1
0
mirror of https://github.com/doitsujin/dxvk.git synced 2024-11-29 01:24:11 +01:00

[spirv] Removed SPIR-V Tools headers

This commit is contained in:
Philip Rebohle 2018-03-13 14:58:17 +01:00
parent 25cae39cdb
commit ba2c4782b0
No known key found for this signature in database
GPG Key ID: C8CC613427A31C99
5 changed files with 0 additions and 1369 deletions

View File

@ -1,583 +0,0 @@
// Copyright (c) 2015-2016 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SPIRV_TOOLS_LIBSPIRV_H_
#define SPIRV_TOOLS_LIBSPIRV_H_
#ifdef __cplusplus
extern "C" {
#else
#include <stdbool.h>
#endif
#include <stddef.h>
#include <stdint.h>
#if defined(SPIRV_TOOLS_SHAREDLIB)
#if defined(_WIN32)
#if defined(SPIRV_TOOLS_IMPLEMENTATION)
#define SPIRV_TOOLS_EXPORT __declspec(dllexport)
#else
#define SPIRV_TOOLS_EXPORT __declspec(dllimport)
#endif
#else
#if defined(SPIRV_TOOLS_IMPLEMENTATION)
#define SPIRV_TOOLS_EXPORT __attribute__((visibility("default")))
#else
#define SPIRV_TOOLS_EXPORT
#endif
#endif
#else
#define SPIRV_TOOLS_EXPORT
#endif
// Helpers
#define SPV_BIT(shift) (1 << (shift))
#define SPV_FORCE_16_BIT_ENUM(name) _##name = 0x7fff
#define SPV_FORCE_32_BIT_ENUM(name) _##name = 0x7fffffff
// Enumerations
typedef enum spv_result_t {
SPV_SUCCESS = 0,
SPV_UNSUPPORTED = 1,
SPV_END_OF_STREAM = 2,
SPV_WARNING = 3,
SPV_FAILED_MATCH = 4,
SPV_REQUESTED_TERMINATION = 5, // Success, but signals early termination.
SPV_ERROR_INTERNAL = -1,
SPV_ERROR_OUT_OF_MEMORY = -2,
SPV_ERROR_INVALID_POINTER = -3,
SPV_ERROR_INVALID_BINARY = -4,
SPV_ERROR_INVALID_TEXT = -5,
SPV_ERROR_INVALID_TABLE = -6,
SPV_ERROR_INVALID_VALUE = -7,
SPV_ERROR_INVALID_DIAGNOSTIC = -8,
SPV_ERROR_INVALID_LOOKUP = -9,
SPV_ERROR_INVALID_ID = -10,
SPV_ERROR_INVALID_CFG = -11,
SPV_ERROR_INVALID_LAYOUT = -12,
SPV_ERROR_INVALID_CAPABILITY = -13,
SPV_ERROR_INVALID_DATA = -14, // Indicates data rules validation failure.
SPV_ERROR_MISSING_EXTENSION = -15,
SPV_FORCE_32_BIT_ENUM(spv_result_t)
} spv_result_t;
// Severity levels of messages communicated to the consumer.
typedef enum spv_message_level_t {
SPV_MSG_FATAL, // Unrecoverable error due to environment.
// Will exit the program immediately. E.g.,
// out of memory.
SPV_MSG_INTERNAL_ERROR, // Unrecoverable error due to SPIRV-Tools
// internals.
// Will exit the program immediately. E.g.,
// unimplemented feature.
SPV_MSG_ERROR, // Normal error due to user input.
SPV_MSG_WARNING, // Warning information.
SPV_MSG_INFO, // General information.
SPV_MSG_DEBUG, // Debug information.
} spv_message_level_t;
typedef enum spv_endianness_t {
SPV_ENDIANNESS_LITTLE,
SPV_ENDIANNESS_BIG,
SPV_FORCE_32_BIT_ENUM(spv_endianness_t)
} spv_endianness_t;
// The kinds of operands that an instruction may have.
//
// Some operand types are "concrete". The binary parser uses a concrete
// operand type to describe an operand of a parsed instruction.
//
// The assembler uses all operand types. In addition to determining what
// kind of value an operand may be, non-concrete operand types capture the
// fact that an operand might be optional (may be absent, or present exactly
// once), or might occur zero or more times.
//
// Sometimes we also need to be able to express the fact that an operand
// is a member of an optional tuple of values. In that case the first member
// would be optional, and the subsequent members would be required.
typedef enum spv_operand_type_t {
// A sentinel value.
SPV_OPERAND_TYPE_NONE = 0,
// Set 1: Operands that are IDs.
SPV_OPERAND_TYPE_ID,
SPV_OPERAND_TYPE_TYPE_ID,
SPV_OPERAND_TYPE_RESULT_ID,
SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID, // SPIR-V Sec 3.25
SPV_OPERAND_TYPE_SCOPE_ID, // SPIR-V Sec 3.27
// Set 2: Operands that are literal numbers.
SPV_OPERAND_TYPE_LITERAL_INTEGER, // Always unsigned 32-bits.
// The Instruction argument to OpExtInst. It's an unsigned 32-bit literal
// number indicating which instruction to use from an extended instruction
// set.
SPV_OPERAND_TYPE_EXTENSION_INSTRUCTION_NUMBER,
// The Opcode argument to OpSpecConstantOp. It determines the operation
// to be performed on constant operands to compute a specialization constant
// result.
SPV_OPERAND_TYPE_SPEC_CONSTANT_OP_NUMBER,
// A literal number whose format and size are determined by a previous operand
// in the same instruction. It's a signed integer, an unsigned integer, or a
// floating point number. It also has a specified bit width. The width
// may be larger than 32, which would require such a typed literal value to
// occupy multiple SPIR-V words.
SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER,
// Set 3: The literal string operand type.
SPV_OPERAND_TYPE_LITERAL_STRING,
// Set 4: Operands that are a single word enumerated value.
SPV_OPERAND_TYPE_SOURCE_LANGUAGE, // SPIR-V Sec 3.2
SPV_OPERAND_TYPE_EXECUTION_MODEL, // SPIR-V Sec 3.3
SPV_OPERAND_TYPE_ADDRESSING_MODEL, // SPIR-V Sec 3.4
SPV_OPERAND_TYPE_MEMORY_MODEL, // SPIR-V Sec 3.5
SPV_OPERAND_TYPE_EXECUTION_MODE, // SPIR-V Sec 3.6
SPV_OPERAND_TYPE_STORAGE_CLASS, // SPIR-V Sec 3.7
SPV_OPERAND_TYPE_DIMENSIONALITY, // SPIR-V Sec 3.8
SPV_OPERAND_TYPE_SAMPLER_ADDRESSING_MODE, // SPIR-V Sec 3.9
SPV_OPERAND_TYPE_SAMPLER_FILTER_MODE, // SPIR-V Sec 3.10
SPV_OPERAND_TYPE_SAMPLER_IMAGE_FORMAT, // SPIR-V Sec 3.11
SPV_OPERAND_TYPE_IMAGE_CHANNEL_ORDER, // SPIR-V Sec 3.12
SPV_OPERAND_TYPE_IMAGE_CHANNEL_DATA_TYPE, // SPIR-V Sec 3.13
SPV_OPERAND_TYPE_FP_ROUNDING_MODE, // SPIR-V Sec 3.16
SPV_OPERAND_TYPE_LINKAGE_TYPE, // SPIR-V Sec 3.17
SPV_OPERAND_TYPE_ACCESS_QUALIFIER, // SPIR-V Sec 3.18
SPV_OPERAND_TYPE_FUNCTION_PARAMETER_ATTRIBUTE, // SPIR-V Sec 3.19
SPV_OPERAND_TYPE_DECORATION, // SPIR-V Sec 3.20
SPV_OPERAND_TYPE_BUILT_IN, // SPIR-V Sec 3.21
SPV_OPERAND_TYPE_GROUP_OPERATION, // SPIR-V Sec 3.28
SPV_OPERAND_TYPE_KERNEL_ENQ_FLAGS, // SPIR-V Sec 3.29
SPV_OPERAND_TYPE_KERNEL_PROFILING_INFO, // SPIR-V Sec 3.30
SPV_OPERAND_TYPE_CAPABILITY, // SPIR-V Sec 3.31
// Set 5: Operands that are a single word bitmask.
