#include #include "d3d11_context.h" #include "d3d11_device.h" #include "d3d11_query.h" #include "d3d11_texture.h" #include "../dxbc/dxbc_util.h" namespace dxvk { D3D11DeviceContext::D3D11DeviceContext( D3D11Device* pParent, Rc Device) : m_parent (pParent), m_device (Device), m_csChunk (new DxvkCsChunk()) { // Create default state objects. We won't ever return them // to the application, but we'll use them to apply state. Com defaultBlendState; Com defaultDepthStencilState; Com defaultRasterizerState; if (FAILED(m_parent->CreateBlendState (nullptr, &defaultBlendState)) || FAILED(m_parent->CreateDepthStencilState(nullptr, &defaultDepthStencilState)) || FAILED(m_parent->CreateRasterizerState (nullptr, &defaultRasterizerState))) throw DxvkError("D3D11DeviceContext: Failed to create default state objects"); // Apply default state to the context. This is required // in order to initialize the DXVK contex properly. m_defaultBlendState = static_cast (defaultBlendState.ptr()); m_defaultDepthStencilState = static_cast(defaultDepthStencilState.ptr()); m_defaultRasterizerState = static_cast (defaultRasterizerState.ptr()); EmitCs([ dev = m_device, bsState = m_defaultBlendState, dsState = m_defaultDepthStencilState, rsState = m_defaultRasterizerState, blendConst = DxvkBlendConstants { m_state.om.blendFactor[0], m_state.om.blendFactor[1], m_state.om.blendFactor[2], m_state.om.blendFactor[3] }, stencilRef = m_state.om.stencilRef ] (DxvkContext* ctx) { ctx->beginRecording(dev->createCommandList()); bsState->BindToContext(ctx, 0xFFFFFFFF); dsState->BindToContext(ctx); rsState->BindToContext(ctx); ctx->setBlendConstants (blendConst); ctx->setStencilReference(stencilRef); }); } D3D11DeviceContext::~D3D11DeviceContext() { } HRESULT STDMETHODCALLTYPE D3D11DeviceContext::QueryInterface( REFIID riid, void** ppvObject) { COM_QUERY_IFACE(riid, ppvObject, IUnknown); COM_QUERY_IFACE(riid, ppvObject, ID3D11DeviceChild); COM_QUERY_IFACE(riid, ppvObject, ID3D11DeviceContext); if (riid == __uuidof(ID3DUserDefinedAnnotation)) return E_NOINTERFACE; Logger::warn("D3D11DeviceContext::QueryInterface: Unknown interface query"); Logger::warn(str::format(riid)); return E_NOINTERFACE; } void STDMETHODCALLTYPE D3D11DeviceContext::GetDevice(ID3D11Device **ppDevice) { *ppDevice = ref(m_parent); } void STDMETHODCALLTYPE D3D11DeviceContext::ClearState() { // Default shaders m_state.vs.shader = nullptr; m_state.hs.shader = nullptr; m_state.ds.shader = nullptr; m_state.gs.shader = nullptr; m_state.ps.shader = nullptr; m_state.cs.shader = nullptr; // Default constant buffers for (uint32_t i = 0; i < D3D11_COMMONSHADER_CONSTANT_BUFFER_API_SLOT_COUNT; i++) { m_state.vs.constantBuffers[i] = nullptr; m_state.hs.constantBuffers[i] = nullptr; m_state.ds.constantBuffers[i] = nullptr; m_state.gs.constantBuffers[i] = nullptr; m_state.ps.constantBuffers[i] = nullptr; m_state.cs.constantBuffers[i] = nullptr; } // Default samplers for (uint32_t i = 0; i < D3D11_COMMONSHADER_SAMPLER_SLOT_COUNT; i++) { m_state.vs.samplers[i] = nullptr; m_state.hs.samplers[i] = nullptr; m_state.ds.samplers[i] = nullptr; m_state.gs.samplers[i] = nullptr; m_state.ps.samplers[i] = nullptr; m_state.cs.samplers[i] = nullptr; } // Default shader resources for (uint32_t i = 0; i < D3D11_COMMONSHADER_INPUT_RESOURCE_SLOT_COUNT; i++) { m_state.vs.shaderResources[i] = nullptr; m_state.hs.shaderResources[i] = nullptr; m_state.ds.shaderResources[i] = nullptr; m_state.gs.shaderResources[i] = nullptr; m_state.ps.shaderResources[i] = nullptr; m_state.cs.shaderResources[i] = nullptr; } // Default UAVs for (uint32_t i = 0; i < D3D11_1_UAV_SLOT_COUNT; i++) { m_state.ps.unorderedAccessViews[i] = nullptr; m_state.cs.unorderedAccessViews[i] = nullptr; } // Default IA state m_state.ia.inputLayout = nullptr; m_state.ia.primitiveTopology = D3D11_PRIMITIVE_TOPOLOGY_UNDEFINED; for (uint32_t i = 0; i < D3D11_IA_VERTEX_INPUT_RESOURCE_SLOT_COUNT; i++) { m_state.ia.vertexBuffers[i].buffer = nullptr; m_state.ia.vertexBuffers[i].offset = 0; m_state.ia.vertexBuffers[i].stride = 0; } m_state.ia.indexBuffer.buffer = nullptr; m_state.ia.indexBuffer.offset = 0; m_state.ia.indexBuffer.format = DXGI_FORMAT_UNKNOWN; // Default OM State for (uint32_t i = 0; i < D3D11_SIMULTANEOUS_RENDER_TARGET_COUNT; i++) m_state.om.renderTargetViews[i] = nullptr; m_state.om.depthStencilView = nullptr; m_state.om.cbState = nullptr; m_state.om.dsState = nullptr; for (uint32_t i = 0; i < 4; i++) m_state.om.blendFactor[i] = 0.0f; m_state.om.sampleMask = D3D11_DEFAULT_SAMPLE_MASK; m_state.om.stencilRef = D3D11_DEFAULT_STENCIL_REFERENCE; // Default RS state m_state.rs.state = nullptr; m_state.rs.numViewports = 0; m_state.rs.numScissors = 0; for (uint32_t i = 0; i < D3D11_VIEWPORT_AND_SCISSORRECT_OBJECT_COUNT_PER_PIPELINE; i++) { m_state.rs.viewports[i] = D3D11_VIEWPORT { }; m_state.rs.scissors [i] = D3D11_RECT { }; } // Default SO state for (uint32_t i = 0; i < D3D11_SO_STREAM_COUNT; i++) m_state.so.targets[i] = nullptr; // Default predication m_state.pr.predicateObject = nullptr; m_state.pr.predicateValue = FALSE; // Make sure to apply all state RestoreState(); } void STDMETHODCALLTYPE D3D11DeviceContext::Begin(ID3D11Asynchronous *pAsync) { Com query; if (SUCCEEDED(pAsync->QueryInterface(__uuidof(ID3D11Query), reinterpret_cast(&query)))) { Com queryPtr = static_cast(query.ptr()); if (queryPtr->HasBeginEnabled()) { const uint32_t revision = queryPtr->Reset(); EmitCs([revision, queryPtr] (DxvkContext* ctx) { queryPtr->Begin(ctx, revision); }); } } } void STDMETHODCALLTYPE D3D11DeviceContext::End(ID3D11Asynchronous *pAsync) { Com query; if (SUCCEEDED(pAsync->QueryInterface(__uuidof(ID3D11Query), reinterpret_cast(&query)))) { Com queryPtr = static_cast(query.ptr()); if (queryPtr->HasBeginEnabled()) { EmitCs([queryPtr] (DxvkContext* ctx) { queryPtr->End(ctx); }); } else { const uint32_t revision = queryPtr->Reset(); EmitCs([revision, queryPtr] (DxvkContext* ctx) { queryPtr->Signal(ctx, revision); }); } } } HRESULT STDMETHODCALLTYPE D3D11DeviceContext::GetData( ID3D11Asynchronous* pAsync, void* pData, UINT DataSize, UINT GetDataFlags) { // Make sure that we can safely write to the memory // location pointed to by pData if it is specified. if (DataSize == 0) pData = nullptr; if (pData != nullptr && pAsync->GetDataSize() != DataSize) { Logger::err(str::format("D3D11DeviceContext: GetData: Data size mismatch: ", pAsync->GetDataSize(), ",", DataSize)); return E_INVALIDARG; } // Flush in order to make sure the query commands get dispatched if ((GetDataFlags & D3D11_ASYNC_GETDATA_DONOTFLUSH) == 0) Flush(); // This method handles various different but incompatible interfaces, // so we have to find out what we are actually dealing with Com query; if (SUCCEEDED(pAsync->QueryInterface(__uuidof(ID3D11Query), reinterpret_cast(&query)))) return