1
0
mirror of https://github.com/doitsujin/dxvk.git synced 2025-03-13 19:29:14 +01:00

[dxvk] Introduce DxvkSwapchainBlitter and new presentation shaders

This is meant to provide a common rendering code for D3D9 and D3D11 presentation.
This commit is contained in:
Philip Rebohle 2021-02-23 19:14:23 +01:00 committed by Joshie
parent 277a4f0206
commit 49f2b4c4a6
8 changed files with 647 additions and 0 deletions

View File

@ -0,0 +1,372 @@
#include "dxvk_swapchain_blitter.h"
#include <dxvk_present_frag.h>
#include <dxvk_present_frag_blit.h>
#include <dxvk_present_frag_ms.h>
#include <dxvk_present_frag_ms_amd.h>
#include <dxvk_present_vert.h>
namespace dxvk {
DxvkSwapchainBlitter::DxvkSwapchainBlitter(const Rc<DxvkDevice>& device)
: m_device(device) {
this->createSampler();
this->createShaders();
}
DxvkSwapchainBlitter::~DxvkSwapchainBlitter() {
}
void DxvkSwapchainBlitter::presentImage(
DxvkContext* ctx,
const Rc<DxvkImageView>& dstView,
VkRect2D dstRect,
const Rc<DxvkImageView>& srcView,
VkRect2D srcRect) {
if (m_gammaDirty)
this->updateGammaTexture(ctx);
// Fix up default present areas if necessary
if (!dstRect.extent.width || !dstRect.extent.height) {
dstRect.offset = { 0, 0 };
dstRect.extent = {
dstView->imageInfo().extent.width,
dstView->imageInfo().extent.height };
}
if (!srcRect.extent.width || !srcRect.extent.height) {
srcRect.offset = { 0, 0 };
srcRect.extent = {
srcView->imageInfo().extent.width,
srcView->imageInfo().extent.height };
}
bool sameSize = dstRect.extent == srcRect.extent;
bool usedResolveImage = false;
if (srcView->imageInfo().sampleCount == VK_SAMPLE_COUNT_1_BIT) {
this->draw(ctx, sameSize ? m_fsCopy : m_fsBlit,
dstView, dstRect, srcView, srcRect);
} else if (sameSize) {
this->draw(ctx, m_fsResolve,
dstView, dstRect, srcView, srcRect);
} else {
if (m_resolveImage == nullptr
|| m_resolveImage->info().extent != srcView->imageInfo().extent
|| m_resolveImage->info().format != srcView->imageInfo().format)
this->createResolveImage(srcView->imageInfo());
this->resolve(ctx, m_resolveView, srcView);
this->draw(ctx, m_fsBlit, dstView, dstRect, m_resolveView, srcRect);
usedResolveImage = true;
}
if (!usedResolveImage)
this->destroyResolveImage();
}
void DxvkSwapchainBlitter::setGammaRamp(
uint32_t cpCount,
const DxvkGammaCp* cpData) {
m_gammaRamp.resize(cpCount);
for (uint32_t i = 0; i < cpCount; i++)
m_gammaRamp[i] = cpData[i];
m_gammaDirty = true;
}
void DxvkSwapchainBlitter::draw(
DxvkContext* ctx,
const Rc<DxvkShader>& fs,
const Rc<DxvkImageView>& dstView,
VkRect2D dstRect,
const Rc<DxvkImageView>& srcView,
VkRect2D srcRect) {
DxvkInputAssemblyState iaState;
iaState.primitiveTopology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP;
iaState.primitiveRestart = VK_FALSE;
iaState.patchVertexCount = 0;
ctx->setInputAssemblyState(iaState);
ctx->setInputLayout(0, nullptr, 0, nullptr);
DxvkRasterizerState rsState;
rsState.polygonMode = VK_POLYGON_MODE_FILL;
rsState.cullMode = VK_CULL_MODE_BACK_BIT;