// Sometimes a set bit indicates the instruction requires still more operands.
SPV_OPERAND_TYPE_IMAGE, // SPIR-V Sec 3.14
SPV_OPERAND_TYPE_FP_FAST_MATH_MODE, // SPIR-V Sec 3.15
SPV_OPERAND_TYPE_SELECTION_CONTROL, // SPIR-V Sec 3.22
SPV_OPERAND_TYPE_LOOP_CONTROL, // SPIR-V Sec 3.23
SPV_OPERAND_TYPE_FUNCTION_CONTROL, // SPIR-V Sec 3.24
SPV_OPERAND_TYPE_MEMORY_ACCESS, // SPIR-V Sec 3.26
// The remaining operand types are only used internally by the assembler.
// There are two categories:
// Optional : expands to 0 or 1 operand, like ? in regular expressions.
// Variable : expands to 0, 1 or many operands or pairs of operands.
// This is similar to * in regular expressions.
// Macros for defining bounds on optional and variable operand types.
// Any variable operand type is also optional.
#define FIRST_OPTIONAL(ENUM) ENUM, SPV_OPERAND_TYPE_FIRST_OPTIONAL_TYPE = ENUM
#define FIRST_VARIABLE(ENUM) ENUM, SPV_OPERAND_TYPE_FIRST_VARIABLE_TYPE = ENUM
#define LAST_VARIABLE(ENUM) \
ENUM, SPV_OPERAND_TYPE_LAST_VARIABLE_TYPE = ENUM, \
SPV_OPERAND_TYPE_LAST_OPTIONAL_TYPE = ENUM
// An optional operand represents zero or one logical operands.
// In an instruction definition, this may only appear at the end of the
// operand types.
FIRST_OPTIONAL(SPV_OPERAND_TYPE_OPTIONAL_ID),
// An optional image operand type.
SPV_OPERAND_TYPE_OPTIONAL_IMAGE,
// An optional memory access type.
SPV_OPERAND_TYPE_OPTIONAL_MEMORY_ACCESS,
// An optional literal integer.
SPV_OPERAND_TYPE_OPTIONAL_LITERAL_INTEGER,
// An optional literal number, which may be either integer or floating point.
SPV_OPERAND_TYPE_OPTIONAL_LITERAL_NUMBER,
// Like SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER, but optional, and integral.
SPV_OPERAND_TYPE_OPTIONAL_TYPED_LITERAL_INTEGER,
// An optional literal string.
SPV_OPERAND_TYPE_OPTIONAL_LITERAL_STRING,
// An optional access qualifier
SPV_OPERAND_TYPE_OPTIONAL_ACCESS_QUALIFIER,
// An optional context-independent value, or CIV. CIVs are tokens that we can
// assemble regardless of where they occur -- literals, IDs, immediate
// integers, etc.
SPV_OPERAND_TYPE_OPTIONAL_CIV,
// A variable operand represents zero or more logical operands.
// In an instruction definition, this may only appear at the end of the
// operand types.
FIRST_VARIABLE(SPV_OPERAND_TYPE_VARIABLE_ID),
SPV_OPERAND_TYPE_VARIABLE_LITERAL_INTEGER,
// A sequence of zero or more pairs of (typed literal integer, Id).
// Expands to zero or more:
// (SPV_OPERAND_TYPE_TYPED_LITERAL_INTEGER, SPV_OPERAND_TYPE_ID)
// where the literal number must always be an integer of some sort.
SPV_OPERAND_TYPE_VARIABLE_LITERAL_INTEGER_ID,
// A sequence of zero or more pairs of (Id, Literal integer)
LAST_VARIABLE(SPV_OPERAND_TYPE_VARIABLE_ID_LITERAL_INTEGER),
// The following are concrete enum types.
SPV_OPERAND_TYPE_DEBUG_INFO_FLAGS, // DebugInfo Sec 3.2. A mask.
SPV_OPERAND_TYPE_DEBUG_BASE_TYPE_ATTRIBUTE_ENCODING, // DebugInfo Sec 3.3
SPV_OPERAND_TYPE_DEBUG_COMPOSITE_TYPE, // DebugInfo Sec 3.4
SPV_OPERAND_TYPE_DEBUG_TYPE_QUALIFIER, // DebugInfo Sec 3.5
SPV_OPERAND_TYPE_DEBUG_OPERATION, // DebugInfo Sec 3.6
// This is a sentinel value, and does not represent an operand type.
// It should come last.
SPV_OPERAND_TYPE_NUM_OPERAND_TYPES,
SPV_FORCE_32_BIT_ENUM(spv_operand_type_t)
} spv_operand_type_t;
typedef enum spv_ext_inst_type_t {
SPV_EXT_INST_TYPE_NONE = 0,
SPV_EXT_INST_TYPE_GLSL_STD_450,
SPV_EXT_INST_TYPE_OPENCL_STD,
SPV_EXT_INST_TYPE_SPV_AMD_SHADER_EXPLICIT_VERTEX_PARAMETER,
SPV_EXT_INST_TYPE_SPV_AMD_SHADER_TRINARY_MINMAX,
SPV_EXT_INST_TYPE_SPV_AMD_GCN_SHADER,
SPV_EXT_INST_TYPE_SPV_AMD_SHADER_BALLOT,
SPV_EXT_INST_TYPE_DEBUGINFO,
SPV_FORCE_32_BIT_ENUM(spv_ext_inst_type_t)
} spv_ext_inst_type_t;
// This determines at a high level the kind of a binary-encoded literal
// number, but not the bit width.
// In principle, these could probably be folded into new entries in
// spv_operand_type_t. But then we'd have some special case differences
// between the assembler and disassembler.
typedef enum spv_number_kind_t {
SPV_NUMBER_NONE = 0, // The default for value initialization.
SPV_NUMBER_UNSIGNED_INT,
SPV_NUMBER_SIGNED_INT,
SPV_NUMBER_FLOATING,
} spv_number_kind_t;
typedef enum spv_text_to_binary_options_t {
SPV_TEXT_TO_BINARY_OPTION_NONE = SPV_BIT(0),
// Numeric IDs in the binary will have the same values as in the source.
// Non-numeric IDs are allocated by filling in the gaps, starting with 1
// and going up.