static_cast(query.ptr())->GetData(pData, GetDataFlags); // The interface is not supported Logger::err("D3D11DeviceContext: GetData: Unsupported Async type"); return E_INVALIDARG; } void STDMETHODCALLTYPE D3D11DeviceContext::SetPredication( ID3D11Predicate* pPredicate, BOOL PredicateValue) { static bool s_errorShown = false; if (!std::exchange(s_errorShown, true)) Logger::err("D3D11DeviceContext::SetPredication: Stub"); m_state.pr.predicateObject = static_cast(pPredicate); m_state.pr.predicateValue = PredicateValue; } void STDMETHODCALLTYPE D3D11DeviceContext::GetPredication( ID3D11Predicate** ppPredicate, BOOL* pPredicateValue) { if (ppPredicate != nullptr) *ppPredicate = m_state.pr.predicateObject.ref(); if (pPredicateValue != nullptr) *pPredicateValue = m_state.pr.predicateValue; } void STDMETHODCALLTYPE D3D11DeviceContext::CopySubresourceRegion( ID3D11Resource* pDstResource, UINT DstSubresource, UINT DstX, UINT DstY, UINT DstZ, ID3D11Resource* pSrcResource, UINT SrcSubresource, const D3D11_BOX* pSrcBox) { D3D11_RESOURCE_DIMENSION dstResourceDim = D3D11_RESOURCE_DIMENSION_UNKNOWN; D3D11_RESOURCE_DIMENSION srcResourceDim = D3D11_RESOURCE_DIMENSION_UNKNOWN; pDstResource->GetType(&dstResourceDim); pSrcResource->GetType(&srcResourceDim); if (dstResourceDim != srcResourceDim) { Logger::err("D3D11DeviceContext: CopySubresourceRegion: Mismatched resource types"); return; } if (dstResourceDim == D3D11_RESOURCE_DIMENSION_BUFFER) { auto dstBuffer = static_cast(pDstResource)->GetBufferSlice(); auto srcBuffer = static_cast(pSrcResource)->GetBufferSlice(); VkDeviceSize srcOffset = 0; VkDeviceSize srcLength = srcBuffer.length(); if (pSrcBox != nullptr) { if (pSrcBox->left > pSrcBox->right) return; // no-op, but legal srcOffset = pSrcBox->left; srcLength = pSrcBox->right - pSrcBox->left; } EmitCs([ cDstSlice = dstBuffer.subSlice(DstX, srcLength), cSrcSlice = srcBuffer.subSlice(srcOffset, srcLength) ] (DxvkContext* ctx) { ctx->copyBuffer( cDstSlice.buffer(), cDstSlice.offset(), cSrcSlice.buffer(), cSrcSlice.offset(), cSrcSlice.length()); }); } else { const D3D11TextureInfo* dstTextureInfo = GetCommonTextureInfo(pDstResource); const D3D11TextureInfo* srcTextureInfo = GetCommonTextureInfo(pSrcResource); const DxvkFormatInfo* dstFormatInfo = imageFormatInfo(dstTextureInfo->image->info().format); const DxvkFormatInfo* srcFormatInfo = imageFormatInfo(srcTextureInfo->image->info().format); const VkImageSubresource dstSubresource = GetSubresourceFromIndex(dstFormatInfo->aspectMask, dstTextureInfo->image->info().mipLevels, DstSubresource); const VkImageSubresource srcSubresource = GetSubresourceFromIndex(srcFormatInfo->aspectMask, srcTextureInfo->image->info().mipLevels, SrcSubresource); VkOffset3D srcOffset = { 0, 0, 0 }; VkOffset3D dstOffset = { static_cast(DstX), static_cast(DstY), static_cast(DstZ) }; VkExtent3D extent = srcTextureInfo->image->mipLevelExtent(srcSubresource.mipLevel); if (pSrcBox != nullptr) { if (pSrcBox->left >= pSrcBox->right || pSrcBox->top >= pSrcBox->bottom || pSrcBox->front >= pSrcBox->back) return; // no-op, but legal srcOffset.x = pSrcBox->left; srcOffset.y = pSrcBox->top; srcOffset.z = pSrcBox->front; extent.width = pSrcBox->right - pSrcBox->left; extent.height = pSrcBox->bottom - pSrcBox->top; extent.depth = pSrcBox->back - pSrcBox->front; } const VkImageSubresourceLayers