1
0
mirror of https://github.com/doitsujin/dxvk.git synced 2024-12-12 22:08:59 +01:00

[d3d11] Move Apply* methods to D3D11CommonContext

This commit is contained in:
Philip Rebohle 2022-08-03 20:58:00 +02:00
parent 7c82ed35b2
commit 17c318864e
No known key found for this signature in database
GPG Key ID: C8CC613427A31C99
4 changed files with 273 additions and 667 deletions

View File

@ -502,312 +502,6 @@ namespace dxvk {
}
void D3D11DeviceContext::ApplyInputLayout() {
auto inputLayout = m_state.ia.inputLayout.prvRef();
if (likely(inputLayout != nullptr)) {
EmitCs([
cInputLayout = std::move(inputLayout)
] (DxvkContext* ctx) {
cInputLayout->BindToContext(ctx);
});
} else {
EmitCs([] (DxvkContext* ctx) {
ctx->setInputLayout(0, nullptr, 0, nullptr);
});
}
}
void D3D11DeviceContext::ApplyPrimitiveTopology() {
D3D11_PRIMITIVE_TOPOLOGY topology = m_state.ia.primitiveTopology;
DxvkInputAssemblyState iaState = { };
if (topology <= D3D_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP_ADJ) {
static const std::array<DxvkInputAssemblyState, 14> s_iaStates = {{
{ VK_PRIMITIVE_TOPOLOGY_MAX_ENUM, VK_FALSE, 0 },
{ VK_PRIMITIVE_TOPOLOGY_POINT_LIST, VK_FALSE, 0 },
{ VK_PRIMITIVE_TOPOLOGY_LINE_LIST, VK_FALSE, 0 },
{ VK_PRIMITIVE_TOPOLOGY_LINE_STRIP, VK_TRUE, 0 },
{ VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, VK_FALSE, 0 },
{ VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, VK_TRUE, 0 },
{ }, { }, { }, { }, // Random gap that exists for no reason
{ VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY, VK_FALSE, 0 },
{ VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY, VK_TRUE, 0 },
{ VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY, VK_FALSE, 0 },
{ VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY, VK_TRUE, 0 },
}};
iaState = s_iaStates[uint32_t(topology)];
} else if (topology >= D3D11_PRIMITIVE_TOPOLOGY_1_CONTROL_POINT_PATCHLIST
&& topology <= D3D11_PRIMITIVE_TOPOLOGY_32_CONTROL_POINT_PATCHLIST) {
// The number of control points per patch can be inferred from the enum value in D3D11
uint32_t vertexCount = uint32_t(topology - D3D11_PRIMITIVE_TOPOLOGY_1_CONTROL_POINT_PATCHLIST + 1);
iaState = { VK_PRIMITIVE_TOPOLOGY_PATCH_LIST, VK_FALSE, vertexCount };
}
EmitCs([iaState] (DxvkContext* ctx) {
ctx->setInputAssemblyState(iaState);
});
}
void D3D11DeviceContext::ApplyBlendState() {
if (m_state.om.cbState != nullptr) {
EmitCs([
cBlendState = m_state.om.cbState,
cSampleMask = m_state.om.sampleMask
] (DxvkContext* ctx) {
cBlendState->BindToContext(ctx, cSampleMask);
});
} else {
EmitCs([
cSampleMask = m_state.om.sampleMask
] (DxvkContext* ctx) {
DxvkBlendMode cbState;
DxvkLogicOpState loState;
DxvkMultisampleState msState;
InitDefaultBlendState(&cbState, &loState, &msState, cSampleMask);