SPV_TEXT_TO_BINARY_OPTION_PRESERVE_NUMERIC_IDS = SPV_BIT(1),
SPV_FORCE_32_BIT_ENUM(spv_text_to_binary_options_t)
} spv_text_to_binary_options_t;
typedef enum spv_binary_to_text_options_t {
SPV_BINARY_TO_TEXT_OPTION_NONE = SPV_BIT(0),
SPV_BINARY_TO_TEXT_OPTION_PRINT = SPV_BIT(1),
SPV_BINARY_TO_TEXT_OPTION_COLOR = SPV_BIT(2),
SPV_BINARY_TO_TEXT_OPTION_INDENT = SPV_BIT(3),
SPV_BINARY_TO_TEXT_OPTION_SHOW_BYTE_OFFSET = SPV_BIT(4),
// Do not output the module header as leading comments in the assembly.
SPV_BINARY_TO_TEXT_OPTION_NO_HEADER = SPV_BIT(5),
// Use friendly names where possible. The heuristic may expand over
// time, but will use common names for scalar types, and debug names from
// OpName instructions.
SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES = SPV_BIT(6),
SPV_FORCE_32_BIT_ENUM(spv_binary_to_text_options_t)
} spv_binary_to_text_options_t;
// Structures
// Information about an operand parsed from a binary SPIR-V module.
// Note that the values are not included. You still need access to the binary
// to extract the values.
typedef struct spv_parsed_operand_t {
// Location of the operand, in words from the start of the instruction.
uint16_t offset;
// Number of words occupied by this operand.
uint16_t num_words;
// The "concrete" operand type. See the definition of spv_operand_type_t
// for details.
spv_operand_type_t type;
// If type is a literal number type, then number_kind says whether it's
// a signed integer, an unsigned integer, or a floating point number.
spv_number_kind_t number_kind;
// The number of bits for a literal number type.
uint32_t number_bit_width;
} spv_parsed_operand_t;
// An instruction parsed from a binary SPIR-V module.
typedef struct spv_parsed_instruction_t {
// An array of words for this instruction, in native endianness.
const uint32_t* words;
// The number of words in this instruction.
uint16_t num_words;
uint16_t opcode;
// The extended instruction type, if opcode is OpExtInst. Otherwise
// this is the "none" value.
spv_ext_inst_type_t ext_inst_type;
// The type id, or 0 if this instruction doesn't have one.
uint32_t type_id;
// The result id, or 0 if this instruction doesn't have one.
uint32_t result_id;
// The array of parsed operands.
const spv_parsed_operand_t* operands;
uint16_t num_operands;
} spv_parsed_instruction_t;
typedef struct spv_const_binary_t {
const uint32_t* code;
const size_t wordCount;
} spv_const_binary_t;
typedef struct spv_binary_t {
uint32_t* code;
size_t wordCount;
} spv_binary_t;
typedef struct spv_text_t {
const char* str;
size_t length;
} spv_text_t;
typedef struct spv_position_t {
size_t line;
size_t column;
size_t index;
} spv_position_t;
typedef struct spv_diagnostic_t {
spv_position_t position;
char* error;
bool isTextSource;
} spv_diagnostic_t;
// Opaque struct containing the context used to operate on a SPIR-V module.
// Its object is used by various translation API functions.
typedef struct spv_context_t spv_context_t;
typedef struct spv_validator_options_t spv_validator_options_t;
// Type Definitions
typedef spv_const_binary_t* spv_const_binary;
typedef spv_binary_t* spv_binary;
typedef spv_text_t* spv_text;
typedef spv_position_t* spv_position;
typedef spv_diagnostic_t* spv_diagnostic;
typedef const spv_context_t* spv_const_context;
typedef spv_context_t* spv_context;
typedef spv_validator_options_t* spv_validator_options;
typedef const spv_validator_options_t* spv_const_validator_options;
// Platform API
// Returns the SPIRV-Tools software version as a null-terminated string.
// The contents of the underlying storage is valid for the remainder of
// the process.
SPIRV_TOOLS_EXPORT const char* spvSoftwareVersionString();
// Returns a null-terminated string containing the name of the project,
// the software version string, and commit details.
// The contents of the underlying storage is valid for the remainder of
// the process.
SPIRV_TOOLS_EXPORT const char* spvSoftwareVersionDetailsString();
// Certain target environments impose additional restrictions on SPIR-V, so it's
// often necessary to specify which one applies. SPV_ENV_UNIVERSAL means
// environment-agnostic SPIR-V.
typedef enum {
SPV_ENV_UNIVERSAL_1_0, // SPIR-V 1.0 latest revision, no other restrictions.
SPV_ENV_VULKAN_1_0, // Vulkan 1.0 latest revision.
SPV_ENV_UNIVERSAL_1_1, // SPIR-V 1.1 latest revision, no other restrictions.
SPV_ENV_OPENCL_2_1, // OpenCL Full Profile 2.1 latest revision.
SPV_ENV_OPENCL_2_2, // OpenCL Full Profile 2.2 latest revision.
SPV_ENV_OPENGL_4_0, // OpenGL 4.0 plus GL_ARB_gl_spirv, latest revisions.
SPV_ENV_OPENGL_4_1, // OpenGL 4.1 plus GL_ARB_gl_spirv, latest revisions.
SPV_ENV_OPENGL_4_2, // OpenGL 4.2 plus GL_ARB_gl_spirv, latest revisions.
SPV_ENV_OPENGL_4_3, // OpenGL 4.3 plus GL_ARB_gl_spirv, latest revisions.
// There is no variant for OpenGL 4.4.
SPV_ENV_OPENGL_4_5, // OpenGL 4.5 plus GL_ARB_gl_spirv, latest revisions.
SPV_ENV_UNIVERSAL_1_2, // SPIR-V 1.2, latest revision, no other restrictions.
SPV_ENV_OPENCL_1_2, // OpenCL Full Profile 1.2 plus cl_khr_il_program,
// latest revision.
SPV_ENV_OPENCL_EMBEDDED_1_2, // OpenCL Embedded Profile 1.2 plus
// cl_khr_il_program, latest revision.
SPV_ENV_OPENCL_2_0, // OpenCL Full Profile 2.0 plus cl_khr_il_program,
// latest revision.
SPV_ENV_OPENCL_EMBEDDED_2_0, // OpenCL Embedded Profile 2.0 plus
// cl_khr_il_program, latest revision.
SPV_ENV_OPENCL_EMBEDDED_2_1, // OpenCL Embedded Profile 2.1 latest revision.
SPV_ENV_OPENCL_EMBEDDED_2_2, // OpenCL Embedded Profile 2.2 latest revision.
} spv_target_env;
// SPIR-V Validator can be parameterized with the following Universal Limits.
typedef enum {
spv_validator_limit_max_struct_members,
spv_validator_limit_max_struct_depth,
spv_validator_limit_max_local_variables,
spv_validator_limit_max_global_variables,
spv_validator_limit_max_switch_branches,
spv_validator_limit_max_function_args,
spv_validator_limit_max_control_flow_nesting_depth,
spv_validator_limit_max_access_chain_indexes,
} spv_validator_limit;
// Returns a string describing the given SPIR-V target environment.
SPIRV_TOOLS_EXPORT const char* spvTargetEnvDescription(spv_target_env env);
// Creates a context object. Returns null if env is invalid.