dstLayers = { dstSubresource.aspectMask, dstSubresource.mipLevel, dstSubresource.arrayLayer, 1 }; const VkImageSubresourceLayers srcLayers = { srcSubresource.aspectMask, srcSubresource.mipLevel, srcSubresource.arrayLayer, 1 }; EmitCs([ cDstImage = dstTextureInfo->image, cSrcImage = srcTextureInfo->image, cDstLayers = dstLayers, cSrcLayers = srcLayers, cDstOffset = dstOffset, cSrcOffset = srcOffset, cExtent = extent ] (DxvkContext* ctx) { ctx->copyImage( cDstImage, cDstLayers, cDstOffset, cSrcImage, cSrcLayers, cSrcOffset, cExtent); }); } } void STDMETHODCALLTYPE D3D11DeviceContext::CopyResource( ID3D11Resource* pDstResource, ID3D11Resource* pSrcResource) { D3D11_RESOURCE_DIMENSION dstResourceDim = D3D11_RESOURCE_DIMENSION_UNKNOWN; D3D11_RESOURCE_DIMENSION srcResourceDim = D3D11_RESOURCE_DIMENSION_UNKNOWN; pDstResource->GetType(&dstResourceDim); pSrcResource->GetType(&srcResourceDim); if (dstResourceDim != srcResourceDim) { Logger::err("D3D11DeviceContext: CopyResource: Mismatched resource types"); return; } if (dstResourceDim == D3D11_RESOURCE_DIMENSION_BUFFER) { auto dstBuffer = static_cast(pDstResource)->GetBufferSlice(); auto srcBuffer = static_cast(pSrcResource)->GetBufferSlice(); if (dstBuffer.length() != srcBuffer.length()) { Logger::err("D3D11DeviceContext: CopyResource: Mismatched buffer size"); return; } EmitCs([ cDstBuffer = std::move(dstBuffer), cSrcBuffer = std::move(srcBuffer) ] (DxvkContext* ctx) { ctx->copyBuffer( cDstBuffer.buffer(), cDstBuffer.offset(), cSrcBuffer.buffer(), cSrcBuffer.offset(), cSrcBuffer.length()); }); } else { const D3D11TextureInfo* dstTextureInfo = GetCommonTextureInfo(pDstResource); const D3D11TextureInfo* srcTextureInfo = GetCommonTextureInfo(pSrcResource); const DxvkFormatInfo* dstFormatInfo = imageFormatInfo(dstTextureInfo->image->info().format); const DxvkFormatInfo* srcFormatInfo = imageFormatInfo(srcTextureInfo->image->info().format); for (uint32_t i = 0; i < srcTextureInfo->image->info().mipLevels; i++) { VkExtent3D extent = srcTextureInfo->image->mipLevelExtent(i); const VkImageSubresourceLayers dstLayers = { dstFormatInfo->aspectMask, i, 0, dstTextureInfo->image->info().numLayers }; const VkImageSubresourceLayers srcLayers = { srcFormatInfo->aspectMask, i, 0, srcTextureInfo->image->info().numLayers }; EmitCs([ cDstImage = dstTextureInfo->image, cSrcImage = srcTextureInfo->image, cDstLayers = dstLayers, cSrcLayers = srcLayers, cExtent = extent ] (DxvkContext* ctx) { ctx->copyImage( cDstImage, cDstLayers, VkOffset3D { 0, 0, 0 }, cSrcImage, cSrcLayers, VkOffset3D { 0, 0, 0 }, cExtent); }); } } } void STDMETHODCALLTYPE D3D11DeviceContext::CopyStructureCount( ID3D11Buffer* pDstBuffer, UINT DstAlignedByteOffset, ID3D11UnorderedAccessView* pSrcView) { auto buf = static_cast(pDstBuffer); auto uav = static_cast(pSrcView); EmitCs([ cDstSlice = buf->GetBufferSlice(DstAlignedByteOffset), cSrcSlice = uav->GetCounterSlice() ] (DxvkContext* ctx) { ctx->copyBuffer( cDstSlice.buffer(), cDstSlice.offset(), cSrcSlice.buffer(), cSrcSlice.offset(), sizeof(uint32_t)); }); } void STDMETHODCALLTYPE D3D11DeviceContext::ClearRenderTargetView( ID3D11RenderTargetView* pRenderTargetView, const FLOAT ColorRGBA[4]) { auto rtv = static_cast(pRenderTargetView); if (rtv == nullptr) return; // Find out whether the given attachment is currently bound // or not, and if it is, which attachment index it has. int32_t