType::Input
|| id.type == DxsoRegisterType::Texture
|| id.type == DxsoRegisterType::Output) {
DxsoSemantic semantic = ctx.dcl.semantic;
uint32_t vIndex = id.num;
if (m_programInfo.type() == DxsoProgramTypes::PixelShader) {
// Semantic in PS < 3 is based upon id.
if (m_programInfo.majorVersion() < 3) {
// Account for the two color registers.
if (id.type == DxsoRegisterType::Texture)
vIndex += 2;
semantic = DxsoSemantic{
id.type == DxsoRegisterType::Texture ? DxsoUsage::Texcoord : DxsoUsage::Color,
id.num };
}
}
this->emitDclInterface(
id.type != DxsoRegisterType::Output,
vIndex,
semantic,
ctx.dst.mask,
ctx.dst.centroid);
}
else {
//Logger::warn(str::format("DxsoCompiler::emitDcl: unhandled register type ", id.type));
}
}
void DxsoCompiler::emitDef(const DxsoInstructionContext& ctx) {
switch (ctx.instruction.opcode) {
case DxsoOpcode::Def: emitDefF(ctx); break;
case DxsoOpcode::DefI: emitDefI(ctx); break;
case DxsoOpcode::DefB: emitDefB(ctx); break;
default:
throw DxvkError("DxsoCompiler::emitDef: Invalid definition opcode");
break;
}
}
void DxsoCompiler::emitDefF(const DxsoInstructionContext& ctx) {
const float* data = ctx.def.float32;
uint32_t constId = m_module.constvec4f32(data[0], data[1], data[2], data[3]);
m_cFloat.at(ctx.dst.id.num) = constId;
std::string name = str::format("cF", ctx.dst.id.num, "_def");
m_module.setDebugName(constId, name.c_str());
DxsoDefinedConstant constant;
constant.uboIdx = ctx.dst.id.num;
for (uint32_t i = 0; i < 4; i++)
constant.float32[i] = data[i];
m_constants.push_back(constant);
}
void DxsoCompiler::emitDefI(const DxsoInstructionContext& ctx) {
const int32_t* data = ctx.def.int32;
uint32_t constId = m_module.constvec4i32(data[0], data[1], data[2], data[3]);
m_cInt.at(ctx.dst.id.num) = constId;
std::string name = str::format("cI", ctx.dst.id.num, "_def");
m_module.setDebugName(constId, name.c_str());
}
void DxsoCompiler::emitDefB(const DxsoInstructionContext& ctx) {
const int32_t* data = ctx.def.int32;
uint32_t constId = m_module.constBool(data[0] != 0);
m_cBool.at(ctx.dst.id.num) = constId;
std::string name = str::format("cB", ctx.dst.id.num, "_def");
m_module.setDebugName(constId, name.c_str());
}
bool DxsoCompiler::isScalarRegister(DxsoRegisterId id) {
return id == DxsoRegisterId{DxsoRegisterType::DepthOut, 0}
|| id == DxsoRegisterId{DxsoRegisterType::RasterizerOut, RasterOutPointSize}
|| id == DxsoRegisterId{DxsoRegisterType::RasterizerOut, RasterOutFog};
}
void DxsoCompiler::emitMov(const DxsoInstructionContext& ctx) {
DxsoRegisterPointer dst = emitGetOperandPtr(ctx.dst);
DxsoRegMask mask = ctx.dst.mask;
if (isScalarRegister(ctx.dst.id))
mask = DxsoRegMask(true, false, false, false);
DxsoRegisterValue src0 = emitRegisterLoad(ctx.src[0], mask);
DxsoRegisterValue result;
result.type.ctype = dst.type.ctype;
result.type.ccount = mask.popCount();
const uint32_t typeId = getVectorTypeId(result.type);
if (dst.type.ctype != src0.type.ctype) {
// We have Mova for this... but it turns out Mov has the same behaviour in d3d9!
// Convert float -> int32_t
// and vice versa
if (dst.type.ctype == DxsoScalarType::Sint32) {
// We need to floor for VS 1.1 and below, the documentation is a dirty stinking liar.
if (m_programInfo.majorVersion() < 2 && m_programInfo.minorVersion() < 2)
result.id = m_module.opFloor(getVectorTypeId(src0.type), src0.id);
else
result.id = m_module.opRound(getVectorTypeId(src0.type), src0.id);
result.id = m_module.opConvertFtoS(typeId, result.id);
}
else // Float32
result.id = m_module.opConvertStoF(typeId, src0.id);
}
else // No special stuff needed!
result.id = src0.id;
this->emitDstStore(dst, result, mask, ctx.dst.saturate, emitPredicateLoad(ctx), ctx.dst.shift, ctx.dst.id);
}
void DxsoCompiler::emitVectorAlu(const DxsoInstructionContext& ctx) {
const auto& src = ctx.src;
DxsoRegMask mask = ctx.dst.mask;
DxsoRegisterPointer dst = emitGetOperandPtr(ctx.dst);
if (isScalarRegister(ctx.dst.id))
mask = DxsoRegMask(true, false, false, false);
DxsoRegisterValue result;
result.type.ctype = dst.type.ctype;
result.type.ccount = mask.popCount();
DxsoVectorType scalarType = result.type;
scalarType.ccount = 1;
const uint32_t typeId = getVectorTypeId(result.type);
const uint32_t scalarTypeId = getVectorTypeId(scalarType);
const DxsoOpcode opcode = ctx.instruction.opcode;
switch (opcode) {
case DxsoOpcode::Add:
result.id = m_module.opFAdd(typeId,
emitRegisterLoad(src[0], mask).id,
emitRegisterLoad(src[1], mask).id);
break;
case DxsoOpcode::Sub:
result.id = m_module.opFSub(typeId,
emitRegisterLoad(src[0], mask).id,
emitRegisterLoad(src[1], mask).id);
break;
case DxsoOpcode::Mad:
result.id = m_module.opFFma(typeId,
emitRegisterLoad(src[0], mask).id,
emitRegisterLoad(src[1], mask).id,
emitRegisterLoad(src[2], mask).id);
break;
case DxsoOpcode::Mul:
result.id = m_module.opFMul(typeId,
emitRegisterLoad(src[0], mask).id,
emitRegisterLoad(src[1], mask).id);
break;
case DxsoOpcode::Rcp:
result.id = m_module.opFDiv(typeId,
m_module.constfReplicant(1.0f, result.type.ccount),
emitRegisterLoad(src[0], mask).id);
if (m_moduleInfo.options.d3d9FloatEmulation) {
result.id = m_module.opNMin(typeId, result.id,
m_module.constfReplicant(FLT_MAX, result.type.ccount));
}
break;
case DxsoOpcode::Rsq:
result.id = m_module.opFAbs(typeId,
emitRegisterLoad(src[0], mask).id);
result.id = m_module.opInverseSqrt(typeId,
result.id);
if (m_moduleInfo.options.d3d9FloatEmulation) {
result.id = m_module.opNMin(typeId, result.id,
m_module.constfReplicant(FLT_MAX, result.type.ccount));
}
break;
case DxsoOpcode::Dp3: {
DxsoRegMask srcMask(true, true, true, false);
result = emitDot(
emitRegisterLoad(src[0], srcMask),
emitRegisterLoad(src[1], srcMask));
break;
}
case DxsoOpcode::Dp4:
result = emitDot(
emitRegisterLoad(src[0], IdentityWriteMask),
emitRegisterLoad(src[1], IdentityWriteMask));
break;
case DxsoOpcode::Slt:
case DxsoOpcode::Sge: {
const uint32_t boolTypeId =
getVectorTypeId({ DxsoScalarType::Bool, result.type.ccount });
uint32_t cmpResult = opcode == DxsoOpcode::Slt
? m_module.opFOrdLessThan (boolTypeId, emitRegisterLoad(src[0], mask).id, emitRegisterLoad(src[1], mask).id)
: m_module.opFOrdGreaterThanEqual(boolTypeId, emitRegisterLoad(src[0], mask).id, emitRegisterLoad(src[1], mask).id);
result.id = m_module.opSelect(typeId, cmpResult,
m_module.constfReplicant(1.0f, result.type.ccount),
m_module.constfReplicant(0.0f, result.type.ccount));
break;
}
case DxsoOpcode::Min:
result.id = m_module.opFMin(typeId,
emitRegisterLoad(src[0], mask).id,
emitRegisterLoad(src[1], mask).id);
break;
case DxsoOpcode::Max:
result.id = m_module.opFMax(typeId,
emitRegisterLoad(src[0], mask).id,
emitRegisterLoad(src[1], mask).id);
break;
case DxsoOpcode::ExpP:
if (m_programInfo.majorVersion() < 2) {
DxsoRegMask srcMask(true, false, false, false);
uint32_t src0 = emitRegisterLoad(src[0], srcMask).id;
uint32_t index = 0;
std::array<uint32_t, 4> resultIndices;
if (mask[0]) resultIndices[index++] = m_module.opExp2(scalarTypeId, m_module.opFloor(scalarTypeId, src0));
if (mask[1]) resultIndices[index++] = m_module.opFSub(scalarTypeId, src0, m_module.opFloor(scalarTypeId, src0));
if (mask[2]) resultIndices[index++] = m_module.opExp2(scalarTypeId, src0);
if (mask[3]) resultIndices[index++] = m_module.constf32(1.0f);
if (result.type.ccount == 1)
result.id = resultIndices[0];
else
result.id = m_module.opCompositeConstruct(typeId, result.type.ccount, resultIndices.data());
break;
}
case DxsoOpcode::Exp:
result.id = m_module.opExp2(typeId,
emitRegisterLoad(src[0], mask).id);
break;
case DxsoOpcode::Pow: {
uint32_t base = emitRegisterLoad(src[0], mask).id;
base = m_module.opFAbs(typeId, base);
uint32_t exponent = emitRegisterLoad(src[1], mask).id;
result.id = m_module.opPow(typeId, base, exponent);
if (m_moduleInfo.options.strictPow && m_moduleInfo.options.d3d9FloatEmulation) {
DxsoRegisterValue cmp;
cmp.type = { DxsoScalarType::Bool, result.type.ccount };
cmp.id = m_module.opFOrdEqual(getVectorTypeId(cmp.type),
exponent, m_module.constfReplicant(0.0f, cmp.type.ccount));
result.id = m_module.opSelect(typeId, cmp.id,
m_module.constfReplicant(1.0f, cmp.type.ccount), result.id);
}
break;
}
case DxsoOpcode::Crs: {
DxsoRegMask vec3Mask(true, true, true, false);
DxsoRegisterValue crossValue;
crossValue.type = { DxsoScalarType::Float32, 3 };
crossValue.id = m_module.opCross(getVectorTypeId(crossValue.type),
emitRegisterLoad(src[0], vec3Mask).id,
emitRegisterLoad(src[1], vec3Mask).id);
std::array<uint32_t, 3> indices = { 0, 0, 0 };
uint32_t index = 0;
for (uint32_t i = 0; i < indices.size(); i++) {
if (mask[i])
indices[index++] = m_module.opCompositeExtract(m_module.defFloatType(32), crossValue.id, 1, &i);
}
result.id = m_module.opCompositeConstruct(getVectorTypeId(result.type), result.type.ccount, indices.data());
break;
}
case DxsoOpcode::Abs:
result.id = m_module.opFAbs(typeId,
emitRegisterLoad(src[0], mask).id);
break;
case DxsoOpcode::Nrm: {
// Nrm is 3D...