SPIRV_TOOLS_EXPORT spv_context spvContextCreate(spv_target_env env);
// Destroys the given context object.
SPIRV_TOOLS_EXPORT void spvContextDestroy(spv_context context);
// Creates a Validator options object with default options. Returns a valid
// options object. The object remains valid until it is passed into
// spvValidatorOptionsDestroy.
SPIRV_TOOLS_EXPORT spv_validator_options spvValidatorOptionsCreate();
// Destroys the given Validator options object.
SPIRV_TOOLS_EXPORT void spvValidatorOptionsDestroy(
spv_validator_options options);
// Records the maximum Universal Limit that is considered valid in the given
// Validator options object. <options> argument must be a valid options object.
SPIRV_TOOLS_EXPORT void spvValidatorOptionsSetUniversalLimit(
spv_validator_options options, spv_validator_limit limit_type,
uint32_t limit);
// Record whether or not the validator should relax the rules on types for
// stores to structs. When relaxed, it will allow a type mismatch as long as
// the types are structs with the same layout. Two structs have the same layout
// if
//
// 1) the members of the structs are either the same type or are structs with
// same layout, and
//
// 2) the decorations that affect the memory layout are identical for both
// types. Other decorations are not relevant.
SPIRV_TOOLS_EXPORT void spvValidatorOptionsSetRelaxStoreStruct(
spv_validator_options options, bool val);
// Records whether or not the validator should relax the rules on pointer usage
// in logical addressing mode.
//
// When relaxed, it will allow the following usage cases of pointers:
// 1) OpVariable allocating an object whose type is a pointer type
// 2) OpReturnValue returning a pointer value
SPIRV_TOOLS_EXPORT void spvValidatorOptionsSetRelaxLogicalPointer(
spv_validator_options options, bool val);
// Encodes the given SPIR-V assembly text to its binary representation. The
// length parameter specifies the number of bytes for text. Encoded binary will
// be stored into *binary. Any error will be written into *diagnostic if
// diagnostic is non-null. The generated binary is independent of the context
// and may outlive it.
SPIRV_TOOLS_EXPORT spv_result_t spvTextToBinary(const spv_const_context context,
const char* text,
const size_t length,
spv_binary* binary,
spv_diagnostic* diagnostic);
// Encodes the given SPIR-V assembly text to its binary representation. Same as
// spvTextToBinary but with options. The options parameter is a bit field of
// spv_text_to_binary_options_t.
SPIRV_TOOLS_EXPORT spv_result_t spvTextToBinaryWithOptions(
const spv_const_context context, const char* text, const size_t length,
const uint32_t options, spv_binary* binary, spv_diagnostic* diagnostic);
// Frees an allocated text stream. This is a no-op if the text parameter
// is a null pointer.
SPIRV_TOOLS_EXPORT void spvTextDestroy(spv_text text);
// Decodes the given SPIR-V binary representation to its assembly text. The
// word_count parameter specifies the number of words for binary. The options
// parameter is a bit field of spv_binary_to_text_options_t. Decoded text will
// be stored into *text. Any error will be written into *diagnostic if
// diagnostic is non-null.
SPIRV_TOOLS_EXPORT spv_result_t spvBinaryToText(const spv_const_context context,
const uint32_t* binary,
const size_t word_count,
const uint32_t options,
spv_text* text,
spv_diagnostic* diagnostic);
// Frees a binary stream from memory. This is a no-op if binary is a null
// pointer.
SPIRV_TOOLS_EXPORT void spvBinaryDestroy(spv_binary binary);
// Validates a SPIR-V binary for correctness. Any errors will be written into
// *diagnostic if diagnostic is non-null.
SPIRV_TOOLS_EXPORT spv_result_t spvValidate(const spv_const_context context,
const spv_const_binary binary,
spv_diagnostic* diagnostic);
// Validates a SPIR-V binary for correctness. Uses the provided Validator
// options. Any errors will be written into *diagnostic if diagnostic is
// non-null.
SPIRV_TOOLS_EXPORT spv_result_t spvValidateWithOptions(
const spv_const_context context, const spv_const_validator_options options,
const spv_const_binary binary, spv_diagnostic* diagnostic);
// Validates a raw SPIR-V binary for correctness. Any errors will be written
// into *diagnostic if diagnostic is non-null.
SPIRV_TOOLS_EXPORT spv_result_t
spvValidateBinary(const spv_const_context context, const uint32_t* words,
const size_t num_words, spv_diagnostic* diagnostic);
// Creates a diagnostic object. The position parameter specifies the location in
// the text/binary stream. The message parameter, copied into the diagnostic
// object, contains the error message to display.
SPIRV_TOOLS_EXPORT spv_diagnostic
spvDiagnosticCreate(const spv_position position, const char* message);
// Destroys a diagnostic object. This is a no-op if diagnostic is a null
// pointer.
SPIRV_TOOLS_EXPORT void spvDiagnosticDestroy(spv_diagnostic diagnostic);
// Prints the diagnostic to stderr.
SPIRV_TOOLS_EXPORT spv_result_t
spvDiagnosticPrint(const spv_diagnostic diagnostic);
// The binary parser interface.
// A pointer to a function that accepts a parsed SPIR-V header.
// The integer arguments are the 32-bit words from the header, as specified
// in SPIR-V 1.0 Section 2.3 Table 1.
// The function should return SPV_SUCCESS if parsing should continue.
typedef spv_result_t (*spv_parsed_header_fn_t)(
void* user_data, spv_endianness_t endian, uint32_t magic, uint32_t version,
uint32_t generator, uint32_t id_bound, uint32_t reserved);
// A pointer to a function that accepts a parsed SPIR-V instruction.
// The parsed_instruction value is transient: it may be overwritten
// or released immediately after the function has returned. That also
// applies to the words array member of the parsed instruction. The
// function should return SPV_SUCCESS if and only if parsing should
// continue.
typedef spv_result_t (*spv_parsed_instruction_fn_t)(
void* user_data, const spv_parsed_instruction_t* parsed_instruction);
// Parses a SPIR-V binary, specified as counted sequence of 32-bit words.
// Parsing feedback is provided via two callbacks provided as function
// pointers. Each callback function pointer can be a null pointer, in
// which case it is never called. Otherwise, in a valid parse the
// parsed-header callback is called once, and then the parsed-instruction
// callback once for each instruction in the stream. The user_data parameter
// is supplied as context to the callbacks. Returns SPV_SUCCESS on successful
// parse where the callbacks always return SPV_SUCCESS. For an invalid parse,
// returns a status code other than SPV_SUCCESS, and if diagnostic is non-null
// also emits a diagnostic. If a callback returns anything other than
// SPV_SUCCESS, then that status code is returned, no further callbacks are
// issued, and no additional diagnostics are emitted.
SPIRV_TOOLS_EXPORT spv_result_t spvBinaryParse(
const spv_const_context context, void* user_data, const uint32_t* words,
const size_t num_words, spv_parsed_header_fn_t parse_header,
spv_parsed_instruction_fn_t parse_instruction, spv_diagnostic* diagnostic);
#ifdef __cplusplus
}
#endif
#endif // SPIRV_TOOLS_LIBSPIRV_H_

View File

@ -1,174 +0,0 @@
// Copyright (c) 2016 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SPIRV_TOOLS_LIBSPIRV_HPP_
#define SPIRV_TOOLS_LIBSPIRV_HPP_
#include <functional>
#include <memory>
#include <string>
#include <vector>
#include "spirv-tools/libspirv.h"
namespace spvtools {
// Message consumer. The C strings for source and message are only alive for the
// specific invocation.
using MessageConsumer = std::function<void(
spv_message_level_t /* level */, const char* /* source */,
const spv_position_t& /* position */, const char* /* message */
)>;
// C++ RAII wrapper around the C context object spv_context.
class Context {
public:
// Constructs a context targeting the given environment |env|.