for (uint32_t i = 0; i < D3D11_SIMULTANEOUS_RENDER_TARGET_COUNT; i++)
ctx->setBlendMode(i, cbState);
ctx->setLogicOpState(loState);
ctx->setMultisampleState(msState);
});
}
}
void D3D11DeviceContext::ApplyBlendFactor() {
EmitCs([
cBlendConstants = DxvkBlendConstants {
m_state.om.blendFactor[0], m_state.om.blendFactor[1],
m_state.om.blendFactor[2], m_state.om.blendFactor[3] }
] (DxvkContext* ctx) {
ctx->setBlendConstants(cBlendConstants);
});
}
void D3D11DeviceContext::ApplyDepthStencilState() {
if (m_state.om.dsState != nullptr) {
EmitCs([
cDepthStencilState = m_state.om.dsState
] (DxvkContext* ctx) {
cDepthStencilState->BindToContext(ctx);
});
} else {
EmitCs([] (DxvkContext* ctx) {
DxvkDepthStencilState dsState;
InitDefaultDepthStencilState(&dsState);
ctx->setDepthStencilState(dsState);
});
}
}
void D3D11DeviceContext::ApplyStencilRef() {
EmitCs([
cStencilRef = m_state.om.stencilRef
] (DxvkContext* ctx) {
ctx->setStencilReference(cStencilRef);
});
}
void D3D11DeviceContext::ApplyRasterizerState() {
if (m_state.rs.state != nullptr) {
EmitCs([
cRasterizerState = m_state.rs.state
] (DxvkContext* ctx) {
cRasterizerState->BindToContext(ctx);
});
} else {
EmitCs([] (DxvkContext* ctx) {
DxvkRasterizerState rsState;
InitDefaultRasterizerState(&rsState);
ctx->setRasterizerState(rsState);
});
}
}
void D3D11DeviceContext::ApplyRasterizerSampleCount() {
DxbcPushConstants pc;
pc.rasterizerSampleCount = m_state.om.sampleCount;
if (unlikely(!m_state.om.sampleCount)) {
pc.rasterizerSampleCount = m_state.rs.state->Desc()->ForcedSampleCount;
if (!m_state.om.sampleCount)
pc.rasterizerSampleCount = 1;
}
EmitCs([
cPushConstants = pc
] (DxvkContext* ctx) {
ctx->pushConstants(0, sizeof(cPushConstants), &cPushConstants);
});
}
void D3D11DeviceContext::ApplyViewportState() {
std::array<VkViewport, D3D11_VIEWPORT_AND_SCISSORRECT_OBJECT_COUNT_PER_PIPELINE> viewports;
std::array<VkRect2D, D3D11_VIEWPORT_AND_SCISSORRECT_OBJECT_COUNT_PER_PIPELINE> scissors;
// The backend can't handle a viewport count of zero,
// so we should at least specify one empty viewport
uint32_t viewportCount = m_state.rs.numViewports;
if (unlikely(!viewportCount)) {
viewportCount = 1;
viewports[0] = VkViewport();
scissors [0] = VkRect2D();
}
// D3D11's coordinate system has its origin in the bottom left,
// but the viewport coordinates are aligned to the top-left
// corner so we can get away with flipping the viewport.
for (uint32_t i = 0; i < m_state.rs.numViewports; i++) {
const D3D11_VIEWPORT& vp = m_state.rs.viewports[i];
viewports[i] = VkViewport {
vp.TopLeftX, vp.Height + vp.TopLeftY,
vp.Width, -vp.Height,
vp.MinDepth, vp.MaxDepth,
};
}
// Scissor rectangles. Vulkan does not provide an easy way
// to disable the scissor test, so we'll have to set scissor
// rects that are at least as large as the framebuffer.