rsState.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
rsState.depthClipEnable = VK_FALSE;
rsState.depthBiasEnable = VK_FALSE;
rsState.sampleCount = VK_SAMPLE_COUNT_1_BIT;
ctx->setRasterizerState(rsState);
DxvkMultisampleState msState;
msState.sampleMask = 0xffffffff;
msState.enableAlphaToCoverage = VK_FALSE;
ctx->setMultisampleState(msState);
VkStencilOpState stencilOp;
stencilOp.failOp = VK_STENCIL_OP_KEEP;
stencilOp.passOp = VK_STENCIL_OP_KEEP;
stencilOp.depthFailOp = VK_STENCIL_OP_KEEP;
stencilOp.compareOp = VK_COMPARE_OP_ALWAYS;
stencilOp.compareMask = 0xFFFFFFFF;
stencilOp.writeMask = 0xFFFFFFFF;
stencilOp.reference = 0;
DxvkDepthStencilState dsState;
dsState.enableDepthTest = VK_FALSE;
dsState.enableDepthWrite = VK_FALSE;
dsState.enableStencilTest = VK_FALSE;
dsState.depthCompareOp = VK_COMPARE_OP_ALWAYS;
dsState.stencilOpFront = stencilOp;
dsState.stencilOpBack = stencilOp;
ctx->setDepthStencilState(dsState);
DxvkLogicOpState loState;
loState.enableLogicOp = VK_FALSE;
loState.logicOp = VK_LOGIC_OP_NO_OP;
ctx->setLogicOpState(loState);
DxvkBlendMode blendMode;
blendMode.enableBlending = VK_FALSE;
blendMode.colorSrcFactor = VK_BLEND_FACTOR_ONE;
blendMode.colorDstFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
blendMode.colorBlendOp = VK_BLEND_OP_ADD;
blendMode.alphaSrcFactor = VK_BLEND_FACTOR_ONE;
blendMode.alphaDstFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
blendMode.alphaBlendOp = VK_BLEND_OP_ADD;
blendMode.writeMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT
| VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
ctx->setBlendMode(0, blendMode);
VkViewport viewport;
viewport.x = float(dstRect.offset.x);
viewport.y = float(dstRect.offset.y);
viewport.width = float(dstRect.extent.width);
viewport.height = float(dstRect.extent.height);
viewport.minDepth = 0.0f;
viewport.maxDepth = 1.0f;
ctx->setViewports(1, &viewport, &dstRect);
DxvkRenderTargets renderTargets;
renderTargets.color[0].view = dstView;
renderTargets.color[0].layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
ctx->bindRenderTargets(renderTargets);
VkExtent2D dstExtent = {
dstView->imageInfo().extent.width,
dstView->imageInfo().extent.height };
if (dstRect.extent == dstExtent)
ctx->discardImageView(dstView, VK_IMAGE_ASPECT_COLOR_BIT);
else
ctx->clearRenderTarget(dstView, VK_IMAGE_ASPECT_COLOR_BIT, VkClearValue());
ctx->bindResourceSampler(BindingIds::Image, m_samplerPresent);
ctx->bindResourceSampler(BindingIds::Gamma, m_samplerGamma);
ctx->bindResourceView(BindingIds::Image, srcView, nullptr);
ctx->bindResourceView(BindingIds::Gamma, m_gammaView, nullptr);
ctx->bindShader(VK_SHADER_STAGE_VERTEX_BIT, m_vs);
ctx->bindShader(VK_SHADER_STAGE_FRAGMENT_BIT, fs);
PresenterArgs args;
args.srcOffset = srcRect.offset;
if (dstRect.extent == srcRect.extent)
args.dstOffset = dstRect.offset;
else
args.srcExtent = srcRect.extent;
ctx->pushConstants(0, sizeof(args), &args);
ctx->setSpecConstant(VK_PIPELINE_BIND_POINT_GRAPHICS, 0, srcView->imageInfo().sampleCount);