//
// The constructed instance will have an empty message consumer, which just
// ignores all messages from the library. Use SetMessageConsumer() to supply
// one if messages are of concern.
explicit Context(spv_target_env env);
// Enables move constructor/assignment operations.
Context(Context&& other);
Context& operator=(Context&& other);
// Disables copy constructor/assignment operations.
Context(const Context&) = delete;
Context& operator=(const Context&) = delete;
// Destructs this instance.
~Context();
// Sets the message consumer to the given |consumer|. The |consumer| will be
// invoked once for each message communicated from the library.
void SetMessageConsumer(MessageConsumer consumer);
// Returns the underlying spv_context.
spv_context& CContext();
const spv_context& CContext() const;
private:
spv_context context_;
};
// A RAII wrapper around a validator options object.
class ValidatorOptions {
public:
ValidatorOptions() : options_(spvValidatorOptionsCreate()) {}
~ValidatorOptions() { spvValidatorOptionsDestroy(options_); }
// Allow implicit conversion to the underlying object.
operator spv_validator_options() const { return options_; }
// Sets a limit.
void SetUniversalLimit(spv_validator_limit limit_type, uint32_t limit) {
spvValidatorOptionsSetUniversalLimit(options_, limit_type, limit);
}
void SetRelaxStructStore(bool val) {
spvValidatorOptionsSetRelaxStoreStruct(options_, val);
}
// Records whether or not the validator should relax the rules on pointer
// usage in logical addressing mode.
//
// When relaxed, it will allow the following usage cases of pointers:
// 1) OpVariable allocating an object whose type is a pointer type
// 2) OpReturnValue returning a pointer value
void SetRelaxLogicalPointer(bool val) {
spvValidatorOptionsSetRelaxLogicalPointer(options_, val);
}
private:
spv_validator_options options_;
};
// C++ interface for SPIRV-Tools functionalities. It wraps the context
// (including target environment and the corresponding SPIR-V grammar) and
// provides methods for assembling, disassembling, and validating.
//
// Instances of this class provide basic thread-safety guarantee.
class SpirvTools {
public:
enum {
// Default assembling option used by assemble():
kDefaultAssembleOption = SPV_TEXT_TO_BINARY_OPTION_NONE,
// Default disassembling option used by Disassemble():
// * Avoid prefix comments from decoding the SPIR-V module header, and
// * Use friendly names for variables.
kDefaultDisassembleOption = SPV_BINARY_TO_TEXT_OPTION_NO_HEADER |
SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES
};
// Constructs an instance targeting the given environment |env|.
//
// The constructed instance will have an empty message consumer, which just
// ignores all messages from the library. Use SetMessageConsumer() to supply
// one if messages are of concern.
explicit SpirvTools(spv_target_env env);
// Disables copy/move constructor/assignment operations.
SpirvTools(const SpirvTools&) = delete;
SpirvTools(SpirvTools&&) = delete;
SpirvTools& operator=(const SpirvTools&) = delete;
SpirvTools& operator=(SpirvTools&&) = delete;
// Destructs this instance.
~SpirvTools();
// Sets the message consumer to the given |consumer|. The |consumer| will be
// invoked once for each message communicated from the library.
void SetMessageConsumer(MessageConsumer consumer);
// Assembles the given assembly |text| and writes the result to |binary|.
// Returns true on successful assembling. |binary| will be kept untouched if
// assembling is unsuccessful.
bool Assemble(const std::string& text, std::vector<uint32_t>* binary,
uint32_t options = kDefaultAssembleOption) const;
// |text_size| specifies the number of bytes in |text|. A terminating null
// character is not required to present in |text| as long as |text| is valid.
bool Assemble(const char* text, size_t text_size,
std::vector<uint32_t>* binary,
uint32_t options = kDefaultAssembleOption) const;
// Disassembles the given SPIR-V |binary| with the given |options| and writes
// the assembly to |text|. Returns ture on successful disassembling. |text|
// will be kept untouched if diassembling is unsuccessful.
bool Disassemble(const std::vector<uint32_t>& binary, std::string* text,
uint32_t options = kDefaultDisassembleOption) const;
// |binary_size| specifies the number of words in |binary|.
bool Disassemble(const uint32_t* binary, size_t binary_size,
std::string* text,
uint32_t options = kDefaultDisassembleOption) const;
// Validates the given SPIR-V |binary|. Returns true if no issues are found.
// Otherwise, returns false and communicates issues via the message consumer
// registered.
bool Validate(const std::vector<uint32_t>& binary) const;
// |binary_size| specifies the number of words in |binary|.
bool Validate(const uint32_t* binary, size_t binary_size) const;
// Like the previous overload, but takes an options object.
bool Validate(const uint32_t* binary, size_t binary_size,
const ValidatorOptions& options) const;
private:
struct Impl; // Opaque struct for holding the data fields used by this class.
std::unique_ptr<Impl> impl_; // Unique pointer to implementation data.
};
} // namespace spvtools
#endif // SPIRV_TOOLS_LIBSPIRV_HPP_

View File

@ -1,83 +0,0 @@
// Copyright (c) 2017 Pierre Moreau
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SPIRV_TOOLS_LINKER_HPP_
#define SPIRV_TOOLS_LINKER_HPP_
#include <cstdint>
#include <memory>
#include <vector>
#include "libspirv.hpp"
namespace spvtools {
class LinkerOptions {
public:
LinkerOptions() : create_library_(false), verify_ids_(false) {}
// Returns whether a library or an executable should be produced by the
// linking phase.
//
// All exported symbols are kept when creating a library, whereas they will
// be removed when creating an executable.
// The returned value will be true if creating a library, and false if
// creating an executable.
bool GetCreateLibrary() const { return create_library_; }
// Sets whether a library or an executable should be produced.
void SetCreateLibrary(bool create_library) {
create_library_ = create_library;
}
// Returns whether to verify the uniqueness of the unique ids in the merged
// context.
bool GetVerifyIds() const { return verify_ids_; }
// Sets whether to verify the uniqueness of the unique ids in the merged
// context.
void SetVerifyIds(bool verify_ids) { verify_ids_ = verify_ids; }
private:
bool create_library_;
bool verify_ids_;
};
// Links one or more SPIR-V modules into a new SPIR-V module. That is, combine
// several SPIR-V modules into one, resolving link dependencies between them.
//
// At least one binary has to be provided in |binaries|. Those binaries do not
// have to be valid, but they should be at least parseable.