DxsoRegMask srcMask(true, true, true, false);
auto vec3 = emitRegisterLoad(src[0], srcMask);
DxsoRegisterValue dot = emitDot(vec3, vec3);
dot.id = m_module.opInverseSqrt (scalarTypeId, dot.id);
if (m_moduleInfo.options.d3d9FloatEmulation) {
dot.id = m_module.opNMin (scalarTypeId, dot.id,
m_module.constf32(FLT_MAX));
}
// r * rsq(r . r);
result.id = m_module.opVectorTimesScalar(
typeId,
emitRegisterLoad(src[0], mask).id,
dot.id);
break;
}
case DxsoOpcode::SinCos: {
DxsoRegMask srcMask(true, false, false, false);
uint32_t src0 = emitRegisterLoad(src[0], srcMask).id;
std::array<uint32_t, 4> sincosVectorIndices = { 0, 0, 0, 0 };
uint32_t index = 0;
if (mask[0])
sincosVectorIndices[index++] = m_module.opCos(scalarTypeId, src0);
if (mask[1])
sincosVectorIndices[index++] = m_module.opSin(scalarTypeId, src0);
for (; index < result.type.ccount; index++) {
if (sincosVectorIndices[index] == 0)
sincosVectorIndices[index] = m_module.constf32(0.0f);
}
if (result.type.ccount == 1)
result.id = sincosVectorIndices[0];
else
result.id = m_module.opCompositeConstruct(typeId, result.type.ccount, sincosVectorIndices.data());
break;
}
case DxsoOpcode::Lit: {
DxsoRegMask srcMask(true, true, true, true);
uint32_t srcOp = emitRegisterLoad(src[0], srcMask).id;
const uint32_t x = 0;
const uint32_t y = 1;
const uint32_t w = 3;
uint32_t srcX = m_module.opCompositeExtract(scalarTypeId, srcOp, 1, &x);
uint32_t srcY = m_module.opCompositeExtract(scalarTypeId, srcOp, 1, &y);
uint32_t srcW = m_module.opCompositeExtract(scalarTypeId, srcOp, 1, &w);
uint32_t power = m_module.opFClamp(
scalarTypeId, srcW,
m_module.constf32(-127.9961f), m_module.constf32(127.9961f));
std::array<uint32_t, 4> resultIndices;
uint32_t index = 0;
if (mask[0]) resultIndices[index++] = m_module.constf32(1.0f);
if (mask[1]) resultIndices[index++] = m_module.opFMax(scalarTypeId, srcX, m_module.constf32(0));
if (mask[2]) resultIndices[index++] = m_module.opPow (scalarTypeId, srcY, power);
if (mask[3]) resultIndices[index++] = m_module.constf32(1.0f);
const uint32_t boolType = m_module.defBoolType();
uint32_t zTestX = m_module.opFOrdGreaterThanEqual(boolType, srcX, m_module.constf32(0));
uint32_t zTestY = m_module.opFOrdGreaterThanEqual(boolType, srcY, m_module.constf32(0));
uint32_t zTest = m_module.opLogicalAnd(boolType, zTestX, zTestY);
if (result.type.ccount > 2)
resultIndices[2] = m_module.opSelect(
scalarTypeId,
zTest,
resultIndices[2],
m_module.constf32(0.0f));
if (result.type.ccount == 1)
result.id = resultIndices[0];
else
result.id = m_module.opCompositeConstruct(typeId, result.type.ccount, resultIndices.data());
break;
}
case DxsoOpcode::Dst: {
//dest.x = 1;
//dest.y = src0.y * src1.y;
//dest.z = src0.z;
//dest.w = src1.w;
DxsoRegMask srcMask(true, true, true, true);
uint32_t src0 = emitRegisterLoad(src[0], srcMask).id;
uint32_t src1 = emitRegisterLoad(src[1], srcMask).id;
const uint32_t y = 1;
const uint32_t z = 2;
const uint32_t w = 3;
uint32_t src0Y = m_module.opCompositeExtract(scalarTypeId, src0, 1, &y);
uint32_t src1Y = m_module.opCompositeExtract(scalarTypeId, src1, 1, &y);
uint32_t src0Z = m_module.opCompositeExtract(scalarTypeId, src0, 1, &z);
uint32_t src1W = m_module.opCompositeExtract(scalarTypeId, src1, 1, &w);
std::array<uint32_t, 4> resultIndices;
resultIndices[0] = m_module.constf32(1.0f);
resultIndices[1] = m_module.opFMul(scalarTypeId, src0Y, src1Y);
resultIndices[2] = src0Z;
resultIndices[3] = src1W;
if (result.type.ccount == 1)
result.id = resultIndices[0];
else
result.id = m_module.opCompositeConstruct(typeId, result.type.ccount, resultIndices.data());
break;
}
case DxsoOpcode::LogP:
case DxsoOpcode::Log:
result.id = m_module.opFAbs(typeId, emitRegisterLoad(src[0], mask).id);
result.id = m_module.opLog2(typeId, result.id);
if (m_moduleInfo.options.d3d9FloatEmulation) {
result.id = m_module.opNMax(typeId, result.id,
m_module.constfReplicant(-FLT_MAX, result.type.ccount));
}
break;
case DxsoOpcode::Lrp:
result.id = m_module.opFMix(typeId,
emitRegisterLoad(src[2], mask).id,
emitRegisterLoad(src[1], mask).id,
emitRegisterLoad(src[0], mask).id);
break;
case DxsoOpcode::Frc:
result.id = m_module.opFract(typeId,
emitRegisterLoad(src[0], mask).id);
break;
case DxsoOpcode::Cmp: {
const uint32_t boolTypeId =
getVectorTypeId({ DxsoScalarType::Bool, result.type.ccount });
uint32_t cmp = m_module.opFOrdGreaterThanEqual(
boolTypeId,
emitRegisterLoad(src[0], mask).id,
m_module.constfReplicant(0.0f, result.type.ccount));
result.id = m_module.opSelect(
typeId, cmp,
emitRegisterLoad(src[1], mask).id,
emitRegisterLoad(src[2], mask).id);
break;
}
case DxsoOpcode::Cnd: {
const uint32_t boolTypeId =
getVectorTypeId({ DxsoScalarType::Bool, result.type.ccount });
uint32_t cmp = m_module.opFOrdGreaterThan(
boolTypeId,
emitRegisterLoad(src[0], mask).id,
m_module.constfReplicant(0.5f, result.type.ccount));
result.id = m_module.opSelect(
typeId, cmp,
emitRegisterLoad(src[1], mask).id,
emitRegisterLoad(src[2], mask).id);
break;
}
case DxsoOpcode::Dp2Add: {
DxsoRegMask dotSrcMask(true, true, false, false);
DxsoRegMask addSrcMask(true, false, false, false);
DxsoRegisterValue dot = emitDot(
emitRegisterLoad(src[0], dotSrcMask),
emitRegisterLoad(src[1], dotSrcMask));
dot.id = m_module.opFAdd(scalarTypeId,
dot.id, emitRegisterLoad(src[2], addSrcMask).id);
result.id = dot.id;
result.type = scalarType;
break;
}
case DxsoOpcode::DsX:
result.id = m_module.opDpdx(
typeId, emitRegisterLoad(src[0], mask).id);
break;
case DxsoOpcode::DsY:
result.id = m_module.opDpdy(
typeId, emitRegisterLoad(src[0], mask).id);
break;
default:
Logger::warn(str::format("DxsoCompiler::emitVectorAlu: unimplemented op ", opcode));
return;
}
this->emitDstStore(dst, result, mask, ctx.dst.saturate, emitPredicateLoad(ctx), ctx.dst.shift, ctx.dst.id);
}
void DxsoCompiler::emitPredicateOp(const DxsoInstructionContext& ctx) {
const auto& src = ctx.src;
DxsoRegMask mask = ctx.dst.mask;
DxsoRegisterPointer dst = emitGetOperandPtr(ctx.dst);
DxsoRegisterValue result;
result.type.ctype = dst.type.ctype;
result.type.ccount = mask.popCount();
result.id = emitBoolComparison(
result.type, ctx.instruction.specificData.comparison,
emitRegisterLoad(src[0], mask).id, emitRegisterLoad(src[1], mask).id);
this->emitValueStore(dst, result, mask, emitPredicateLoad(ctx));
}
void DxsoCompiler::emitMatrixAlu(const DxsoInstructionContext& ctx) {
const auto& src = ctx.src;
DxsoRegMask mask = ctx.dst.mask;
DxsoRegisterPointer dst = emitGetOperandPtr(ctx.dst);
DxsoRegisterValue result;
result.type.ctype = dst.type.ctype;
result.type.ccount = mask.popCount();
DxsoVectorType scalarType = result.type;
scalarType.ccount = 1;
const uint32_t typeId = getVectorTypeId(result.type);
const uint32_t scalarTypeId = getVectorTypeId(scalarType);
const DxsoOpcode opcode = ctx.instruction.opcode;
uint32_t dotCount;
uint32_t iterCount;
switch (opcode) {
case DxsoOpcode::M3x2:
dotCount = 3;
iterCount = 2;
break;
case DxsoOpcode::M3x3:
dotCount = 3;
iterCount = 3;
break;
case DxsoOpcode::M3x4:
dotCount = 3;