ctx->draw(3, 1, 0, 0);
ctx->setSpecConstant(VK_PIPELINE_BIND_POINT_GRAPHICS, 0, 0);
}
void DxvkSwapchainBlitter::resolve(
DxvkContext* ctx,
const Rc<DxvkImageView>& dstView,
const Rc<DxvkImageView>& srcView) {
VkImageResolve resolve;
resolve.srcSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 };
resolve.srcOffset = { 0, 0, 0 };
resolve.dstSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 };
resolve.dstOffset = { 0, 0, 0 };
resolve.extent = dstView->imageInfo().extent;
ctx->resolveImage(dstView->image(), srcView->image(), resolve, VK_FORMAT_UNDEFINED);
}
void DxvkSwapchainBlitter::updateGammaTexture(DxvkContext* ctx) {
uint32_t n = uint32_t(m_gammaRamp.size());
if (n) {
// Reuse existing image if possible
if (m_gammaImage == nullptr || m_gammaImage->info().extent.width != n) {
DxvkImageCreateInfo imgInfo;
imgInfo.type = VK_IMAGE_TYPE_1D;
imgInfo.format = VK_FORMAT_R16G16B16A16_UNORM;
imgInfo.flags = 0;
imgInfo.sampleCount = VK_SAMPLE_COUNT_1_BIT;
imgInfo.extent = { n, 1, 1 };
imgInfo.numLayers = 1;
imgInfo.mipLevels = 1;
imgInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT
| VK_IMAGE_USAGE_SAMPLED_BIT;
imgInfo.stages = VK_PIPELINE_STAGE_TRANSFER_BIT
| VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
imgInfo.access = VK_ACCESS_TRANSFER_WRITE_BIT
| VK_ACCESS_SHADER_READ_BIT;
imgInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imgInfo.layout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
m_gammaImage = m_device->createImage(
imgInfo, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
DxvkImageViewCreateInfo viewInfo;
viewInfo.type = VK_IMAGE_VIEW_TYPE_1D;
viewInfo.format = VK_FORMAT_R16G16B16A16_UNORM;
viewInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT;
viewInfo.aspect = VK_IMAGE_ASPECT_COLOR_BIT;
viewInfo.minLevel = 0;
viewInfo.numLevels = 1;
viewInfo.minLayer = 0;
viewInfo.numLayers = 1;
m_gammaView = m_device->createImageView(m_gammaImage, viewInfo);
}
ctx->updateImage(m_gammaImage,
VkImageSubresourceLayers { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 },
VkOffset3D { 0, 0, 0 },
VkExtent3D { n, 1, 1 },
m_gammaRamp.data(),
sizeof(DxvkGammaCp) * n,
sizeof(DxvkGammaCp) * n);
} else {
m_gammaImage = nullptr;
m_gammaView = nullptr;
}
m_gammaDirty = false;
}
void DxvkSwapchainBlitter::createSampler() {
DxvkSamplerCreateInfo samplerInfo;
samplerInfo.magFilter = VK_FILTER_LINEAR;
samplerInfo.minFilter = VK_FILTER_LINEAR;
samplerInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST;
samplerInfo.mipmapLodBias = 0.0f;
samplerInfo.mipmapLodMin = 0.0f;
samplerInfo.mipmapLodMax = 0.0f;
samplerInfo.useAnisotropy = VK_FALSE;
samplerInfo.maxAnisotropy = 1.0f;
samplerInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER;
samplerInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER;
samplerInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER;
samplerInfo.compareToDepth = VK_FALSE;
samplerInfo.compareOp = VK_COMPARE_OP_ALWAYS;