bool enableScissorTest = false;
if (m_state.rs.state != nullptr) {
D3D11_RASTERIZER_DESC rsDesc;
m_state.rs.state->GetDesc(&rsDesc);
enableScissorTest = rsDesc.ScissorEnable;
}
for (uint32_t i = 0; i < m_state.rs.numViewports; i++) {
if (!enableScissorTest) {
scissors[i] = VkRect2D {
VkOffset2D { 0, 0 },
VkExtent2D {
D3D11_VIEWPORT_BOUNDS_MAX,
D3D11_VIEWPORT_BOUNDS_MAX } };
} else if (i >= m_state.rs.numScissors) {
scissors[i] = VkRect2D {
VkOffset2D { 0, 0 },
VkExtent2D { 0, 0 } };
} else {
D3D11_RECT sr = m_state.rs.scissors[i];
VkOffset2D srPosA;
srPosA.x = std::max<int32_t>(0, sr.left);
srPosA.y = std::max<int32_t>(0, sr.top);
VkOffset2D srPosB;
srPosB.x = std::max<int32_t>(srPosA.x, sr.right);
srPosB.y = std::max<int32_t>(srPosA.y, sr.bottom);
VkExtent2D srSize;
srSize.width = uint32_t(srPosB.x - srPosA.x);
srSize.height = uint32_t(srPosB.y - srPosA.y);
scissors[i] = VkRect2D { srPosA, srSize };
}
}
if (likely(viewportCount == 1)) {
EmitCs([
cViewport = viewports[0],
cScissor = scissors[0]
] (DxvkContext* ctx) {
ctx->setViewports(1,
&cViewport,
&cScissor);
});
} else {
EmitCs([
cViewportCount = viewportCount,
cViewports = viewports,
cScissors = scissors
] (DxvkContext* ctx) {
ctx->setViewports(
cViewportCount,
cViewports.data(),
cScissors.data());
});
}
}
template<DxbcProgramType ShaderStage>
void D3D11DeviceContext::BindShader(
const D3D11CommonShader* pShaderModule) {
// Bind the shader and the ICB at once
EmitCs([
cSlice = pShaderModule != nullptr
&& pShaderModule->GetIcb() != nullptr
? DxvkBufferSlice(pShaderModule->GetIcb())
: DxvkBufferSlice(),
cShader = pShaderModule != nullptr
? pShaderModule->GetShader()
: nullptr
] (DxvkContext* ctx) {
VkShaderStageFlagBits stage = GetShaderStage(ShaderStage);
uint32_t slotId = computeConstantBufferBinding(ShaderStage,
D3D11_COMMONSHADER_CONSTANT_BUFFER_API_SLOT_COUNT);
ctx->bindShader (stage, cShader);
ctx->bindResourceBuffer(stage, slotId, cSlice);
});
}
void D3D11DeviceContext::BindFramebuffer() {
DxvkRenderTargets attachments;
uint32_t sampleCount = 0;
// D3D11 doesn't have the concept of a framebuffer object,
// so we'll just create a new one every time the render
// target bindings are updated. Set up the attachments.
for (UINT i = 0; i < m_state.om.renderTargetViews.size(); i++) {
if (m_state.om.renderTargetViews[i] != nullptr) {
attachments.color[i] = {
m_state.om.renderTargetViews[i]->GetImageView(),
m_state.om.renderTargetViews[i]->GetRenderLayout() };
sampleCount = m_state.om.renderTargetViews[i]->GetSampleCount();
}
}
if (m_state.om.depthStencilView != nullptr) {
attachments.depth = {
m_state.om.depthStencilView->GetImageView(),
m_state.om.depthStencilView->GetRenderLayout() };
sampleCount = m_state.om.depthStencilView->GetSampleCount();
}
// Create and bind the framebuffer object to the context
EmitCs([
cAttachments = std::move(attachments)
] (DxvkContext* ctx) {
ctx->bindRenderTargets(cAttachments);
});
// If necessary, update push constant for the sample count
if (m_state.om.sampleCount != sampleCount) {
m_state.om.sampleCount = sampleCount;
ApplyRasterizerSampleCount();
}
}
void D3D11DeviceContext::BindDrawBuffers(
D3D11Buffer* pBufferForArgs,
D3D11Buffer* pBufferForCount) {
@ -820,170 +514,6 @@ namespace dxvk {
}
void D3D11DeviceContext::BindVertexBuffer(
UINT Slot,
D3D11Buffer* pBuffer,
UINT Offset,
UINT Stride) {
if (likely(pBuffer != nullptr)) {
EmitCs([
cSlotId = Slot,
cBufferSlice = pBuffer->GetBufferSlice(Offset),