iterCount = 4;
break;
case DxsoOpcode::M4x3:
dotCount = 4;
iterCount = 3;
break;
case DxsoOpcode::M4x4:
dotCount = 4;
iterCount = 4;
break;
default:
Logger::warn(str::format("DxsoCompiler::emitMatrixAlu: unimplemented op ", opcode));
return;
}
DxsoRegMask srcMask(true, true, true, dotCount == 4);
std::array<uint32_t, 4> indices;
DxsoRegister src0 = src[0];
DxsoRegister src1 = src[1];
for (uint32_t i = 0; i < iterCount; i++) {
indices[i] = m_module.opDot(scalarTypeId,
emitRegisterLoad(src0, srcMask).id,
emitRegisterLoad(src1, srcMask).id);
src1.id.num++;
}
result.id = m_module.opCompositeConstruct(
typeId, iterCount, indices.data());
this->emitDstStore(dst, result, mask, ctx.dst.saturate, emitPredicateLoad(ctx), ctx.dst.shift, ctx.dst.id);
}
void DxsoCompiler::emitControlFlowGenericLoop(
bool count,
uint32_t initialVar,
uint32_t strideVar,
uint32_t iterationCountVar) {
const uint32_t itType = m_module.defIntType(32, 1);
DxsoCfgBlock block;
block.type = DxsoCfgBlockType::Loop;
block.b_loop.labelHeader = m_module.allocateId();
block.b_loop.labelBegin = m_module.allocateId();
block.b_loop.labelContinue = m_module.allocateId();
block.b_loop.labelBreak = m_module.allocateId();
block.b_loop.iteratorPtr = m_module.newVar(
m_module.defPointerType(itType, spv::StorageClassPrivate), spv::StorageClassPrivate);
block.b_loop.strideVar = strideVar;
block.b_loop.countBackup = 0;
if (count) {
DxsoBaseRegister loop;
loop.id = { DxsoRegisterType::Loop, 0 };
DxsoRegisterPointer loopPtr = emitGetOperandPtr(loop, nullptr);
uint32_t loopVal = m_module.opLoad(
getVectorTypeId(loopPtr.type), loopPtr.id);
block.b_loop.countBackup = loopVal;
m_module.opStore(loopPtr.id, initialVar);
}
m_module.setDebugName(block.b_loop.iteratorPtr, "iter");
m_module.opStore(block.b_loop.iteratorPtr, iterationCountVar);
m_module.opBranch(block.b_loop.labelHeader);
m_module.opLabel (block.b_loop.labelHeader);
m_module.opLoopMerge(
block.b_loop.labelBreak,
block.b_loop.labelContinue,
spv::LoopControlMaskNone);
m_module.opBranch(block.b_loop.labelBegin);
m_module.opLabel (block.b_loop.labelBegin);
uint32_t iterator = m_module.opLoad(itType, block.b_loop.iteratorPtr);
uint32_t complete = m_module.opIEqual(m_module.defBoolType(), iterator, m_module.consti32(0));
const uint32_t breakBlock = m_module.allocateId();
const uint32_t mergeBlock = m_module.allocateId();
m_module.opSelectionMerge(mergeBlock,
spv::SelectionControlMaskNone);
m_module.opBranchConditional(
complete, breakBlock, mergeBlock);
m_module.opLabel(breakBlock);
m_module.opBranch(block.b_loop.labelBreak);
m_module.opLabel(mergeBlock);
iterator = m_module.opISub(itType, iterator, m_module.consti32(1));
m_module.opStore(block.b_loop.iteratorPtr, iterator);
m_controlFlowBlocks.push_back(block);
}
void DxsoCompiler::emitControlFlowGenericLoopEnd() {
if (m_controlFlowBlocks.size() == 0
|| m_controlFlowBlocks.back().type != DxsoCfgBlockType::Loop)
throw DxvkError("DxsoCompiler: 'EndRep' without 'Rep' or 'Loop' found");
// Remove the block from the stack, it's closed
const DxsoCfgBlock block = m_controlFlowBlocks.back();
m_controlFlowBlocks.pop_back();
if (block.b_loop.strideVar) {
DxsoBaseRegister loop;
loop.id = { DxsoRegisterType::Loop, 0 };
DxsoRegisterPointer loopPtr = emitGetOperandPtr(loop, nullptr);
uint32_t val = m_module.opLoad(
getVectorTypeId(loopPtr.type), loopPtr.id);
val = m_module.opIAdd(
getVectorTypeId(loopPtr.type),
val, block.b_loop.strideVar);
m_module.opStore(loopPtr.id, val);
}
// Declare the continue block
m_module.opBranch(block.b_loop.labelContinue);
m_module.opLabel(block.b_loop.labelContinue);
// Declare the merge block
m_module.opBranch(block.b_loop.labelHeader);
m_module.opLabel(block.b_loop.labelBreak);
if (block.b_loop.countBackup) {
DxsoBaseRegister loop;
loop.id = { DxsoRegisterType::Loop, 0 };
DxsoRegisterPointer loopPtr = emitGetOperandPtr(loop, nullptr);
m_module.opStore(loopPtr.id, block.b_loop.countBackup);
}
}
void DxsoCompiler::emitControlFlowRep(const DxsoInstructionContext& ctx) {
DxsoRegMask srcMask(true, false, false, false);
this->emitControlFlowGenericLoop(
false, 0, 0,
emitRegisterLoad(ctx.src[0], srcMask).id);
}
void DxsoCompiler::emitControlFlowEndRep(const DxsoInstructionContext& ctx) {
emitControlFlowGenericLoopEnd();
}
void DxsoCompiler::emitControlFlowLoop(const DxsoInstructionContext& ctx) {
const uint32_t itType = m_module.defIntType(32, 1);
DxsoRegMask srcMask(true, true, true, false);
uint32_t integerRegister = emitRegisterLoad(ctx.src[1], srcMask).id;
uint32_t x = 0;
uint32_t y = 1;
uint32_t z = 2;
uint32_t iterCount = m_module.opCompositeExtract(itType, integerRegister, 1, &x);
uint32_t initialValue = m_module.opCompositeExtract(itType, integerRegister, 1, &y);
uint32_t strideSize = m_module.opCompositeExtract(itType, integerRegister, 1, &z);
this->emitControlFlowGenericLoop(
true,
initialValue,
strideSize,
iterCount);
}
void DxsoCompiler::emitControlFlowEndLoop(const DxsoInstructionContext& ctx) {
this->emitControlFlowGenericLoopEnd();
}
void DxsoCompiler::emitControlFlowBreak(const DxsoInstructionContext& ctx) {
DxsoCfgBlock* cfgBlock =
cfgFindBlock({ DxsoCfgBlockType::Loop });
if (cfgBlock == nullptr)
throw DxvkError("DxbcCompiler: 'Break' outside 'Rep' or 'Loop' found");
m_module.opBranch(cfgBlock->b_loop.labelBreak);
// Subsequent instructions assume that there is an open block
const uint32_t labelId = m_module.allocateId();
m_module.opLabel(labelId);
}
void DxsoCompiler::emitControlFlowBreakC(const DxsoInstructionContext& ctx) {
DxsoCfgBlock* cfgBlock =
cfgFindBlock({ DxsoCfgBlockType::Loop });
if (cfgBlock == nullptr)
throw DxvkError("DxbcCompiler: 'BreakC' outside 'Rep' or 'Loop' found");
DxsoRegMask srcMask(true, false, false, false);
auto a = emitRegisterLoad(ctx.src[0], srcMask);
auto b = emitRegisterLoad(ctx.src[1], srcMask);
uint32_t result = this->emitBoolComparison(
{ DxsoScalarType::Bool, a.type.ccount },
ctx.instruction.specificData.comparison,
a.id, b.id);
// We basically have to wrap this into an 'if' block
const uint32_t breakBlock = m_module.allocateId();
const uint32_t mergeBlock = m_module.allocateId();
m_module.opSelectionMerge(mergeBlock,
spv::SelectionControlMaskNone);
m_module.opBranchConditional(
result, breakBlock, mergeBlock);
m_module.opLabel(breakBlock);
m_module.opBranch(cfgBlock->b_loop.labelBreak);
m_module.opLabel(mergeBlock);
}
void DxsoCompiler::emitControlFlowIf(const DxsoInstructionContext& ctx) {
const auto opcode = ctx.instruction.opcode;
uint32_t result;
DxsoRegMask srcMask(true, false, false, false);
if (opcode == DxsoOpcode::Ifc) {
auto a = emitRegisterLoad(ctx.src[0], srcMask);
auto b = emitRegisterLoad(ctx.src[1], srcMask);
result = this->emitBoolComparison(
{ DxsoScalarType::Bool, a.type.ccount },
ctx.instruction.specificData.comparison,
a.id, b.id);
} else
result = emitRegisterLoad(ctx.src[0], srcMask).id;
// Declare the 'if' block. We do not know if there
// will be an 'else' block or not, so we'll assume
// that there is one and leave it empty otherwise.