// The functions can fail due to the following:
// * The given context was not initialised using `spvContextCreate()`;
// * No input modules were given;
// * One or more of those modules were not parseable;
// * The input modules used different addressing or memory models;
// * The ID or global variable number limit were exceeded;
// * Some entry points were defined multiple times;
// * Some imported symbols did not have an exported counterpart;
// * Possibly other reasons.
spv_result_t Link(const Context& context,
const std::vector<std::vector<uint32_t>>& binaries,
std::vector<uint32_t>* linked_binary,
const LinkerOptions& options = LinkerOptions());
spv_result_t Link(const Context& context, const uint32_t* const* binaries,
const size_t* binary_sizes, size_t num_binaries,
std::vector<uint32_t>* linked_binary,
const LinkerOptions& options = LinkerOptions());
} // namespace spvtools
#endif // SPIRV_TOOLS_LINKER_HPP_

View File

@ -1,525 +0,0 @@
// Copyright (c) 2016 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SPIRV_TOOLS_OPTIMIZER_HPP_
#define SPIRV_TOOLS_OPTIMIZER_HPP_
#include <memory>
#include <ostream>
#include <string>
#include <unordered_map>
#include <vector>
#include "libspirv.hpp"
namespace spvtools {
// C++ interface for SPIR-V optimization functionalities. It wraps the context
// (including target environment and the corresponding SPIR-V grammar) and
// provides methods for registering optimization passes and optimizing.
//
// Instances of this class provides basic thread-safety guarantee.
class Optimizer {
public:
// The token for an optimization pass. It is returned via one of the
// Create*Pass() standalone functions at the end of this header file and
// consumed by the RegisterPass() method. Tokens are one-time objects that
// only support move; copying is not allowed.
struct PassToken {
struct Impl; // Opaque struct for holding inernal data.
PassToken(std::unique_ptr<Impl>);
// Tokens can only be moved. Copying is disabled.
PassToken(const PassToken&) = delete;
PassToken(PassToken&&);
PassToken& operator=(const PassToken&) = delete;
PassToken& operator=(PassToken&&);
~PassToken();
std::unique_ptr<Impl> impl_; // Unique pointer to internal data.
};
// Constructs an instance with the given target |env|, which is used to decode
// the binaries to be optimized later.
//
// The constructed instance will have an empty message consumer, which just
// ignores all messages from the library. Use SetMessageConsumer() to supply
// one if messages are of concern.
explicit Optimizer(spv_target_env env);
// Disables copy/move constructor/assignment operations.
Optimizer(const Optimizer&) = delete;
Optimizer(Optimizer&&) = delete;
Optimizer& operator=(const Optimizer&) = delete;
Optimizer& operator=(Optimizer&&) = delete;
// Destructs this instance.
~Optimizer();
// Sets the message consumer to the given |consumer|. The |consumer| will be
// invoked once for each message communicated from the library.
void SetMessageConsumer(MessageConsumer consumer);
// Registers the given |pass| to this optimizer. Passes will be run in the
// exact order of registration. The token passed in will be consumed by this
// method.
Optimizer& RegisterPass(PassToken&& pass);
// Registers passes that attempt to improve performance of generated code.
// This sequence of passes is subject to constant review and will change
// from time to time.
Optimizer& RegisterPerformancePasses();
// Registers passes that attempt to improve the size of generated code.
// This sequence of passes is subject to constant review and will change
// from time to time.
Optimizer& RegisterSizePasses();
// Registers passes that attempt to legalize the generated code.
//
// Note: this recipe is specially for legalizing SPIR-V. It should be used
// by compilers after translating HLSL source code literally. It should
// *not* be used by general workloads for performance or size improvement.
//
// This sequence of passes is subject to constant review and will change
// from time to time.
Optimizer& RegisterLegalizationPasses();
// Optimizes the given SPIR-V module |original_binary| and writes the
// optimized binary into |optimized_binary|.
// Returns true on successful optimization, whether or not the module is
// modified. Returns false if errors occur when processing |original_binary|
// using any of the registered passes. In that case, no further passes are
// executed and the contents in |optimized_binary| may be invalid.
//
// It's allowed to alias |original_binary| to the start of |optimized_binary|.
bool Run(const uint32_t* original_binary, size_t original_binary_size,
std::vector<uint32_t>* optimized_binary) const;
// Returns a vector of strings with all the pass names added to this
// optimizer's pass manager. These strings are valid until the associated
// pass manager is destroyed.
std::vector<const char*> GetPassNames() const;
// Sets the option to print the disassembly before each pass and after the
// last pass. If |out| is null, then no output is generated. Otherwise,
// output is sent to the |out| output stream.
Optimizer& SetPrintAll(std::ostream* out);
private:
struct Impl; // Opaque struct for holding internal data.
std::unique_ptr<Impl> impl_; // Unique pointer to internal data.
};
// Creates a null pass.
// A null pass does nothing to the SPIR-V module to be optimized.
Optimizer::PassToken CreateNullPass();
// Creates a strip-debug-info pass.
// A strip-debug-info pass removes all debug instructions (as documented in
// Section 3.32.2 of the SPIR-V spec) of the SPIR-V module to be optimized.
Optimizer::PassToken CreateStripDebugInfoPass();
// Creates an eliminate-dead-functions pass.
// An eliminate-dead-functions pass will remove all functions that are not in
// the call trees rooted at entry points and exported functions. These
// functions are not needed because they will never be called.
Optimizer::PassToken CreateEliminateDeadFunctionsPass();
// Creates a set-spec-constant-default-value pass from a mapping from spec-ids
// to the default values in the form of string.
// A set-spec-constant-default-value pass sets the default values for the
// spec constants that have SpecId decorations (i.e., those defined by
// OpSpecConstant{|True|False} instructions).
Optimizer::PassToken CreateSetSpecConstantDefaultValuePass(
const std::unordered_map<uint32_t, std::string>& id_value_map);
// Creates a set-spec-constant-default-value pass from a mapping from spec-ids
// to the default values in the form of bit pattern.
// A set-spec-constant-default-value pass sets the default values for the
// spec constants that have SpecId decorations (i.e., those defined by
// OpSpecConstant{|True|False} instructions).
Optimizer::PassToken CreateSetSpecConstantDefaultValuePass(
const std::unordered_map<uint32_t, std::vector<uint32_t>>& id_value_map);
// Creates a flatten-decoration pass.
// A flatten-decoration pass replaces grouped decorations with equivalent
// ungrouped decorations. That is, it replaces each OpDecorationGroup
// instruction and associated OpGroupDecorate and OpGroupMemberDecorate
// instructions with equivalent OpDecorate and OpMemberDecorate instructions.
// The pass does not attempt to preserve debug information for instructions
// it removes.
Optimizer::PassToken CreateFlattenDecorationPass();
// Creates a freeze-spec-constant-value pass.
// A freeze-spec-constant pass specializes the value of spec constants to
// their default values. This pass only processes the spec constants that have
// SpecId decorations (defined by OpSpecConstant, OpSpecConstantTrue, or
// OpSpecConstantFalse instructions) and replaces them with their normal
// counterparts (OpConstant, OpConstantTrue, or OpConstantFalse). The
// corresponding SpecId annotation instructions will also be removed. This
// pass does not fold the newly added normal constants and does not process
// other spec constants defined by OpSpecConstantComposite or
// OpSpecConstantOp.
Optimizer::PassToken CreateFreezeSpecConstantValuePass();
// Creates a fold-spec-constant-op-and-composite pass.