cStride = Stride
] (DxvkContext* ctx) {
ctx->bindVertexBuffer(cSlotId, cBufferSlice, cStride);
});
} else {
EmitCs([
cSlotId = Slot
] (DxvkContext* ctx) {
ctx->bindVertexBuffer(cSlotId, DxvkBufferSlice(), 0);
});
}
}
void D3D11DeviceContext::BindIndexBuffer(
D3D11Buffer* pBuffer,
UINT Offset,
DXGI_FORMAT Format) {
VkIndexType indexType = Format == DXGI_FORMAT_R16_UINT
? VK_INDEX_TYPE_UINT16
: VK_INDEX_TYPE_UINT32;
EmitCs([
cBufferSlice = pBuffer != nullptr ? pBuffer->GetBufferSlice(Offset) : DxvkBufferSlice(),
cIndexType = indexType
] (DxvkContext* ctx) {
ctx->bindIndexBuffer(cBufferSlice, cIndexType);
});
}
void D3D11DeviceContext::BindXfbBuffer(
UINT Slot,
D3D11Buffer* pBuffer,
UINT Offset) {
DxvkBufferSlice bufferSlice;
DxvkBufferSlice counterSlice;
if (pBuffer != nullptr) {
bufferSlice = pBuffer->GetBufferSlice();
counterSlice = pBuffer->GetSOCounter();
}
EmitCs([
cSlotId = Slot,
cOffset = Offset,
cBufferSlice = bufferSlice,
cCounterSlice = counterSlice
] (DxvkContext* ctx) {
if (cCounterSlice.defined() && cOffset != ~0u) {
ctx->updateBuffer(
cCounterSlice.buffer(),
cCounterSlice.offset(),
sizeof(cOffset),
&cOffset);
}
ctx->bindXfbBuffer(cSlotId, cBufferSlice, cCounterSlice);
});
}
template<DxbcProgramType ShaderStage>
void D3D11DeviceContext::BindConstantBuffer(
UINT Slot,
D3D11Buffer* pBuffer,
UINT Offset,
UINT Length) {
EmitCs([
cSlotId = Slot,
cBufferSlice = pBuffer ? pBuffer->GetBufferSlice(16 * Offset, 16 * Length) : DxvkBufferSlice()
] (DxvkContext* ctx) {
VkShaderStageFlagBits stage = GetShaderStage(ShaderStage);
ctx->bindResourceBuffer(stage, cSlotId, cBufferSlice);
});
}
template<DxbcProgramType ShaderStage>
void D3D11DeviceContext::BindConstantBufferRange(
UINT Slot,
UINT Offset,
UINT Length) {
EmitCs([
cSlotId = Slot,
cOffset = 16 * Offset,
cLength = 16 * Length
] (DxvkContext* ctx) {
VkShaderStageFlagBits stage = GetShaderStage(ShaderStage);
ctx->bindResourceBufferRange(stage, cSlotId, cOffset, cLength);
});
}
template<DxbcProgramType ShaderStage>
void D3D11DeviceContext::BindSampler(
UINT Slot,
D3D11SamplerState* pSampler) {
EmitCs([
cSlotId = Slot,
cSampler = pSampler != nullptr ? pSampler->GetDXVKSampler() : nullptr
] (DxvkContext* ctx) {
VkShaderStageFlagBits stage = GetShaderStage(ShaderStage);
ctx->bindResourceSampler(stage, cSlotId, cSampler);
});
}
template<DxbcProgramType ShaderStage>
void D3D11DeviceContext::BindShaderResource(
UINT Slot,
D3D11ShaderResourceView* pResource) {
EmitCs([
cSlotId = Slot,
cImageView = pResource != nullptr ? pResource->GetImageView() : nullptr,
cBufferView = pResource != nullptr ? pResource->GetBufferView() : nullptr
] (DxvkContext* ctx) {
VkShaderStageFlagBits stage = GetShaderStage(ShaderStage);
ctx->bindResourceView(stage, cSlotId, cImageView, cBufferView);
});
}
template<DxbcProgramType ShaderStage>
void D3D11DeviceContext::BindUnorderedAccessView(
UINT UavSlot,
D3D11UnorderedAccessView* pUav,
UINT CtrSlot,
UINT Counter) {
EmitCs([
cUavSlotId = UavSlot,
cCtrSlotId = CtrSlot,
cImageView = pUav != nullptr ? pUav->GetImageView() : nullptr,
cBufferView = pUav != nullptr ? pUav->GetBufferView() : nullptr,
cCounterSlice = pUav != nullptr ? pUav->GetCounterSlice() : DxvkBufferSlice(),
cCounterValue = Counter
] (DxvkContext* ctx) {
VkShaderStageFlags stages = ShaderStage == DxbcProgramType::PixelShader
? VK_SHADER_STAGE_ALL_GRAPHICS
: VK_SHADER_STAGE_COMPUTE_BIT;
if (cCounterSlice.defined() && cCounterValue != ~0u) {