samplerInfo.borderColor = VkClearColorValue();
samplerInfo.usePixelCoord = VK_TRUE;
m_samplerPresent = m_device->createSampler(samplerInfo);
samplerInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerInfo.usePixelCoord = VK_FALSE;
m_samplerGamma = m_device->createSampler(samplerInfo);
}
void DxvkSwapchainBlitter::createShaders() {
const SpirvCodeBuffer vsCode(dxvk_present_vert);
const SpirvCodeBuffer fsCodeBlit(dxvk_present_frag_blit);
const SpirvCodeBuffer fsCodeCopy(dxvk_present_frag);
const SpirvCodeBuffer fsCodeResolve(dxvk_present_frag_ms);
const SpirvCodeBuffer fsCodeResolveAmd(dxvk_present_frag_ms_amd);
const std::array<DxvkResourceSlot, 2> fsResourceSlots = {{
{ BindingIds::Image, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_IMAGE_VIEW_TYPE_2D },
{ BindingIds::Gamma, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_IMAGE_VIEW_TYPE_1D },
}};
m_vs = m_device->createShader(
VK_SHADER_STAGE_VERTEX_BIT,
0, nullptr, { 0u, 1u },
vsCode);
m_fsBlit = m_device->createShader(
VK_SHADER_STAGE_FRAGMENT_BIT,
fsResourceSlots.size(),
fsResourceSlots.data(),
{ 1u, 1u, 0u, sizeof(PresenterArgs) },
fsCodeBlit);
m_fsCopy = m_device->createShader(
VK_SHADER_STAGE_FRAGMENT_BIT,
fsResourceSlots.size(),
fsResourceSlots.data(),
{ 0u, 1u, 0u, sizeof(PresenterArgs) },
fsCodeCopy);
m_fsResolve = m_device->createShader(
VK_SHADER_STAGE_FRAGMENT_BIT,
fsResourceSlots.size(),
fsResourceSlots.data(),
{ 0u, 1u, 0u, sizeof(PresenterArgs) },
m_device->extensions().amdShaderFragmentMask
? fsCodeResolveAmd : fsCodeResolve);
}
void DxvkSwapchainBlitter::createResolveImage(const DxvkImageCreateInfo& info) {
DxvkImageCreateInfo newInfo;
newInfo.type = VK_IMAGE_TYPE_2D;
newInfo.format = info.format;
newInfo.flags = 0;
newInfo.sampleCount = VK_SAMPLE_COUNT_1_BIT;
newInfo.extent = info.extent;
newInfo.numLayers = 1;
newInfo.mipLevels = 1;
newInfo.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT
| VK_IMAGE_USAGE_TRANSFER_DST_BIT
| VK_IMAGE_USAGE_SAMPLED_BIT;
newInfo.stages = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT
| VK_PIPELINE_STAGE_TRANSFER_BIT
| VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
newInfo.access = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT
| VK_ACCESS_TRANSFER_WRITE_BIT
| VK_ACCESS_SHADER_READ_BIT;
newInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
newInfo.layout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
m_resolveImage = m_device->createImage(newInfo, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
DxvkImageViewCreateInfo viewInfo;
viewInfo.type = VK_IMAGE_VIEW_TYPE_2D;
viewInfo.format = info.format;
viewInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT;
viewInfo.aspect = VK_IMAGE_ASPECT_COLOR_BIT;
viewInfo.minLevel = 0;
viewInfo.numLevels = 1;
viewInfo.minLayer = 0;
viewInfo.numLayers = 1;
m_resolveView = m_device->createImageView(m_resolveImage, viewInfo);
}
void DxvkSwapchainBlitter::destroyResolveImage() {
m_resolveImage = nullptr;
m_resolveView = nullptr;
}
}