DxsoCfgBlock block;
block.type = DxsoCfgBlockType::If;
block.b_if.ztestId = result;
block.b_if.labelIf = m_module.allocateId();
block.b_if.labelElse = 0;
block.b_if.labelEnd = m_module.allocateId();
block.b_if.headerPtr = m_module.getInsertionPtr();
m_controlFlowBlocks.push_back(block);
// We'll insert the branch instruction when closing
// the block, since we don't know whether or not an
// else block is needed right now.
m_module.opLabel(block.b_if.labelIf);
}
void DxsoCompiler::emitControlFlowElse(const DxsoInstructionContext& ctx) {
if (m_controlFlowBlocks.size() == 0
|| m_controlFlowBlocks.back().type != DxsoCfgBlockType::If
|| m_controlFlowBlocks.back().b_if.labelElse != 0)
throw DxvkError("DxsoCompiler: 'Else' without 'If' found");
// Set the 'Else' flag so that we do
// not insert a dummy block on 'EndIf'
DxsoCfgBlock& block = m_controlFlowBlocks.back();
block.b_if.labelElse = m_module.allocateId();
// Close the 'If' block by branching to
// the merge block we declared earlier
m_module.opBranch(block.b_if.labelEnd);
m_module.opLabel (block.b_if.labelElse);
}
void DxsoCompiler::emitControlFlowEndIf(const DxsoInstructionContext& ctx) {
if (m_controlFlowBlocks.size() == 0
|| m_controlFlowBlocks.back().type != DxsoCfgBlockType::If)
throw DxvkError("DxsoCompiler: 'EndIf' without 'If' found");
// Remove the block from the stack, it's closed
DxsoCfgBlock block = m_controlFlowBlocks.back();
m_controlFlowBlocks.pop_back();
// Write out the 'if' header
m_module.beginInsertion(block.b_if.headerPtr);
m_module.opSelectionMerge(
block.b_if.labelEnd,
spv::SelectionControlMaskNone);
m_module.opBranchConditional(
block.b_if.ztestId,
block.b_if.labelIf,
block.b_if.labelElse != 0
? block.b_if.labelElse
: block.b_if.labelEnd);
m_module.endInsertion();
// End the active 'if' or 'else' block
m_module.opBranch(block.b_if.labelEnd);
m_module.opLabel (block.b_if.labelEnd);
}
void DxsoCompiler::emitTexCoord(const DxsoInstructionContext& ctx) {
DxsoRegisterValue result;
if (m_programInfo.majorVersion() == 1 && m_programInfo.minorVersion() == 4) {
// TexCrd Op (PS 1.4)
DxsoRegister texcoord;
texcoord.id.type = DxsoRegisterType::PixelTexcoord;
texcoord.id.num = ctx.src[0].id.num;
result = emitRegisterLoadRaw(texcoord, nullptr);
} else {
// TexCoord Op (PS 1.0 - PS 1.3)
DxsoRegister texcoord;
texcoord.id.type = DxsoRegisterType::PixelTexcoord;
texcoord.id.num = ctx.dst.id.num;
result = emitRegisterLoadRaw(texcoord, nullptr);
// Saturate
result = emitSaturate(result);
// w = 1.0f
uint32_t wIndex = 3;
result.id = m_module.opCompositeInsert(getVectorTypeId(result.type),
m_module.constf32(1.0f),
result.id,
1, &wIndex);
}
DxsoRegisterPointer dst = emitGetOperandPtr(ctx.dst);
this->emitDstStore(dst, result, ctx.dst.mask, ctx.dst.saturate, emitPredicateLoad(ctx), ctx.dst.shift, ctx.dst.id);
}
void DxsoCompiler::emitTextureSample(const DxsoInstructionContext& ctx) {
DxsoRegisterPointer dst = emitGetOperandPtr(ctx.dst);
const DxsoOpcode opcode = ctx.instruction.opcode;
DxsoRegisterValue texcoordVar;
uint32_t samplerIdx;
DxsoRegMask vec3Mask(true, true, true, false);
DxsoRegMask srcMask (true, true, true, true);
auto GetProjectionValue = [&]() {
uint32_t w = 3;
return m_module.opCompositeExtract(
m_module.defFloatType(32), texcoordVar.id, 1, &w);
};
if (opcode == DxsoOpcode::TexM3x2Tex || opcode == DxsoOpcode::TexM3x3Tex || opcode == DxsoOpcode::TexM3x3Spec || opcode == DxsoOpcode::TexM3x3VSpec) {
const uint32_t count = opcode == DxsoOpcode::TexM3x2Tex ? 2 : 3;
auto n = emitRegisterLoad(ctx.src[0], vec3Mask);
std::array<uint32_t, 4> indices = { 0, 0, m_module.constf32(0.0f), m_module.constf32(0.0f) };
for (uint32_t i = 0; i < count; i++) {
auto reg = ctx.dst;
reg.id.num -= (count - 1) - i;
auto m = emitRegisterLoadTexcoord(reg, vec3Mask);
indices[i] = m_module.opDot(getScalarTypeId(DxsoScalarType::Float32), m.id, n.id);
}
if (opcode == DxsoOpcode::TexM3x3Spec || opcode == DxsoOpcode::TexM3x3VSpec) {
uint32_t vec3Type = getVectorTypeId({ DxsoScalarType::Float32, 3 });
uint32_t normal = m_module.opCompositeConstruct(vec3Type, 3, indices.data());
uint32_t eyeRay;
// VSpec -> Create eye ray from .w of last 3 tex coords (m, m-1, m-2)
// Spec -> Get eye ray from src[1]
if (opcode == DxsoOpcode::TexM3x3VSpec) {
DxsoRegMask wMask(false, false, false, true);
std::array<uint32_t, 3> eyeRayIndices;
for (uint32_t i = 0; i < 3; i++) {
auto reg = ctx.dst;
reg.id.num -= (count - 1) - i;
eyeRayIndices[i] = emitRegisterLoadTexcoord(reg, wMask).id;
}
eyeRay = m_module.opCompositeConstruct(vec3Type, eyeRayIndices.size(), eyeRayIndices.data());
}
else
eyeRay = emitRegisterLoad(ctx.src[1], vec3Mask).id;
eyeRay = m_module.opNormalize(vec3Type, eyeRay);
normal = m_module.opNormalize(vec3Type, normal);
uint32_t reflection = m_module.opReflect(vec3Type, eyeRay, normal);
reflection = m_module.opFNegate(vec3Type, reflection);
for (uint32_t i = 0; i < 3; i++)
indices[i] = m_module.opCompositeExtract(m_module.defFloatType(32), reflection, 1, &i);
}
texcoordVar.type = { DxsoScalarType::Float32, 4 };
texcoordVar.id = m_module.opCompositeConstruct(getVectorTypeId(texcoordVar.type), indices.size(), indices.data());
samplerIdx = ctx.dst.id.num;
}
else if (opcode == DxsoOpcode::TexBem) {
auto m = emitRegisterLoadTexcoord(ctx.dst, srcMask);
auto n = emitRegisterLoad(ctx.src[0], srcMask);
texcoordVar = m;
samplerIdx = ctx.dst.id.num;
uint32_t texcoord_t = getVectorTypeId(texcoordVar.type);
// The projection (/.w) happens before this...
// Of course it does...
uint32_t bool_t = m_module.defBoolType();
uint32_t shouldProj = m_module.opBitFieldUExtract(
m_module.defIntType(32, 0), m_ps.projectionSpec,
m_module.consti32(samplerIdx), m_module.consti32(1));
shouldProj = m_module.opIEqual(bool_t, shouldProj, m_module.constu32(1));
uint32_t bvec4_t = m_module.defVectorType(bool_t, 4);
std::array<uint32_t, 4> indices = { shouldProj, shouldProj, shouldProj, shouldProj };
shouldProj = m_module.opCompositeConstruct(bvec4_t, indices.size(), indices.data());
uint32_t projScalar = m_module.opFDiv(m_module.defFloatType(32), m_module.constf32(1.0), GetProjectionValue());
uint32_t projResult = m_module.opVectorTimesScalar(texcoord_t, texcoordVar.id, projScalar);
texcoordVar.id = m_module.opSelect(texcoord_t, shouldProj, projResult, texcoordVar.id);
// u' = tc(m).x + [bm00(m) * t(n).x + bm10(m) * t(n).y]
// v' = tc(m).y + [bm01(m) * t(n).x + bm11(m) * t(n).y]
// But we flipped the bm indices so we can use dot here...
// u' = tc(m).x + dot(bm0, tn)
// v' = tc(m).y + dot(bm1, tn)
for (uint32_t i = 0; i < 2; i++) {
uint32_t fl_t = getScalarTypeId(DxsoScalarType::Float32);
uint32_t vec2_t = getVectorTypeId({ DxsoScalarType::Float32, 2 });
std::array<uint32_t, 4> indices = { 0, 1, 2, 3 };
uint32_t tc_m_n = m_module.opCompositeExtract(fl_t, texcoordVar.id, 1, &i);
uint32_t offset = m_module.constu32(D3D9SharedPSStages_Count * ctx.dst.id.num + D3D9SharedPSStages_BumpEnvMat0 + i);
uint32_t bm = m_module.opAccessChain(m_module.defPointerType(vec2_t, spv::StorageClassUniform),
m_ps.sharedState, 1, &offset);
bm = m_module.opLoad(vec2_t, bm);
uint32_t t = m_module.opVectorShuffle(vec2_t, n.id, n.id, 2, indices.data());
uint32_t dot = m_module.opDot(fl_t, bm, t);
uint32_t result = m_module.opFAdd(fl_t, tc_m_n, dot);
texcoordVar.id = m_module.opCompositeInsert(getVectorTypeId(texcoordVar.type), result, texcoordVar.id, 1, &i);
}
}
else if (opcode == DxsoOpcode::TexReg2Ar) {
texcoordVar = emitRegisterLoad(ctx.src[0], srcMask);
texcoordVar = emitRegisterSwizzle(texcoordVar, DxsoRegSwizzle(3, 0, 0, 0), srcMask);
samplerIdx = ctx.dst.id.num;
}
else if (opcode == DxsoOpcode::TexReg2Gb) {
texcoordVar = emitRegisterLoad(ctx.src[0], srcMask);
texcoordVar = emitRegisterSwizzle(texcoordVar, DxsoRegSwizzle(1, 2, 2, 2), srcMask);
samplerIdx = ctx.dst.id.num;
}
else if (opcode == DxsoOpcode::TexReg2Rgb) {
texcoordVar = emitRegisterLoad(ctx.src[0], srcMask);
texcoordVar = emitRegisterSwizzle(texcoordVar, DxsoRegSwizzle(0, 1, 2, 2), srcMask);
samplerIdx = ctx.dst.id.num;
}
else if (opcode == DxsoOpcode::TexDp3Tex) {
auto m = emitRegisterLoadTexcoord(ctx.dst, vec3Mask);
auto n = emitRegisterLoad(ctx.src[0], vec3Mask);
auto dot = emitDot(m, n);
std::array<uint32_t, 4> indices = { dot.id, m_module.constf32(0.0f), m_module.constf32(0.0f), m_module.constf32(0.0f) };
texcoordVar.type = { DxsoScalarType::Float32, 4 };
texcoordVar.id = m_module.opCompositeConstruct(getVectorTypeId(texcoordVar.type),
indices.size(), indices.data());
samplerIdx = ctx.dst.id.num;
}
else {
if (m_programInfo.majorVersion() >= 2) { // SM 2.0+
texcoordVar = emitRegisterLoad(ctx.src[0], srcMask);
samplerIdx = ctx.src[1].id.num;
} else if (
m_programInfo.majorVersion() == 1
&& m_programInfo.minorVersion() == 4) { // SM 1.4
texcoordVar = emitRegisterLoad(ctx.src[0], srcMask);
samplerIdx = ctx.dst.id.num;
}
else { // SM 1.0-1.3
texcoordVar = emitRegisterLoadTexcoord(ctx.dst, srcMask);
samplerIdx = ctx.dst.id.num;
}
}
// SM < 1.x does not have dcl sampler type.