ctx->updateBuffer(
cCounterSlice.buffer(),
cCounterSlice.offset(),
sizeof(uint32_t),
&cCounterValue);
}
ctx->bindResourceView (stages, cUavSlotId, cImageView, cBufferView);
ctx->bindResourceBuffer (stages, cCtrSlotId, cCounterSlice);
});
}
void D3D11DeviceContext::SetDrawBuffers(
ID3D11Buffer* pBufferForArgs,
ID3D11Buffer* pBufferForCount) {
@ -1000,112 +530,6 @@ namespace dxvk {
}
bool D3D11DeviceContext::TestRtvUavHazards(
UINT NumRTVs,
ID3D11RenderTargetView* const* ppRTVs,
UINT NumUAVs,
ID3D11UnorderedAccessView* const* ppUAVs) {
if (NumRTVs == D3D11_KEEP_RENDER_TARGETS_AND_DEPTH_STENCIL) NumRTVs = 0;
if (NumUAVs == D3D11_KEEP_UNORDERED_ACCESS_VIEWS) NumUAVs = 0;
for (uint32_t i = 0; i < NumRTVs; i++) {
auto rtv = static_cast<D3D11RenderTargetView*>(ppRTVs[i]);
if (!rtv)
continue;
for (uint32_t j = 0; j < i; j++) {
if (CheckViewOverlap(rtv, static_cast<D3D11RenderTargetView*>(ppRTVs[j])))
return true;
}
if (rtv->HasBindFlag(D3D11_BIND_UNORDERED_ACCESS)) {
for (uint32_t j = 0; j < NumUAVs; j++) {
if (CheckViewOverlap(rtv, static_cast<D3D11UnorderedAccessView*>(ppUAVs[j])))
return true;
}
}
}
for (uint32_t i = 0; i < NumUAVs; i++) {
auto uav = static_cast<D3D11UnorderedAccessView*>(ppUAVs[i]);
if (!uav)
continue;
for (uint32_t j = 0; j < i; j++) {
if (CheckViewOverlap(uav, static_cast<D3D11UnorderedAccessView*>(ppUAVs[j])))
return true;
}
}
return false;
}
template<DxbcProgramType ShaderStage>
bool D3D11DeviceContext::TestSrvHazards(
D3D11ShaderResourceView* pView) {
bool hazard = false;
if (ShaderStage == DxbcProgramType::ComputeShader) {
int32_t uav = m_state.cs.uavMask.findNext(0);
while (uav >= 0 && !hazard) {
hazard = CheckViewOverlap(pView, m_state.cs.unorderedAccessViews[uav].ptr());
uav = m_state.cs.uavMask.findNext(uav + 1);
}
} else {
hazard = CheckViewOverlap(pView, m_state.om.depthStencilView.ptr());
for (uint32_t i = 0; !hazard && i < m_state.om.maxRtv; i++)
hazard = CheckViewOverlap(pView, m_state.om.renderTargetViews[i].ptr());
for (uint32_t i = 0; !hazard && i < m_state.om.maxUav; i++)
hazard = CheckViewOverlap(pView, m_state.ps.unorderedAccessViews[i].ptr());
}
return hazard;
}
template<DxbcProgramType ShaderStage, typename T>
void D3D11DeviceContext::ResolveSrvHazards(
T* pView,
D3D11ShaderResourceBindings& Bindings) {
uint32_t slotId = computeSrvBinding(ShaderStage, 0);
int32_t srvId = Bindings.hazardous.findNext(0);
while (srvId >= 0) {
auto srv = Bindings.views[srvId].ptr();
if (likely(srv && srv->TestHazards())) {
bool hazard = CheckViewOverlap(pView, srv);
if (unlikely(hazard)) {
Bindings.views[srvId] = nullptr;
Bindings.hazardous.clr(srvId);
BindShaderResource<ShaderStage>(slotId + srvId, nullptr);
}
} else {
// Avoid further redundant iterations
Bindings.hazardous.clr(srvId);
}
srvId = Bindings.hazardous.findNext(srvId + 1);
}
}
template<typename T>
void D3D11DeviceContext::ResolveCsSrvHazards(
T* pView) {
if (!pView) return;
ResolveSrvHazards<DxbcProgramType::ComputeShader> (pView, m_state.cs.shaderResources);
}
VkClearValue D3D11DeviceContext::ConvertColorValue(
const FLOAT Color[4],
const DxvkFormatInfo* pFormatInfo) {

View File

@ -173,102 +173,13 @@ namespace dxvk {
D3D11ContextState m_state;
D3D11CmdData* m_cmdData;
void ApplyInputLayout();
void ApplyPrimitiveTopology();
void ApplyBlendState();
void ApplyBlendFactor();
void ApplyDepthStencilState();
void ApplyStencilRef();
void ApplyRasterizerState();