// A fold-spec-constant-op-and-composite pass folds spec constants defined by
// OpSpecConstantOp or OpSpecConstantComposite instruction, to normal Constants
// defined by OpConstantTrue, OpConstantFalse, OpConstant, OpConstantNull, or
// OpConstantComposite instructions. Note that spec constants defined with
// OpSpecConstant, OpSpecConstantTrue, or OpSpecConstantFalse instructions are
// not handled, as these instructions indicate their value are not determined
// and can be changed in future. A spec constant is foldable if all of its
// value(s) can be determined from the module. E.g., an integer spec constant
// defined with OpSpecConstantOp instruction can be folded if its value won't
// change later. This pass will replace the original OpSpecContantOp instruction
// with an OpConstant instruction. When folding composite spec constants,
// new instructions may be inserted to define the components of the composite
// constant first, then the original spec constants will be replaced by
// OpConstantComposite instructions.
//
// There are some operations not supported yet:
// OpSConvert, OpFConvert, OpQuantizeToF16 and
// all the operations under Kernel capability.
// TODO(qining): Add support for the operations listed above.
Optimizer::PassToken CreateFoldSpecConstantOpAndCompositePass();
// Creates a unify-constant pass.
// A unify-constant pass de-duplicates the constants. Constants with the exact
// same value and identical form will be unified and only one constant will
// be kept for each unique pair of type and value.
// There are several cases not handled by this pass:
// 1) Constants defined by OpConstantNull instructions (null constants) and
// constants defined by OpConstantFalse, OpConstant or OpConstantComposite
// with value 0 (zero-valued normal constants) are not considered equivalent.
// So null constants won't be used to replace zero-valued normal constants,
// vice versa.
// 2) Whenever there are decorations to the constant's result id id, the
// constant won't be handled, which means, it won't be used to replace any
// other constants, neither can other constants replace it.
// 3) NaN in float point format with different bit patterns are not unified.
Optimizer::PassToken CreateUnifyConstantPass();
// Creates a eliminate-dead-constant pass.
// A eliminate-dead-constant pass removes dead constants, including normal
// contants defined by OpConstant, OpConstantComposite, OpConstantTrue, or
// OpConstantFalse and spec constants defined by OpSpecConstant,
// OpSpecConstantComposite, OpSpecConstantTrue, OpSpecConstantFalse or
// OpSpecConstantOp.
Optimizer::PassToken CreateEliminateDeadConstantPass();
// Creates a strength-reduction pass.
// A strength-reduction pass will look for opportunities to replace an
// instruction with an equivalent and less expensive one. For example,
// multiplying by a power of 2 can be replaced by a bit shift.
Optimizer::PassToken CreateStrengthReductionPass();
// Creates a block merge pass.
// This pass searches for blocks with a single Branch to a block with no
// other predecessors and merges the blocks into a single block. Continue
// blocks and Merge blocks are not candidates for the second block.
//
// The pass is most useful after Dead Branch Elimination, which can leave
// such sequences of blocks. Merging them makes subsequent passes more
// effective, such as single block local store-load elimination.
//
// While this pass reduces the number of occurrences of this sequence, at
// this time it does not guarantee all such sequences are eliminated.
//
// Presence of phi instructions can inhibit this optimization. Handling
// these is left for future improvements.
Optimizer::PassToken CreateBlockMergePass();
// Creates an exhaustive inline pass.
// An exhaustive inline pass attempts to exhaustively inline all function
// calls in all functions in an entry point call tree. The intent is to enable,
// albeit through brute force, analysis and optimization across function
// calls by subsequent optimization passes. As the inlining is exhaustive,
// there is no attempt to optimize for size or runtime performance. Functions
// that are not in the call tree of an entry point are not changed.
Optimizer::PassToken CreateInlineExhaustivePass();
// Creates an opaque inline pass.
// An opaque inline pass inlines all function calls in all functions in all
// entry point call trees where the called function contains an opaque type
// in either its parameter types or return type. An opaque type is currently
// defined as Image, Sampler or SampledImage. The intent is to enable, albeit
// through brute force, analysis and optimization across these function calls
// by subsequent passes in order to remove the storing of opaque types which is
// not legal in Vulkan. Functions that are not in the call tree of an entry
// point are not changed.
Optimizer::PassToken CreateInlineOpaquePass();
// Creates a single-block local variable load/store elimination pass.
// For every entry point function, do single block memory optimization of
// function variables referenced only with non-access-chain loads and stores.
// For each targeted variable load, if previous store to that variable in the
// block, replace the load's result id with the value id of the store.
// If previous load within the block, replace the current load's result id
// with the previous load's result id. In either case, delete the current
// load. Finally, check if any remaining stores are useless, and delete store
// and variable if possible.
//
// The presence of access chain references and function calls can inhibit
// the above optimization.
//
// Only modules with relaxed logical addressing (see opt/instruction.h) are
// currently processed.
//
// This pass is most effective if preceeded by Inlining and
// LocalAccessChainConvert. This pass will reduce the work needed to be done
// by LocalSingleStoreElim and LocalMultiStoreElim.
//
// Only functions in the call tree of an entry point are processed.
Optimizer::PassToken CreateLocalSingleBlockLoadStoreElimPass();
// Create dead branch elimination pass.
// For each entry point function, this pass will look for SelectionMerge
// BranchConditionals with constant condition and convert to a Branch to
// the indicated label. It will delete resulting dead blocks.
//
// For all phi functions in merge block, replace all uses with the id
// corresponding to the living predecessor.
//
// Note that some branches and blocks may be left to avoid creating invalid
// control flow. Improving this is left to future work.
//
// This pass is most effective when preceeded by passes which eliminate
// local loads and stores, effectively propagating constant values where
// possible.
Optimizer::PassToken CreateDeadBranchElimPass();
// Creates an SSA local variable load/store elimination pass.
// For every entry point function, eliminate all loads and stores of function
// scope variables only referenced with non-access-chain loads and stores.
// Eliminate the variables as well.
//
// The presence of access chain references and function calls can inhibit
// the above optimization.
//
// Only shader modules with relaxed logical addressing (see opt/instruction.h)
// are currently processed. Currently modules with any extensions enabled are
// not processed. This is left for future work.
//
// This pass is most effective if preceeded by Inlining and
// LocalAccessChainConvert. LocalSingleStoreElim and LocalSingleBlockElim
// will reduce the work that this pass has to do.
Optimizer::PassToken CreateLocalMultiStoreElimPass();
// Creates a local access chain conversion pass.
// A local access chain conversion pass identifies all function scope
// variables which are accessed only with loads, stores and access chains
// with constant indices. It then converts all loads and stores of such
// variables into equivalent sequences of loads, stores, extracts and inserts.
//
// This pass only processes entry point functions. It currently only converts
// non-nested, non-ptr access chains. It does not process modules with
// non-32-bit integer types present. Optional memory access options on loads
// and stores are ignored as we are only processing function scope variables.
//
// This pass unifies access to these variables to a single mode and simplifies
// subsequent analysis and elimination of these variables along with their
// loads and stores allowing values to propagate to their points of use where
// possible.
Optimizer::PassToken CreateLocalAccessChainConvertPass();
// Creates a local single store elimination pass.
// For each entry point function, this pass eliminates loads and stores for
// function scope variable that are stored to only once, where possible. Only
// whole variable loads and stores are eliminated; access-chain references are
// not optimized. Replace all loads of such variables with the value that is
// stored and eliminate any resulting dead code.