if (m_programInfo.majorVersion() < 2 && m_samplers[samplerIdx].color[SamplerTypeTexture2D].varId == 0)
emitDclSampler(samplerIdx, DxsoTextureType::Texture2D);
DxsoSampler sampler = m_samplers.at(samplerIdx);
auto SampleImage = [this, opcode, dst, ctx, samplerIdx, GetProjectionValue](DxsoRegisterValue texcoordVar, DxsoSamplerInfo& sampler, bool depth, DxsoSamplerType samplerType, uint32_t specConst) {
DxsoRegisterValue result;
result.type.ctype = dst.type.ctype;
result.type.ccount = depth ? 1 : 4;
const uint32_t typeId = getVectorTypeId(result.type);
const uint32_t imageVarId = m_module.opLoad(sampler.typeId, sampler.varId);
SpirvImageOperands imageOperands;
if (m_programInfo.type() == DxsoProgramTypes::VertexShader) {
imageOperands.sLod = m_module.constf32(0.0f);
imageOperands.flags |= spv::ImageOperandsLodMask;
}
if (opcode == DxsoOpcode::TexLdl) {
uint32_t w = 3;
imageOperands.sLod = m_module.opCompositeExtract(
m_module.defFloatType(32), texcoordVar.id, 1, &w);
imageOperands.flags |= spv::ImageOperandsLodMask;
}
if (opcode == DxsoOpcode::TexLdd) {
DxsoRegMask gradMask(true, true, false, false);
imageOperands.flags |= spv::ImageOperandsGradMask;
imageOperands.sGradX = emitRegisterLoad(ctx.src[2], gradMask).id;
imageOperands.sGradY = emitRegisterLoad(ctx.src[3], gradMask).id;
}
uint32_t projDivider = 0;
if (opcode == DxsoOpcode::Tex
&& m_programInfo.majorVersion() >= 2) {
if (ctx.instruction.specificData.texld == DxsoTexLdMode::Project) {
projDivider = GetProjectionValue();
}
else if (ctx.instruction.specificData.texld == DxsoTexLdMode::Bias) {
uint32_t w = 3;
imageOperands.sLodBias = m_module.opCompositeExtract(
m_module.defFloatType(32), texcoordVar.id, 1, &w);
imageOperands.flags |= spv::ImageOperandsBiasMask;
}
}
bool switchProjResult = m_programInfo.majorVersion() < 2 && samplerType != SamplerTypeTextureCube;
if (switchProjResult)
projDivider = GetProjectionValue();
// We already handled this...
if (opcode == DxsoOpcode::TexBem) {
switchProjResult = false;
projDivider = 0;
}
uint32_t reference = 0;
if (depth) {
uint32_t component = sampler.dimensions;
reference = m_module.opCompositeExtract(
m_module.defFloatType(32), texcoordVar.id, 1, &component);
}
if (projDivider != 0) {
for (uint32_t i = sampler.dimensions; i < 4; i++) {
texcoordVar.id = m_module.opCompositeInsert(getVectorTypeId(texcoordVar.type),
projDivider, texcoordVar.id, 1, &i);
}
}
result.id = this->emitSample(
projDivider != 0,
typeId,
imageVarId,
texcoordVar.id,
reference,
imageOperands);
if (switchProjResult) {
uint32_t bool_t = m_module.defBoolType();
uint32_t nonProjResult = this->emitSample(
0,
typeId,
imageVarId,
texcoordVar.id,
reference,
imageOperands);
uint32_t shouldProj = m_module.opBitFieldUExtract(
m_module.defIntType(32, 0), m_ps.projectionSpec,
m_module.consti32(samplerIdx), m_module.consti32(1));
shouldProj = m_module.opIEqual(m_module.defBoolType(), shouldProj, m_module.constu32(1));
// Depth -> .x
// Colour -> .xyzw
// Need to replicate the bool for the opSelect.
if (!depth) {
uint32_t bvec4_t = m_module.defVectorType(bool_t, 4);
std::array<uint32_t, 4> indices = { shouldProj, shouldProj, shouldProj, shouldProj };
shouldProj = m_module.opCompositeConstruct(bvec4_t, indices.size(), indices.data());
}
result.id = m_module.opSelect(typeId, shouldProj, result.id, nonProjResult);
}
// If we are sampling depth we've already specc'ed this!
// This path is always size 4 because it only hits on color.
if (specConst != 0) {
uint32_t bool_t = m_module.defBoolType();
uint32_t bvec4_t = m_module.defVectorType(bool_t, 4);
std::array<uint32_t, 4> indices = { specConst, specConst, specConst, specConst };
specConst = m_module.opCompositeConstruct(bvec4_t, indices.size(), indices.data());
result.id = m_module.opSelect(typeId, specConst, result.id, m_module.constvec4f32(0.0f, 0.0f, 0.0f, 1.0f));
}
// Apply operand swizzle to the operand value
result = emitRegisterSwizzle(result, IdentitySwizzle, ctx.dst.mask);
this->emitDstStore(dst, result, ctx.dst.mask, ctx.dst.saturate, emitPredicateLoad(ctx), ctx.dst.shift, ctx.dst.id);
};
auto SampleType = [&](DxsoSamplerType samplerType) {
// Only do the check for depth comp. samplers
// if we aren't a 3D texture
if (samplerType != SamplerTypeTexture3D) {
uint32_t colorLabel = m_module.allocateId();
uint32_t depthLabel = m_module.allocateId();
uint32_t endLabel = m_module.allocateId();
m_module.opSelectionMerge(endLabel, spv::SelectionControlMaskNone);
m_module.opBranchConditional(sampler.depthSpecConst, depthLabel, colorLabel);
m_module.opLabel(colorLabel);
SampleImage(texcoordVar, sampler.color[samplerType], false, samplerType, sampler.colorSpecConst);
m_module.opBranch(endLabel);
m_module.opLabel(depthLabel);
SampleImage(texcoordVar, sampler.depth[samplerType], true, samplerType, 0); // already specc'ed
m_module.opBranch(endLabel);
m_module.opLabel(endLabel);
}
else
SampleImage(texcoordVar, sampler.color[samplerType], false, samplerType, sampler.colorSpecConst);
};
if (m_programInfo.majorVersion() >= 2 && !m_moduleInfo.options.forceSamplerTypeSpecConstants) {
DxsoSamplerType samplerType =
SamplerTypeFromTextureType(sampler.type);
SampleType(samplerType);
}
else {
std::array<SpirvSwitchCaseLabel, 3> typeCaseLabels = {{
{ uint32_t(SamplerTypeTexture2D), m_module.allocateId() },
{ uint32_t(SamplerTypeTexture3D), m_module.allocateId() },
{ uint32_t(SamplerTypeTextureCube), m_module.allocateId() },
}};
uint32_t switchEndLabel = m_module.allocateId();
uint32_t typeId = m_module.defIntType(32, 0);
uint32_t offset = m_module.consti32(samplerIdx * 2);
uint32_t bitCnt = m_module.consti32(2);
uint32_t type = m_module.opBitFieldUExtract(typeId, m_ps.samplerTypeSpec, offset, bitCnt);
m_module.opSelectionMerge(switchEndLabel, spv::SelectionControlMaskNone);
m_module.opSwitch(type,
typeCaseLabels[uint32_t(SamplerTypeTexture2D)].labelId,
typeCaseLabels.size(),
typeCaseLabels.data());
for (const auto& label : typeCaseLabels) {
m_module.opLabel(label.labelId);
SampleType(DxsoSamplerType(label.literal));
m_module.opBranch(switchEndLabel);
}
m_module.opLabel(switchEndLabel);
}
}
void DxsoCompiler::emitTextureKill(const DxsoInstructionContext& ctx) {
DxsoRegisterValue texReg;
if (m_programInfo.majorVersion() >= 2 ||
(m_programInfo.majorVersion() == 1
&& m_programInfo.minorVersion() == 4)) // SM 2.0+ or 1.4
texReg = emitRegisterLoadRaw(ctx.dst, ctx.dst.hasRelative ? &ctx.dst.relative : nullptr);
else { // SM 1.0-1.3
DxsoRegister texcoord;
texcoord.id = { DxsoRegisterType::PixelTexcoord, ctx.dst.id.num };
texReg = emitRegisterLoadRaw(texcoord, nullptr);
}
std::array<uint32_t, 4> indices = { 0, 1, 2, 3 };
// On SM1 it only works on the first
if (m_programInfo.majorVersion() < 2) {
texReg.type.ccount = 3;
texReg.id = m_module.opVectorShuffle(
getVectorTypeId(texReg.type),
texReg.id, texReg.id,
texReg.type.ccount, indices.data());
}
else {
// The writemask actually applies and works here...