void ApplyRasterizerSampleCount();
void ApplyViewportState();
template<DxbcProgramType ShaderStage>
void BindShader(
const D3D11CommonShader* pShaderModule);
void BindFramebuffer();
void BindDrawBuffers(
D3D11Buffer* pBufferForArgs,
D3D11Buffer* pBufferForCount);
void BindVertexBuffer(
UINT Slot,
D3D11Buffer* pBuffer,
UINT Offset,
UINT Stride);
void BindIndexBuffer(
D3D11Buffer* pBuffer,
UINT Offset,
DXGI_FORMAT Format);
void BindXfbBuffer(
UINT Slot,
D3D11Buffer* pBuffer,
UINT Offset);
template<DxbcProgramType ShaderStage>
void BindConstantBuffer(
UINT Slot,
D3D11Buffer* pBuffer,
UINT Offset,
UINT Length);
template<DxbcProgramType ShaderStage>
void BindConstantBufferRange(
UINT Slot,
UINT Offset,
UINT Length);
template<DxbcProgramType ShaderStage>
void BindSampler(
UINT Slot,
D3D11SamplerState* pSampler);
template<DxbcProgramType ShaderStage>
void BindShaderResource(
UINT Slot,
D3D11ShaderResourceView* pResource);
template<DxbcProgramType ShaderStage>
void BindUnorderedAccessView(
UINT UavSlot,
D3D11UnorderedAccessView* pUav,
UINT CtrSlot,
UINT Counter);
D3D11Buffer* pBufferForArgs,
D3D11Buffer* pBufferForCount);
void SetDrawBuffers(
ID3D11Buffer* pBufferForArgs,
ID3D11Buffer* pBufferForCount);
bool TestRtvUavHazards(
UINT NumRTVs,
ID3D11RenderTargetView* const* ppRTVs,
UINT NumUAVs,
ID3D11UnorderedAccessView* const* ppUAVs);
template<DxbcProgramType ShaderStage>
bool TestSrvHazards(
D3D11ShaderResourceView* pView);
template<DxbcProgramType ShaderStage, typename T>
void ResolveSrvHazards(
T* pView,
D3D11ShaderResourceBindings& Bindings);
template<typename T>
void ResolveCsSrvHazards(
T* pView);
VkClearValue ConvertColorValue(
const FLOAT Color[4],

View File

@ -2483,6 +2483,259 @@ namespace dxvk {
}
template<typename ContextType>
void D3D11CommonContext<ContextType>::ApplyInputLayout() {
auto inputLayout = m_state.ia.inputLayout.prvRef();
if (likely(inputLayout != nullptr)) {
EmitCs([
cInputLayout = std::move(inputLayout)
] (DxvkContext* ctx) {
cInputLayout->BindToContext(ctx);
});
} else {
EmitCs([] (DxvkContext* ctx) {
ctx->setInputLayout(0, nullptr, 0, nullptr);
});
}
}
template<typename ContextType>
void D3D11CommonContext<ContextType>::ApplyPrimitiveTopology() {
D3D11_PRIMITIVE_TOPOLOGY topology = m_state.ia.primitiveTopology;
DxvkInputAssemblyState iaState = { };
if (topology <= D3D_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP_ADJ) {
static const std::array<DxvkInputAssemblyState, 14> s_iaStates = {{
{ VK_PRIMITIVE_TOPOLOGY_MAX_ENUM, VK_FALSE, 0 },
{ VK_PRIMITIVE_TOPOLOGY_POINT_LIST, VK_FALSE, 0 },
{ VK_PRIMITIVE_TOPOLOGY_LINE_LIST, VK_FALSE, 0 },
{ VK_PRIMITIVE_TOPOLOGY_LINE_STRIP, VK_TRUE, 0 },
{ VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, VK_FALSE, 0 },
{ VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, VK_TRUE, 0 },
{ }, { }, { }, { }, // Random gap that exists for no reason
{ VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY, VK_FALSE, 0 },
{ VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY, VK_TRUE, 0 },
{ VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY, VK_FALSE, 0 },
{ VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY, VK_TRUE, 0 },
}};
iaState = s_iaStates[uint32_t(topology)];
} else if (topology >= D3D11_PRIMITIVE_TOPOLOGY_1_CONTROL_POINT_PATCHLIST
&& topology <= D3D11_PRIMITIVE_TOPOLOGY_32_CONTROL_POINT_PATCHLIST) {
// The number of control points per patch can be inferred from the enum value in D3D11