View File

@ -0,0 +1,116 @@
#pragma once
#include "../dxvk/dxvk_device.h"
#include "../dxvk/dxvk_context.h"
namespace dxvk {
/**
* \brief Gamma control point
*/
struct DxvkGammaCp {
uint16_t r, g, b, a;
};
/**
* \brief Swap chain blitter
*
* Provides common rendering code for blitting
* rendered images to a swap chain image.
*/
class DxvkSwapchainBlitter : public RcObject {
public:
DxvkSwapchainBlitter(const Rc<DxvkDevice>& device);
~DxvkSwapchainBlitter();
/**
* \brief Records presentation commands
*
* \param [in] ctx Context
* \param [in] dstView Swap chain image view
* \param [in] srcView Image to present
* \param [in] dstRect Destination rectangle
* \param [in] srcRect Back buffer rectangle
*/
void presentImage(
DxvkContext* ctx,
const Rc<DxvkImageView>& dstView,
VkRect2D dstRect,
const Rc<DxvkImageView>& srcView,
VkRect2D srcRect);
/**
* \brief Sets gamma ramp
*
* If the number of control points is non-zero, this
* will create a texture containing a gamma ramp that
* will be used for presentation.
* \param [in] cpCount Number of control points
* \param [in] cpData Control point data
*/
void setGammaRamp(
uint32_t cpCount,
const DxvkGammaCp* cpData);
private:
enum BindingIds : uint32_t {
Image = 0,
Gamma = 1,
};
struct PresenterArgs {
VkOffset2D srcOffset;
union {
VkExtent2D srcExtent;
VkOffset2D dstOffset;
};
};
Rc<DxvkDevice> m_device;
Rc<DxvkShader> m_fsCopy;
Rc<DxvkShader> m_fsBlit;
Rc<DxvkShader> m_fsResolve;
Rc<DxvkShader> m_vs;
Rc<DxvkImage> m_gammaImage;
Rc<DxvkImageView> m_gammaView;
bool m_gammaDirty = false;
std::vector<DxvkGammaCp> m_gammaRamp;
Rc<DxvkImage> m_resolveImage;
Rc<DxvkImageView> m_resolveView;
Rc<DxvkSampler> m_samplerPresent;
Rc<DxvkSampler> m_samplerGamma;
void draw(
DxvkContext* ctx,
const Rc<DxvkShader>& fs,
const Rc<DxvkImageView>& dstView,
VkRect2D dstRect,
const Rc<DxvkImageView>& srcView,
VkRect2D srcRect);
void resolve(
DxvkContext* ctx,
const Rc<DxvkImageView>& dstView,
const Rc<DxvkImageView>& srcView);
void updateGammaTexture(DxvkContext* ctx);
void createSampler();
void createShaders();
void createResolveImage(
const DxvkImageCreateInfo& info);
void destroyResolveImage();
};
}

View File

@ -33,6 +33,12 @@ dxvk_shaders = files([
'shaders/dxvk_pack_d24s8.comp',
'shaders/dxvk_pack_d32s8.comp',
'shaders/dxvk_present_frag.frag',
'shaders/dxvk_present_frag_blit.frag',
'shaders/dxvk_present_frag_ms.frag',
'shaders/dxvk_present_frag_ms_amd.frag',
'shaders/dxvk_present_vert.vert',
'shaders/dxvk_resolve_frag_d.frag',
'shaders/dxvk_resolve_frag_ds.frag',
'shaders/dxvk_resolve_frag_f.frag',
@ -97,6 +103,7 @@ dxvk_src = files([
'dxvk_staging.cpp',
'dxvk_state_cache.cpp',
'dxvk_stats.cpp',
'dxvk_swapchain_blitter.cpp',
'dxvk_unbound.cpp',
'dxvk_util.cpp',

View File

@ -0,0 +1,27 @@
#version 450
layout(constant_id = 1) const bool s_gamma_bound = true;
layout(binding = 0) uniform sampler2D s_image;
layout(binding = 1) uniform sampler1D s_gamma;
layout(location = 0) out vec4 o_color;
layout(push_constant)
uniform present_info_t {
ivec2 src_offset;
ivec2 dst_offset;
};
void main() {
ivec2 coord = ivec2(gl_FragCoord.xy) + src_offset - dst_offset;
o_color = texelFetch(s_image, coord, 0);
if (s_gamma_bound) {
o_color = vec4(
texture(s_gamma, o_color.r).r,
texture(s_gamma, o_color.g).g,
texture(s_gamma, o_color.b).b,
o_color.a);
}
}