// (FXC doesn't generate this but it fixes broken ENB shaders)
texReg = emitRegisterSwizzle(texReg, IdentitySwizzle, ctx.dst.mask);
}
const uint32_t boolVecTypeId =
getVectorTypeId({ DxsoScalarType::Bool, texReg.type.ccount });
uint32_t result = m_module.opFOrdLessThan(
boolVecTypeId, texReg.id,
m_module.constfReplicant(0.0f, texReg.type.ccount));
if (texReg.type.ccount != 1)
result = m_module.opAny(m_module.defBoolType(), result);
if (m_ps.killState == 0) {
uint32_t labelIf = m_module.allocateId();
uint32_t labelEnd = m_module.allocateId();
m_module.opSelectionMerge(labelEnd, spv::SelectionControlMaskNone);
m_module.opBranchConditional(result, labelIf, labelEnd);
m_module.opLabel(labelIf);
if (m_moduleInfo.options.useDemoteToHelperInvocation) {
m_module.opDemoteToHelperInvocation();
m_module.opBranch(labelEnd);
} else {
// OpKill terminates the block
m_module.opKill();
}
m_module.opLabel(labelEnd);
}
else {
uint32_t typeId = m_module.defBoolType();
uint32_t killState = m_module.opLoad (typeId, m_ps.killState);
killState = m_module.opLogicalOr(typeId, killState, result);
m_module.opStore(m_ps.killState, killState);
if (m_moduleInfo.options.useSubgroupOpsForEarlyDiscard) {
uint32_t ballot = m_module.opGroupNonUniformBallot(
getVectorTypeId({ DxsoScalarType::Uint32, 4 }),
m_module.constu32(spv::ScopeSubgroup),
killState);
uint32_t laneId = m_module.opLoad(
getScalarTypeId(DxsoScalarType::Uint32),
m_ps.builtinLaneId);
uint32_t laneIdPart = m_module.opShiftRightLogical(
getScalarTypeId(DxsoScalarType::Uint32),
laneId, m_module.constu32(5));
uint32_t laneMask = m_module.opVectorExtractDynamic(
getScalarTypeId(DxsoScalarType::Uint32),
ballot, laneIdPart);
uint32_t laneIdQuad = m_module.opBitwiseAnd(
getScalarTypeId(DxsoScalarType::Uint32),
laneId, m_module.constu32(0x1c));
laneMask = m_module.opShiftRightLogical(
getScalarTypeId(DxsoScalarType::Uint32),
laneMask, laneIdQuad);
laneMask = m_module.opBitwiseAnd(
getScalarTypeId(DxsoScalarType::Uint32),
laneMask, m_module.constu32(0xf));
uint32_t killSubgroup = m_module.opIEqual(
m_module.defBoolType(),
laneMask, m_module.constu32(0xf));
uint32_t labelIf = m_module.allocateId();
uint32_t labelEnd = m_module.allocateId();
m_module.opSelectionMerge(labelEnd, spv::SelectionControlMaskNone);
m_module.opBranchConditional(killSubgroup, labelIf, labelEnd);
// OpKill terminates the block
m_module.opLabel(labelIf);
m_module.opKill();
m_module.opLabel(labelEnd);
}
}
}
uint32_t DxsoCompiler::emitSample(
bool projected,
uint32_t resultType,
uint32_t sampledImage,
uint32_t coordinates,
uint32_t reference,
const SpirvImageOperands& operands) {
const bool depthCompare = reference != 0;
const bool explicitLod =
(operands.flags & spv::ImageOperandsLodMask)
|| (operands.flags & spv::ImageOperandsGradMask);
if (projected) {
if (depthCompare) {
if (explicitLod)
return m_module.opImageSampleProjDrefExplicitLod(resultType, sampledImage, coordinates, reference, operands);
else
return m_module.opImageSampleProjDrefImplicitLod(resultType, sampledImage, coordinates, reference, operands);
}
else {
if (explicitLod)
return m_module.opImageSampleProjExplicitLod(resultType, sampledImage, coordinates, operands);
else
return m_module.opImageSampleProjImplicitLod(resultType, sampledImage, coordinates, operands);
}
}
else {
if (depthCompare) {
if (explicitLod)
return m_module.opImageSampleDrefExplicitLod(resultType, sampledImage, coordinates, reference, operands);
else
return m_module.opImageSampleDrefImplicitLod(resultType, sampledImage, coordinates, reference, operands);
}
else {
if (explicitLod)
return m_module.opImageSampleExplicitLod(resultType, sampledImage, coordinates, operands);
else
return m_module.opImageSampleImplicitLod(resultType, sampledImage, coordinates, operands);
}
}
}
void DxsoCompiler::emitInputSetup() {
uint32_t pointCoord = 0;
D3D9PointSizeInfoPS pointInfo;
if (m_programInfo.type() == DxsoProgramType::PixelShader) {
pointCoord = GetPointCoord(m_module, m_entryPointInterfaces);
pointInfo = GetPointSizeInfoPS(m_module, m_rsBlock);
}
for (uint32_t i = 0; i < m_isgn.elemCount; i++) {
const auto& elem = m_isgn.elems[i];
const uint32_t slot = elem.slot;
DxsoRegisterInfo info;
info.type.ctype = DxsoScalarType::Float32;
info.type.ccount = 4;
info.type.alength = 1;
info.sclass = spv::StorageClassInput;
DxsoRegisterPointer inputPtr;
inputPtr.id = emitNewVariable(info);
inputPtr.type.ctype = DxsoScalarType::Float32;
inputPtr.type.ccount = info.type.ccount;
m_module.decorateLocation(inputPtr.id, slot);
std::string name =
str::format("in_", elem.semantic.usage, elem.semantic.usageIndex);
m_module.setDebugName(inputPtr.id, name.c_str());
if (elem.centroid)
m_module.decorate(inputPtr.id, spv::DecorationCentroid);
m_entryPointInterfaces.push_back(inputPtr.id);
uint32_t typeId = this->getVectorTypeId({ DxsoScalarType::Float32, 4 });
uint32_t ptrTypeId = m_module.defPointerType(typeId, spv::StorageClassPrivate);
uint32_t regNumVar = m_module.constu32(elem.regNumber);
DxsoRegisterPointer indexPtr;
indexPtr.id = m_module.opAccessChain(ptrTypeId, m_vArray, 1, &regNumVar);
indexPtr.type = inputPtr.type;
indexPtr.type.ccount = 4;
DxsoRegisterValue indexVal = this->emitValueLoad(inputPtr);
DxsoRegisterValue workingReg;
workingReg.type = indexVal.type;
workingReg.id = m_module.constvec4f32(0.0f, 0.0f, 0.0f, 0.0f);
DxsoRegMask mask = elem.mask;
if (mask.popCount() == 0)
mask = DxsoRegMask(true, true, true, true);
std::array<uint32_t, 4> indices = { 0, 1, 2, 3 };
uint32_t count = 0;
for (uint32_t i = 0; i < 4; i++) {
if (mask[i]) {
indices[i] = i + 4;
count++;
}
}
workingReg.id = m_module.opVectorShuffle(getVectorTypeId(workingReg.type),
workingReg.id, indexVal.id, 4, indices.data());
// We need to replace TEXCOORD inputs with gl_PointCoord
// if D3DRS_POINTSPRITEENABLE is set.