uint32_t vertexCount = uint32_t(topology - D3D11_PRIMITIVE_TOPOLOGY_1_CONTROL_POINT_PATCHLIST + 1);
iaState = { VK_PRIMITIVE_TOPOLOGY_PATCH_LIST, VK_FALSE, vertexCount };
}
EmitCs([iaState] (DxvkContext* ctx) {
ctx->setInputAssemblyState(iaState);
});
}
template<typename ContextType>
void D3D11CommonContext<ContextType>::ApplyBlendState() {
if (m_state.om.cbState != nullptr) {
EmitCs([
cBlendState = m_state.om.cbState,
cSampleMask = m_state.om.sampleMask
] (DxvkContext* ctx) {
cBlendState->BindToContext(ctx, cSampleMask);
});
} else {
EmitCs([
cSampleMask = m_state.om.sampleMask
] (DxvkContext* ctx) {
DxvkBlendMode cbState;
DxvkLogicOpState loState;
DxvkMultisampleState msState;
InitDefaultBlendState(&cbState, &loState, &msState, cSampleMask);
for (uint32_t i = 0; i < D3D11_SIMULTANEOUS_RENDER_TARGET_COUNT; i++)
ctx->setBlendMode(i, cbState);
ctx->setLogicOpState(loState);
ctx->setMultisampleState(msState);
});
}
}
template<typename ContextType>
void D3D11CommonContext<ContextType>::ApplyBlendFactor() {
EmitCs([
cBlendConstants = DxvkBlendConstants {
m_state.om.blendFactor[0], m_state.om.blendFactor[1],
m_state.om.blendFactor[2], m_state.om.blendFactor[3] }
] (DxvkContext* ctx) {
ctx->setBlendConstants(cBlendConstants);
});
}
template<typename ContextType>
void D3D11CommonContext<ContextType>::ApplyDepthStencilState() {
if (m_state.om.dsState != nullptr) {
EmitCs([
cDepthStencilState = m_state.om.dsState
] (DxvkContext* ctx) {
cDepthStencilState->BindToContext(ctx);
});
} else {
EmitCs([] (DxvkContext* ctx) {
DxvkDepthStencilState dsState;
InitDefaultDepthStencilState(&dsState);
ctx->setDepthStencilState(dsState);
});
}
}
template<typename ContextType>
void D3D11CommonContext<ContextType>::ApplyStencilRef() {
EmitCs([
cStencilRef = m_state.om.stencilRef
] (DxvkContext* ctx) {
ctx->setStencilReference(cStencilRef);
});
}
template<typename ContextType>
void D3D11CommonContext<ContextType>::ApplyRasterizerState() {
if (m_state.rs.state != nullptr) {
EmitCs([
cRasterizerState = m_state.rs.state
] (DxvkContext* ctx) {
cRasterizerState->BindToContext(ctx);
});
} else {
EmitCs([] (DxvkContext* ctx) {
DxvkRasterizerState rsState;
InitDefaultRasterizerState(&rsState);
ctx->setRasterizerState(rsState);
});
}
}
template<typename ContextType>
void D3D11CommonContext<ContextType>::ApplyRasterizerSampleCount() {
DxbcPushConstants pc;
pc.rasterizerSampleCount = m_state.om.sampleCount;
if (unlikely(!m_state.om.sampleCount)) {
pc.rasterizerSampleCount = m_state.rs.state->Desc()->ForcedSampleCount;
if (!m_state.om.sampleCount)
pc.rasterizerSampleCount = 1;
}
EmitCs([
cPushConstants = pc
] (DxvkContext* ctx) {
ctx->pushConstants(0, sizeof(cPushConstants), &cPushConstants);
});
}
template<typename ContextType>
void D3D11CommonContext<ContextType>::ApplyViewportState() {
std::array<VkViewport, D3D11_VIEWPORT_AND_SCISSORRECT_OBJECT_COUNT_PER_PIPELINE> viewports;
std::array<VkRect2D, D3D11_VIEWPORT_AND_SCISSORRECT_OBJECT_COUNT_PER_PIPELINE> scissors;
// The backend can't handle a viewport count of zero,
// so we should at least specify one empty viewport
uint32_t viewportCount = m_state.rs.numViewports;
if (unlikely(!viewportCount)) {
viewportCount = 1;
viewports[0] = VkViewport();
scissors [0] = VkRect2D();
}
// D3D11's coordinate system has its origin in the bottom left,
// but the viewport coordinates are aligned to the top-left
// corner so we can get away with flipping the viewport.