View File

@ -0,0 +1,28 @@
#version 450
layout(constant_id = 1) const bool s_gamma_bound = true;
layout(binding = 0) uniform sampler2D s_image;
layout(binding = 1) uniform sampler1D s_gamma;
layout(location = 0) in vec2 i_coord;
layout(location = 0) out vec4 o_color;
layout(push_constant)
uniform present_info_t {
ivec2 src_offset;
uvec2 src_extent;
};
void main() {
vec2 coord = vec2(src_offset) + vec2(src_extent) * i_coord;
o_color = textureLod(s_image, coord, 0.0f);
if (s_gamma_bound) {
o_color = vec4(
texture(s_gamma, o_color.r).r,
texture(s_gamma, o_color.g).g,
texture(s_gamma, o_color.b).b,
o_color.a);
}
}

View File

@ -0,0 +1,33 @@
#version 450
layout(constant_id = 1) const bool s_gamma_bound = true;
layout(constant_id = 1225) const uint c_samples = 0;
layout(binding = 0) uniform sampler2DMS s_image;
layout(binding = 1) uniform sampler1D s_gamma;
layout(location = 0) out vec4 o_color;
layout(push_constant)
uniform present_info_t {
ivec2 src_offset;
ivec2 dst_offset;
};
void main() {
ivec2 coord = ivec2(gl_FragCoord.xy) + src_offset - dst_offset;
o_color = texelFetch(s_image, coord, 0);
for (uint i = 1; i < c_samples; i++)
o_color += texelFetch(s_image, coord, int(i));
o_color /= float(c_samples);
if (s_gamma_bound) {
o_color = vec4(
texture(s_gamma, o_color.r).r,
texture(s_gamma, o_color.g).g,
texture(s_gamma, o_color.b).b,
o_color.a);
}
}

View File

@ -0,0 +1,52 @@
#version 450
#extension GL_AMD_shader_fragment_mask: enable
layout(constant_id = 1) const bool s_gamma_bound = true;
layout(constant_id = 1225) const uint c_samples = 0;
layout(binding = 0) uniform sampler2DMS s_image;
layout(binding = 1) uniform sampler1D s_gamma;
layout(location = 0) out vec4 o_color;
layout(push_constant)
uniform present_info_t {
ivec2 src_offset;
ivec2 dst_offset;
};
void main() {
ivec2 coord = ivec2(gl_FragCoord.xy) + src_offset - dst_offset;
// check dxvk_resolve_frag_f_amd.frag for documentation
uint fragMask = fragmentMaskFetchAMD(s_image, coord);
uint fragCount = 0u;
for (int i = 0; i < 4 * c_samples; i += 4) {
uint fragIndex = bitfieldExtract(fragMask, i, 4);
fragCount += 1u << (fragIndex << 2);
}
o_color = vec4(0.0f);
while (fragCount != 0) {
int fragIndex = findLSB(fragCount) >> 2;
int fragShift = fragIndex << 2;
o_color += fragmentFetchAMD(s_image, coord, fragIndex)
* float(bitfieldExtract(fragCount, fragShift, 4));
fragCount = bitfieldInsert(fragCount, 0, fragShift, 4);
}
o_color /= float(c_samples);
if (s_gamma_bound) {
o_color = vec4(
texture(s_gamma, o_color.r).r,
texture(s_gamma, o_color.g).g,
texture(s_gamma, o_color.b).b,
o_color.a);
}
}

View File

@ -0,0 +1,12 @@
#version 450
layout(location = 0) out vec2 o_coord;
void main() {
vec2 coord = vec2(
float(gl_VertexIndex & 2),
float(gl_VertexIndex & 1) * 2.0f);
o_coord = coord;
gl_Position = vec4(-1.0f + 2.0f * coord, 0.0f, 1.0f);
}