if (m_programInfo.type() == DxsoProgramType::PixelShader && elem.semantic.usage == DxsoUsage::Texcoord)
workingReg.id = m_module.opSelect(getVectorTypeId(workingReg.type), pointInfo.isSprite, pointCoord, workingReg.id);
if (m_programInfo.type() == DxsoProgramType::PixelShader && elem.semantic.usage == DxsoUsage::Color) {
if (elem.semantic.usageIndex == 0)
m_ps.diffuseColorIn = inputPtr.id;
else if (elem.semantic.usageIndex == 1)
m_ps.specularColorIn = inputPtr.id;
}
m_module.opStore(indexPtr.id, workingReg.id);
}
}
void DxsoCompiler::emitLinkerOutputSetup() {
bool outputtedColor0 = false;
bool outputtedColor1 = false;
for (uint32_t i = 0; i < m_osgn.elemCount; i++) {
const auto& elem = m_osgn.elems[i];
const uint32_t slot = elem.slot;
if (elem.semantic.usage == DxsoUsage::Color) {
if (elem.semantic.usageIndex == 0)
outputtedColor0 = true;
else
outputtedColor1 = true;
}
DxsoRegisterInfo info;
info.type.ctype = DxsoScalarType::Float32;
info.type.ccount = 4;
info.type.alength = 1;
info.sclass = spv::StorageClassOutput;
spv::BuiltIn builtIn =
semanticToBuiltIn(false, elem.semantic);
DxsoRegisterPointer outputPtr;
outputPtr.type.ctype = DxsoScalarType::Float32;
outputPtr.type.ccount = 4;
DxsoRegMask mask = elem.mask;
bool scalar = false;
if (builtIn == spv::BuiltInMax) {
outputPtr.id = emitNewVariableDefault(info,
m_module.constvec4f32(0.0f, 0.0f, 0.0f, 0.0f));
m_module.decorateLocation(outputPtr.id, slot);
std::string name =
str::format("out_", elem.semantic.usage, elem.semantic.usageIndex);
m_module.setDebugName(outputPtr.id, name.c_str());
}
else {
const char* name = "unknown_builtin";
if (builtIn == spv::BuiltInPosition)
name = "oPos";
else if (builtIn == spv::BuiltInPointSize) {
outputPtr.type.ccount = 1;
info.type.ccount = 1;
name = "oPSize";
bool maskValues[4];
for (uint32_t i = 0; i < 4; i++)
maskValues[i] = i == elem.mask.firstSet();
mask = DxsoRegMask(maskValues[0], maskValues[1], maskValues[2], maskValues[3]);
}
outputPtr.id = emitNewVariableDefault(info,
m_module.constfReplicant(0.0f, info.type.ccount));
m_module.setDebugName(outputPtr.id, name);
m_module.decorateBuiltIn(outputPtr.id, builtIn);
if (builtIn == spv::BuiltInPosition)
m_vs.oPos = outputPtr;
else if (builtIn == spv::BuiltInPointSize) {
scalar = true;
m_vs.oPSize = outputPtr;
}
}
m_entryPointInterfaces.push_back(outputPtr.id);
uint32_t typeId = this->getVectorTypeId({ DxsoScalarType::Float32, 4 });
uint32_t ptrTypeId = m_module.defPointerType(typeId, spv::StorageClassPrivate);
uint32_t regNumVar = m_module.constu32(elem.regNumber);
DxsoRegisterPointer indexPtr;
indexPtr.id = m_module.opAccessChain(ptrTypeId, m_oArray, 1, &regNumVar);
indexPtr.type = outputPtr.type;
indexPtr.type.ccount = 4;
DxsoRegisterValue indexVal = this->emitValueLoad(indexPtr);
DxsoRegisterValue workingReg;
workingReg.type.ctype = indexVal.type.ctype;
workingReg.type.ccount = scalar ? 1 : 4;
workingReg.id = scalar
? m_module.constf32(0.0f)
: m_module.constvec4f32(0.0f, 0.0f, 0.0f, 0.0f);
std::array<uint32_t, 4> indices = { 0, 1, 2, 3 };
if (scalar) {
workingReg.id = m_module.opCompositeExtract(getVectorTypeId(workingReg.type),
indexVal.id, 1, indices.data());
} else {
if (mask.popCount() == 0)
mask = DxsoRegMask(true, true, true, true);
uint32_t count = 0;
for (uint32_t i = 0; i < 4; i++) {
if (mask[i])
indices[count++] = i + 4;
}
workingReg.id = m_module.opVectorShuffle(getVectorTypeId(workingReg.type),
workingReg.id, indexVal.id, 4, indices.data());
}
// Ie. 0 or 1 for diffuse and specular color
// and for Shader Model 1 or 2
// (because those have dedicated color registers
// where this rule applies)
if (elem.semantic.usage == DxsoUsage::Color &&
elem.semantic.usageIndex < 2 &&
m_programInfo.majorVersion() < 3)
workingReg = emitSaturate(workingReg);
m_module.opStore(outputPtr.id, workingReg.id);
}
auto OutputDefault = [&](DxsoSemantic semantic) {
DxsoRegisterInfo info;
info.type.ctype = DxsoScalarType::Float32;
info.type.ccount = 4;
info.type.alength = 1;
info.sclass = spv::StorageClassOutput;
uint32_t slot = RegisterLinkerSlot(semantic);
uint32_t value = semantic == DxsoSemantic{ DxsoUsage::Color, 0 }
? m_module.constvec4f32(1.0f, 1.0f, 1.0f, 1.0f)
: m_module.constvec4f32(0.0f, 0.0f, 0.0f, 0.0f);
uint32_t outputPtr = emitNewVariableDefault(info, value);
m_module.decorateLocation(outputPtr, slot);
std::string name =
str::format("out_", semantic.usage, semantic.usageIndex, "_default");
m_module.setDebugName(outputPtr, name.c_str());
m_interfaceSlots.outputSlots |= 1u << slot;
m_entryPointInterfaces.push_back(outputPtr);
};
if (!outputtedColor0)
OutputDefault(DxsoSemantic{ DxsoUsage::Color, 0 });
if (!outputtedColor1)
OutputDefault(DxsoSemantic{ DxsoUsage::Color, 1 });
auto pointInfo = GetPointSizeInfoVS(m_module, m_vs.oPos.id, 0, 0, m_rsBlock);
if (m_vs.oPSize.id == 0) {
m_vs.oPSize = this->emitRegisterPtr(
"oPSize", DxsoScalarType::Float32, 1, 0,
spv::StorageClassOutput, spv::BuiltInPointSize);
uint32_t pointSize = m_module.opFClamp(m_module.defFloatType(32), pointInfo.defaultValue, pointInfo.min, pointInfo.max);
m_module.opStore(m_vs.oPSize.id, pointSize);
}
else {
uint32_t float_t = m_module.defFloatType(32);
uint32_t pointSize = m_module.opFClamp(m_module.defFloatType(32), m_module.opLoad(float_t, m_vs.oPSize.id), pointInfo.min, pointInfo.max);
m_module.opStore(m_vs.oPSize.id, pointSize);
}
}
void DxsoCompiler::emitVsClipping() {
uint32_t clipPlaneCountId = m_module.constu32(caps::MaxClipPlanes);
uint32_t floatType = m_module.defFloatType(32);
uint32_t vec4Type = m_module.defVectorType(floatType, 4);
// Declare uniform buffer containing clip planes
uint32_t clipPlaneArray = m_module.defArrayTypeUnique(vec4Type, clipPlaneCountId);
uint32_t clipPlaneStruct = m_module.defStructTypeUnique(1, &clipPlaneArray);
uint32_t clipPlaneBlock = m_module.newVar(
m_module.defPointerType(clipPlaneStruct, spv::StorageClassUniform),
spv::StorageClassUniform);
m_module.decorateArrayStride (clipPlaneArray, 16);
m_module.setDebugName (clipPlaneStruct, "clip_info_t");
m_module.setDebugMemberName (clipPlaneStruct, 0, "clip_planes");
m_module.decorate (clipPlaneStruct, spv::DecorationBlock);
m_module.memberDecorateOffset (clipPlaneStruct, 0, 0);
uint32_t bindingId = computeResourceSlotId(
m_programInfo.type(), DxsoBindingType::ConstantBuffer,
DxsoConstantBuffers::VSClipPlanes);
m_module.setDebugName (clipPlaneBlock, "clip_info");
m_module.decorateDescriptorSet(clipPlaneBlock, 0);
m_module.decorateBinding (clipPlaneBlock, bindingId);
DxvkResourceSlot resource;
resource.slot = bindingId;
resource.type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
resource.view = VK_IMAGE_VIEW_TYPE_MAX_ENUM;
resource.access = VK_ACCESS_UNIFORM_READ_BIT;
m_resourceSlots.push_back(resource);
// Declare output array for clip distances
uint32_t clipDistArray = m_module.newVar(
m_module.defPointerType(
m_module.defArrayType(floatType, clipPlaneCountId),
spv::StorageClassOutput),
spv::StorageClassOutput);
m_module.decorateBuiltIn(clipDistArray, spv::BuiltInClipDistance);
m_entryPointInterfaces.push_back(clipDistArray);
if (m_moduleInfo.options.invariantPosition)
m_module.decorate(m_vs.oPos.id, spv::DecorationInvariant);
const uint32_t positionPtr = m_vs.oPos.id;
// We generated a bad shader, let's not make it even worse.
if (positionPtr == 0) {
Logger::warn("Shader without Position output. Something is likely wrong here.");
return;
}
// Compute clip distances
uint32_t positionId = m_module.opLoad(vec4Type, positionPtr);
for (uint32_t i = 0; i < caps::MaxClipPlanes; i++) {
std::array<uint32_t, 2> blockMembers = {{
m_module.constu32(0),
m_module.constu32(i),
}};
uint32_t planeId = m_module.opLoad(vec4Type,
m_module.opAccessChain(
m_module.defPointerType(vec4Type, spv::StorageClassUniform),
clipPlaneBlock, blockMembers.size(), blockMembers.data()));
uint32_t distId = m_module.opDot(floatType, positionId, planeId);
m_module.opStore(
m_module.opAccessChain(
m_module.defPointerType(floatType, spv::StorageClassOutput),
clipDistArray, 1, &blockMembers[1]),
distId);
}
}
void DxsoCompiler::setupRenderStateInfo() {
m_rsBlock = SetupRenderStateBlock(m_module);
// Only need alpha ref for PS 3.
// No FF fog component.