for (uint32_t i = 0; i < m_state.rs.numViewports; i++) {
const D3D11_VIEWPORT& vp = m_state.rs.viewports[i];
viewports[i] = VkViewport {
vp.TopLeftX, vp.Height + vp.TopLeftY,
vp.Width, -vp.Height,
vp.MinDepth, vp.MaxDepth,
};
}
// Scissor rectangles. Vulkan does not provide an easy way
// to disable the scissor test, so we'll have to set scissor
// rects that are at least as large as the framebuffer.
bool enableScissorTest = false;
if (m_state.rs.state != nullptr) {
D3D11_RASTERIZER_DESC rsDesc;
m_state.rs.state->GetDesc(&rsDesc);
enableScissorTest = rsDesc.ScissorEnable;
}
for (uint32_t i = 0; i < m_state.rs.numViewports; i++) {
if (!enableScissorTest) {
scissors[i] = VkRect2D {
VkOffset2D { 0, 0 },
VkExtent2D {
D3D11_VIEWPORT_BOUNDS_MAX,
D3D11_VIEWPORT_BOUNDS_MAX } };
} else if (i >= m_state.rs.numScissors) {
scissors[i] = VkRect2D {
VkOffset2D { 0, 0 },
VkExtent2D { 0, 0 } };
} else {
D3D11_RECT sr = m_state.rs.scissors[i];
VkOffset2D srPosA;
srPosA.x = std::max<int32_t>(0, sr.left);
srPosA.y = std::max<int32_t>(0, sr.top);
VkOffset2D srPosB;
srPosB.x = std::max<int32_t>(srPosA.x, sr.right);
srPosB.y = std::max<int32_t>(srPosA.y, sr.bottom);
VkExtent2D srSize;
srSize.width = uint32_t(srPosB.x - srPosA.x);
srSize.height = uint32_t(srPosB.y - srPosA.y);
scissors[i] = VkRect2D { srPosA, srSize };
}
}
if (likely(viewportCount == 1)) {
EmitCs([
cViewport = viewports[0],
cScissor = scissors[0]
] (DxvkContext* ctx) {
ctx->setViewports(1,
&cViewport,
&cScissor);
});
} else {
EmitCs([
cViewportCount = viewportCount,
cViewports = viewports,
cScissors = scissors
] (DxvkContext* ctx) {
ctx->setViewports(
cViewportCount,
cViewports.data(),
cScissors.data());
});
}
}
template<typename ContextType>
template<DxbcProgramType ShaderStage>
void D3D11CommonContext<ContextType>::BindShader(

View File

@ -620,6 +620,24 @@ namespace dxvk {
D3D11DeviceContextExt<ContextType> m_contextExt;
D3D11UserDefinedAnnotation<ContextType> m_annotation;
void ApplyInputLayout();
void ApplyPrimitiveTopology();
void ApplyBlendState();
void ApplyBlendFactor();
void ApplyDepthStencilState();
void ApplyStencilRef();
void ApplyRasterizerState();
void ApplyRasterizerSampleCount();
void ApplyViewportState();
template<DxbcProgramType ShaderStage>
void BindShader(
const D3D11CommonShader* pShaderModule);