//
// Currently, the presence of access chains and function calls can inhibit this
// pass, however the Inlining and LocalAccessChainConvert passes can make it
// more effective. In additional, many non-load/store memory operations are
// not supported and will prohibit optimization of a function. Support of
// these operations are future work.
//
// Only shader modules with relaxed logical addressing (see opt/instruction.h)
// are currently processed.
//
// This pass will reduce the work needed to be done by LocalSingleBlockElim
// and LocalMultiStoreElim and can improve the effectiveness of other passes
// such as DeadBranchElimination which depend on values for their analysis.
Optimizer::PassToken CreateLocalSingleStoreElimPass();
// Creates an insert/extract elimination pass.
// This pass processes each entry point function in the module, searching for
// extracts on a sequence of inserts. It further searches the sequence for an
// insert with indices identical to the extract. If such an insert can be
// found before hitting a conflicting insert, the extract's result id is
// replaced with the id of the values from the insert.
//
// Besides removing extracts this pass enables subsequent dead code elimination
// passes to delete the inserts. This pass performs best after access chains are
// converted to inserts and extracts and local loads and stores are eliminated.
Optimizer::PassToken CreateInsertExtractElimPass();
// Creates a dead insert elimination pass.
// This pass processes each entry point function in the module, searching for
// unreferenced inserts into composite types. These are most often unused
// stores to vector components. They are unused because they are never
// referenced, or because there is another insert to the same component between
// the insert and the reference. After removing the inserts, dead code
// elimination is attempted on the inserted values.
//
// This pass performs best after access chains are converted to inserts and
// extracts and local loads and stores are eliminated. While executing this
// pass can be advantageous on its own, it is also advantageous to execute
// this pass after CreateInsertExtractPass() as it will remove any unused
// inserts created by that pass.
Optimizer::PassToken CreateDeadInsertElimPass();
// Creates a pass to consolidate uniform references.
// For each entry point function in the module, first change all constant index
// access chain loads into equivalent composite extracts. Then consolidate
// identical uniform loads into one uniform load. Finally, consolidate
// identical uniform extracts into one uniform extract. This may require
// moving a load or extract to a point which dominates all uses.
//
// This pass requires a module to have structured control flow ie shader
// capability. It also requires logical addressing ie Addresses capability
// is not enabled. It also currently does not support any extensions.
//
// This pass currently only optimizes loads with a single index.
Optimizer::PassToken CreateCommonUniformElimPass();
// Create aggressive dead code elimination pass
// This pass eliminates unused code from the module. In addition,
// it detects and eliminates code which may have spurious uses but which do
// not contribute to the output of the function. The most common cause of
// such code sequences is summations in loops whose result is no longer used
// due to dead code elimination. This optimization has additional compile
// time cost over standard dead code elimination.
//
// This pass only processes entry point functions. It also only processes
// shaders with relaxed logical addressing (see opt/instruction.h). It
// currently will not process functions with function calls. Unreachable
// functions are deleted.
//
// This pass will be made more effective by first running passes that remove
// dead control flow and inlines function calls.
//
// This pass can be especially useful after running Local Access Chain
// Conversion, which tends to cause cycles of dead code to be left after
// Store/Load elimination passes are completed. These cycles cannot be
// eliminated with standard dead code elimination.
Optimizer::PassToken CreateAggressiveDCEPass();
// Creates a compact ids pass.
// The pass remaps result ids to a compact and gapless range starting from %1.
Optimizer::PassToken CreateCompactIdsPass();
// Creates a remove duplicate pass.
// This pass removes various duplicates:
// * duplicate capabilities;
// * duplicate extended instruction imports;
// * duplicate types;
// * duplicate decorations.
Optimizer::PassToken CreateRemoveDuplicatesPass();
// Creates a CFG cleanup pass.
// This pass removes cruft from the control flow graph of functions that are
// reachable from entry points and exported functions. It currently includes the
// following functionality:
//
// - Removal of unreachable basic blocks.
Optimizer::PassToken CreateCFGCleanupPass();
// Create dead variable elimination pass.
// This pass will delete module scope variables, along with their decorations,
// that are not referenced.
Optimizer::PassToken CreateDeadVariableEliminationPass();
// Create merge return pass.
// This pass replaces all returns with unconditional branches to a new block
// containing a return. If necessary, this new block will contain a PHI node to
// select the correct return value.
//
// This pass does not consider unreachable code, nor does it perform any other
// optimizations.
//
// This pass does not currently support structured control flow. It bails out if
// the shader capability is detected.
Optimizer::PassToken CreateMergeReturnPass();
// Create value numbering pass.
// This pass will look for instructions in the same basic block that compute the
// same value, and remove the redundant ones.
Optimizer::PassToken CreateLocalRedundancyEliminationPass();
// Create LICM pass.
// This pass will look for invariant instructions inside loops and hoist them to
// the loops preheader.
Optimizer::PassToken CreateLoopInvariantCodeMotionPass();
// Create global value numbering pass.
// This pass will look for instructions where the same value is computed on all
// paths leading to the instruction. Those instructions are deleted.
Optimizer::PassToken CreateRedundancyEliminationPass();
// Create scalar replacement pass.
// This pass replaces composite function scope variables with variables for each
// element if those elements are accessed individually.
Optimizer::PassToken CreateScalarReplacementPass();
// Create a private to local pass.
// This pass looks for variables delcared in the private storage class that are
// used in only one function. Those variables are moved to the function storage
// class in the function that they are used.
Optimizer::PassToken CreatePrivateToLocalPass();
// Creates a conditional constant propagation (CCP) pass.
// This pass implements the SSA-CCP algorithm in
//
// Constant propagation with conditional branches,
// Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
//
// Constant values in expressions and conditional jumps are folded and
// simplified. This may reduce code size by removing never executed jump targets
// and computations with constant operands.
Optimizer::PassToken CreateCCPPass();
// Creates a workaround driver bugs pass. This pass attempts to work around
// a known driver bug (issue #1209) by identifying the bad code sequences and
// rewriting them.
//
// Current workaround: Avoid OpUnreachable instructions in loops.
Optimizer::PassToken CreateWorkaround1209Pass();
// Creates a pass that converts if-then-else like assignments into OpSelect.
Optimizer::PassToken CreateIfConversionPass();
// Creates a pass that will replace instructions that are not valid for the
// current shader stage by constants. Has no effect on non-shader modules.
Optimizer::PassToken CreateReplaceInvalidOpcodePass();
// Creates a pass that simplifies instructions using the instruction folder.
Optimizer::PassToken CreateSimplificationPass();
// Create loop unroller pass.
// Creates a pass to fully unroll loops which have the "Unroll" loop control
// mask set. The loops must meet a specific criteria in order to be unrolled
// safely this criteria is checked before doing the unroll by the
// LoopUtils::CanPerformUnroll method. Any loop that does not meet the criteria
// won't be unrolled. See CanPerformUnroll LoopUtils.h for more information.
Optimizer::PassToken CreateLoopFullyUnrollPass();
} // namespace spvtools
#endif // SPIRV_TOOLS_OPTIMIZER_HPP_

View File

@ -3,10 +3,6 @@
#include "spirv_code_buffer.h"
#include <spirv-tools/libspirv.hpp>
using namespace spvtools;
namespace dxvk {
SpirvCodeBuffer:: SpirvCodeBuffer() { }