if (m_programInfo.type() == DxsoProgramType::PixelShader) {
if (m_programInfo.majorVersion() == 3) {
m_interfaceSlots.pushConstOffset = offsetof(D3D9RenderStateInfo, alphaRef);
m_interfaceSlots.pushConstSize = sizeof(float);
}
else {
m_interfaceSlots.pushConstOffset = 0;
m_interfaceSlots.pushConstSize = offsetof(D3D9RenderStateInfo, pointSize);
}
}
else {
m_interfaceSlots.pushConstOffset = offsetof(D3D9RenderStateInfo, pointSize);
// Point scale never triggers on programmable
m_interfaceSlots.pushConstSize = sizeof(float) * 3;
}
}
void DxsoCompiler::emitFog() {
DxsoRegister color0;
color0.id = DxsoRegisterId{ DxsoRegisterType::ColorOut, 0 };
auto oColor0Ptr = this->emitGetOperandPtr(color0);
DxsoRegister vFog;
vFog.id = DxsoRegisterId{ DxsoRegisterType::RasterizerOut, RasterOutFog };
auto vFogPtr = this->emitGetOperandPtr(vFog);
DxsoRegister vPos;
vPos.id = DxsoRegisterId{ DxsoRegisterType::MiscType, DxsoMiscTypeIndices::MiscTypePosition };
auto vPosPtr = this->emitGetOperandPtr(vPos);
D3D9FogContext fogCtx;
fogCtx.IsPixel = true;
fogCtx.RangeFog = false;
fogCtx.RenderState = m_rsBlock;
fogCtx.vPos = m_module.opLoad(getVectorTypeId(vPosPtr.type), vPosPtr.id);
fogCtx.vFog = m_module.opLoad(getVectorTypeId(vFogPtr.type), vFogPtr.id);
fogCtx.oColor = m_module.opLoad(getVectorTypeId(oColor0Ptr.type), oColor0Ptr.id);
m_module.opStore(oColor0Ptr.id, DoFixedFunctionFog(m_module, fogCtx));
}
void DxsoCompiler::emitPsProcessing() {
uint32_t boolType = m_module.defBoolType();
uint32_t floatType = m_module.defFloatType(32);
uint32_t floatPtr = m_module.defPointerType(floatType, spv::StorageClassPushConstant);
// Declare spec constants for render states
uint32_t alphaTestId = m_module.specConstBool(false);
uint32_t alphaFuncId = m_module.specConst32(m_module.defIntType(32, 0), uint32_t(VK_COMPARE_OP_ALWAYS));
m_module.setDebugName (alphaTestId, "alpha_test");
m_module.decorateSpecId (alphaTestId, getSpecId(D3D9SpecConstantId::AlphaTestEnable));
m_module.setDebugName (alphaFuncId, "alpha_func");
m_module.decorateSpecId (alphaFuncId, getSpecId(D3D9SpecConstantId::AlphaCompareOp));
// Implement alpha test and fog
DxsoRegister color0;
color0.id = DxsoRegisterId{ DxsoRegisterType::ColorOut, 0 };
auto oC0 = this->emitGetOperandPtr(color0);
if (oC0.id) {
if (m_programInfo.majorVersion() < 3)
emitFog();
// Labels for the alpha test
std::array<SpirvSwitchCaseLabel, 8> atestCaseLabels = {{
{ uint32_t(VK_COMPARE_OP_NEVER), m_module.allocateId() },
{ uint32_t(VK_COMPARE_OP_LESS), m_module.allocateId() },
{ uint32_t(VK_COMPARE_OP_EQUAL), m_module.allocateId() },
{ uint32_t(VK_COMPARE_OP_LESS_OR_EQUAL), m_module.allocateId() },
{ uint32_t(VK_COMPARE_OP_GREATER), m_module.allocateId() },
{ uint32_t(VK_COMPARE_OP_NOT_EQUAL), m_module.allocateId() },
{ uint32_t(VK_COMPARE_OP_GREATER_OR_EQUAL), m_module.allocateId() },
{ uint32_t(VK_COMPARE_OP_ALWAYS), m_module.allocateId() },
}};
uint32_t atestBeginLabel = m_module.allocateId();
uint32_t atestTestLabel = m_module.allocateId();
uint32_t atestDiscardLabel = m_module.allocateId();
uint32_t atestKeepLabel = m_module.allocateId();
uint32_t atestSkipLabel = m_module.allocateId();
// if (alpha_test) { ... }
m_module.opSelectionMerge(atestSkipLabel, spv::SelectionControlMaskNone);
m_module.opBranchConditional(alphaTestId, atestBeginLabel, atestSkipLabel);
m_module.opLabel(atestBeginLabel);
// Load alpha component
uint32_t alphaComponentId = 3;
uint32_t alphaId = m_module.opCompositeExtract(floatType,
m_module.opLoad(m_module.defVectorType(floatType, 4), oC0.id),
1, &alphaComponentId);
// Load alpha reference
uint32_t alphaRefMember = m_module.constu32(uint32_t(D3D9RenderStateItem::AlphaRef));
uint32_t alphaRefId = m_module.opLoad(floatType,
m_module.opAccessChain(floatPtr, m_rsBlock, 1, &alphaRefMember));
// switch (alpha_func) { ... }
m_module.opSelectionMerge(atestTestLabel, spv::SelectionControlMaskNone);
m_module.opSwitch(alphaFuncId,
atestCaseLabels[uint32_t(VK_COMPARE_OP_ALWAYS)].labelId,
atestCaseLabels.size(),
atestCaseLabels.data());
std::array<SpirvPhiLabel, 8> atestVariables;
for (uint32_t i = 0; i < atestCaseLabels.size(); i++) {
m_module.opLabel(atestCaseLabels[i].labelId);
atestVariables[i].labelId = atestCaseLabels[i].labelId;
atestVariables[i].varId = [&] {
switch (VkCompareOp(atestCaseLabels[i].literal)) {
case VK_COMPARE_OP_NEVER: return m_module.constBool(false);
case VK_COMPARE_OP_LESS: return m_module.opFOrdLessThan (boolType, alphaId, alphaRefId);
case VK_COMPARE_OP_EQUAL: return m_module.opFOrdEqual (boolType, alphaId, alphaRefId);
case VK_COMPARE_OP_LESS_OR_EQUAL: return m_module.opFOrdLessThanEqual (boolType, alphaId, alphaRefId);
case VK_COMPARE_OP_GREATER: return m_module.opFOrdGreaterThan (boolType, alphaId, alphaRefId);
case VK_COMPARE_OP_NOT_EQUAL: return m_module.opFOrdNotEqual (boolType, alphaId, alphaRefId);
case VK_COMPARE_OP_GREATER_OR_EQUAL: return m_module.opFOrdGreaterThanEqual(boolType, alphaId, alphaRefId);
default:
case VK_COMPARE_OP_ALWAYS: return m_module.constBool(true);
}
}();
m_module.opBranch(atestTestLabel);
}
// end switch
m_module.opLabel(atestTestLabel);
uint32_t atestResult = m_module.opPhi(boolType,
atestVariables.size(),
atestVariables.data());
uint32_t atestDiscard = m_module.opLogicalNot(boolType, atestResult);
atestResult = m_module.opLogicalNot(boolType, atestResult);
// if (do_discard) { ... }
m_module.opSelectionMerge(atestKeepLabel, spv::SelectionControlMaskNone);
m_module.opBranchConditional(atestDiscard, atestDiscardLabel, atestKeepLabel);
m_module.opLabel(atestDiscardLabel);
m_module.opKill();
// end if (do_discard)
m_module.opLabel(atestKeepLabel);
m_module.opBranch(atestSkipLabel);
// end if (alpha_test)
m_module.opLabel(atestSkipLabel);
}
}
void DxsoCompiler::emitOutputDepthClamp() {
// HACK: Some drivers do not clamp FragDepth to [minDepth..maxDepth]
// before writing to the depth attachment, but we do not have acccess
// to those. Clamp to [0..1] instead.
if (m_ps.oDepth.id != 0) {
auto result = emitValueLoad(m_ps.oDepth);
result = emitSaturate(result);
m_module.opStore(
m_ps.oDepth.id,
result.id);
}
}
void DxsoCompiler::emitVsFinalize() {
this->emitMainFunctionBegin();
this->emitInputSetup();
m_module.opFunctionCall(
m_module.defVoidType(),
m_vs.functionId, 0, nullptr);
this->emitLinkerOutputSetup();
this->emitVsClipping();
this->emitFunctionEnd();
}
void DxsoCompiler::emitPsFinalize() {
this->emitMainFunctionBegin();
this->emitInputSetup();
if (m_ps.vPos.id != 0) {
DxsoRegisterPointer fragCoord = this->emitRegisterPtr(
"ps_frag_coord", DxsoScalarType::Float32, 4, 0,
spv::StorageClassInput, spv::BuiltInFragCoord);
DxsoRegisterValue val = this->emitValueLoad(fragCoord);
val.id = m_module.opFSub(
getVectorTypeId(val.type), val.id,
m_module.constvec4f32(0.5f, 0.5f, 0.0f, 0.0f));
m_module.opStore(m_ps.vPos.id, val.id);
}
if (m_ps.vFace.id != 0) {
DxsoRegisterPointer faceBool = this->emitRegisterPtr(
"ps_is_front_face", DxsoScalarType::Bool, 1, 0,
spv::StorageClassInput, spv::BuiltInFrontFacing);
DxsoRegisterValue frontFace = emitValueLoad(faceBool);
DxsoRegisterValue selectOp = emitRegisterExtend(frontFace, 4);
m_module.opStore(
m_ps.vFace.id,
m_module.opSelect(getVectorTypeId(m_ps.vFace.type), selectOp.id,
m_module.constvec4f32( 1.0f, 1.0f, 1.0f, 1.0f),
m_module.constvec4f32(-1.0f, -1.0f, -1.0f, -1.0f)));
}
m_module.opFunctionCall(
m_module.defVoidType(),
m_ps.functionId, 0, nullptr);
if (m_ps.killState != 0) {
uint32_t labelIf = m_module.allocateId();
uint32_t labelEnd = m_module.allocateId();
uint32_t killTest = m_module.opLoad(m_module.defBoolType(), m_ps.killState);
m_module.opSelectionMerge(labelEnd, spv::SelectionControlMaskNone);
m_module.opBranchConditional(killTest, labelIf, labelEnd);
m_module.opLabel(labelIf);
m_module.opKill();
m_module.opLabel(labelEnd);
}
// r0 in PS1 is the colour output register. Move r0 -> cO0 here.
if (m_programInfo.majorVersion() == 1
&& m_programInfo.type() == DxsoProgramTypes::PixelShader) {
DxsoRegister r0;
r0.id = { DxsoRegisterType::Temp, 0 };
DxsoRegister c0;
c0.id = { DxsoRegisterType::ColorOut, 0 };
DxsoRegisterValue val = emitRegisterLoadRaw(r0, nullptr);
DxsoRegisterPointer out = emitGetOperandPtr(c0);
m_module.opStore(out.id, val.id);
}
// No need to setup output here as it's non-indexable
// everything has already gone to the right place!
this->emitPsProcessing();
this->emitOutputDepthClamp();
this->emitFunctionEnd();
}
uint32_t DxsoCompiler::getScalarTypeId(DxsoScalarType type) {
switch (type) {
case DxsoScalarType::Uint32: return m_module.defIntType(32, 0);
case DxsoScalarType::Sint32: return m_module.defIntType(32, 1);
case DxsoScalarType::Float32: return m_module.defFloatType(32);
case DxsoScalarType::Bool: return m_module.defBoolType();
}
throw DxvkError("DxsoCompiler: Invalid scalar type");
}
uint32_t DxsoCompiler::getVectorTypeId(const DxsoVectorType& type) {
uint32_t typeId = this->getScalarTypeId(type.ctype);
if (type.ccount > 1)
typeId = m_module.defVectorType(typeId, type.ccount);
return typeId;
}
uint32_t DxsoCompiler::getArrayTypeId(const DxsoArrayType& type) {
DxsoVectorType vtype;
vtype.ctype = type.ctype;
vtype.ccount = type.ccount;
uint32_t typeId = this->getVectorTypeId(vtype);
if (type.alength > 1) {
typeId = m_module.defArrayType(typeId,
m_module.constu32(type.alength));
}
return typeId;
}
uint32_t DxsoCompiler::getPointerTypeId(const DxsoRegisterInfo& type) {
return m_module.defPointerType(
this->getArrayTypeId(type.type),
type.sclass);
}
}