attachmentIndex = -1; for (uint32_t i = 0; i < m_state.om.renderTargetViews.size(); i++) { if (m_state.om.renderTargetViews.at(i) == rtv) attachmentIndex = i; } // Copy the clear color into a clear value structure. // This should also work for images that don nott have // a floating point format. const Rc view = rtv->GetImageView(); VkClearColorValue clearValue; std::memcpy(clearValue.float32, ColorRGBA, sizeof(clearValue.float32)); if (attachmentIndex >= 0) { // Image is bound to the pipeline for rendering. We can // use the clear function that operates on attachments. VkClearAttachment clearInfo; clearInfo.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; clearInfo.colorAttachment = static_cast(attachmentIndex); clearInfo.clearValue.color = clearValue; // Clear the full area. On FL 9.x, only the first array // layer will be cleared, rather than all array layers. VkClearRect clearRect; clearRect.rect.offset.x = 0; clearRect.rect.offset.y = 0; clearRect.rect.extent.width = view->mipLevelExtent(0).width; clearRect.rect.extent.height = view->mipLevelExtent(0).height; clearRect.baseArrayLayer = 0; clearRect.layerCount = view->info().numLayers; if (m_parent->GetFeatureLevel() < D3D_FEATURE_LEVEL_10_0) clearRect.layerCount = 1; EmitCs([ cClearInfo = clearInfo, cClearRect = clearRect ] (DxvkContext* ctx) { ctx->clearRenderTarget(cClearInfo, cClearRect); }); } else { // Image is not bound to the pipeline. We can still clear // it, but we'll have to use a generic clear function. EmitCs([ cClearValue = clearValue, cDstView = view ] (DxvkContext* ctx) { ctx->clearColorImage(cDstView->image(), cClearValue, cDstView->subresources()); }); } } void STDMETHODCALLTYPE D3D11DeviceContext::ClearUnorderedAccessViewUint( ID3D11UnorderedAccessView* pUnorderedAccessView, const UINT Values[4]) { auto uav = static_cast(pUnorderedAccessView); if (uav == nullptr) return; if (uav->GetResourceType() == D3D11_RESOURCE_DIMENSION_BUFFER) { const Rc bufferView = uav->GetBufferView(); if (bufferView->info().format == VK_FORMAT_R32_UINT) { EmitCs([ cClearValue = Values[0], cDstSlice = bufferView->slice() ] (DxvkContext* ctx) { ctx->clearBuffer( cDstSlice.buffer(), cDstSlice.offset(), cDstSlice.length(), cClearValue); }); } else { Logger::err("D3D11: ClearUnorderedAccessViewUint: Not supported for typed buffers"); } } else { // FIXME floating point formats are not handled correctly // yet, we might need to create an image view with an // integer format and clear that. VkClearColorValue clearValue; for (uint32_t i = 0; i < 4; i++) clearValue.uint32[i] = Values[i]; EmitCs([ cClearValue = clearValue, cDstView = uav->GetImageView() ] (DxvkContext* ctx) { ctx->clearColorImage(cDstView->image(), cClearValue, cDstView->subresources()); }); } } void STDMETHODCALLTYPE D3D11DeviceContext::ClearUnorderedAccessViewFloat( ID3D11UnorderedAccessView* pUnorderedAccessView, const FLOAT Values[4]) { Logger::err("D3D11DeviceContext::ClearUnorderedAccessViewFloat: Not implemented"); } void STDMETHODCALLTYPE D3D11DeviceContext::ClearDepthStencilView( ID3D11DepthStencilView* pDepthStencilView, UINT ClearFlags, FLOAT Depth, UINT8 Stencil) { auto dsv = static_cast(pDepthStencilView); if (dsv == nullptr) return; // Figure out which aspects to clear based // on the image format and the clear flags. const Rc view = dsv->GetImageView(); VkImageAspectFlags aspectMask = 0; if (ClearFlags & D3D11_CLEAR_DEPTH) aspectMask |= VK_IMAGE_ASPECT_DEPTH_BIT; if (ClearFlags & D3D11_CLEAR_STENCIL) aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT; const DxvkFormatInfo* formatInfo = imageFormatInfo(view->info().format); aspectMask &= formatInfo->aspectMask; VkClearDepthStencilValue clearValue; clearValue.depth = Depth; clearValue.stencil = Stencil; if (m_state.om.depthStencilView == dsv) { // Image is bound to the pipeline for rendering. We can // use the clear function that operates on attachments. VkClearAttachment clearInfo; clearInfo.aspectMask = aspectMask; clearInfo.colorAttachment = 0; clearInfo.clearValue.depthStencil = clearValue; // Clear the full area VkClearRect clearRect; clearRect.rect.offset.x = 0; clearRect.rect.offset.y = 0; clearRect.rect.extent.width = view->mipLevelExtent(0).width; clearRect.rect.extent.height = view->mipLevelExtent(0).height; clearRect.baseArrayLayer = 0; clearRect.layerCount = view->info().numLayers; if (m_parent->GetFeatureLevel() < D3D_FEATURE_LEVEL_10_0) clearRect.layerCount = 1; EmitCs([ cClearInfo = clearInfo, cClearRect = clearRect ] (DxvkContext* ctx) { ctx->clearRenderTarget(cClearInfo, cClearRect); }); } else { EmitCs([ cClearValue = clearValue, cDstView = view, cAspectMask = aspectMask ] (DxvkContext* ctx) { VkImageSubresourceRange subresources = cDstView->subresources(); subresources.aspectMask = cAspectMask; ctx->clearDepthStencilImage(cDstView->image(), cClearValue, subresources); }); } } void STDMETHODCALLTYPE D3D11DeviceContext::GenerateMips(ID3D11ShaderResourceView* pShaderResourceView) { auto view = static_cast(pShaderResourceView); if (view->GetResourceType() != D3D11_RESOURCE_DIMENSION_BUFFER) { EmitCs([cDstImageView = view->GetImageView()] (DxvkContext* ctx) { ctx->generateMipmaps( cDstImageView->image(), cDstImageView->subresources()); }); } else { Logger::err("D3D11DeviceContext: GenerateMips called on a buffer"); } } void STDMETHODCALLTYPE D3D11DeviceContext::UpdateSubresource( ID3D11Resource* pDstResource, UINT DstSubresource, const D3D11_BOX* pDstBox, const void* pSrcData, UINT SrcRowPitch, UINT SrcDepthPitch) { // We need a different code path for buffers D3D11_RESOURCE_DIMENSION resourceType; pDstResource->GetType(&resourceType); if (resourceType == D3D11_RESOURCE_DIMENSION_BUFFER) { const auto bufferResource = static_cast(pDstResource); const auto bufferSlice = bufferResource->GetBufferSlice(); VkDeviceSize offset = bufferSlice.offset(); VkDeviceSize size = bufferSlice.length(); if (pDstBox != nullptr) { offset = pDstBox->left; size = pDstBox->right - pDstBox->left; } if (offset + size > bufferSlice.length()) { Logger::err("D3D11DeviceContext: Buffer update range out of bounds"); return; } if (size == 0) return; if (((size == bufferSlice.length()) && (bufferSlice.buffer()->memFlags() & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT))) { D3D11_MAPPED_SUBRESOURCE mappedSr; Map(pDstResource, 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedSr); std::memcpy(mappedSr.pData, pSrcData, size); Unmap(pDstResource, 0); } else { DxvkDataSlice dataSlice = AllocUpdateBufferSlice(size); std::memcpy(dataSlice.ptr(), pSrcData, size); EmitCs([ cDataBuffer = std::move(dataSlice), cBufferSlice = bufferSlice.subSlice(offset, size) ] (DxvkContext* ctx) { ctx->updateBuffer( cBufferSlice.buffer(), cBufferSlice.offset(), cBufferSlice.length(), cDataBuffer.ptr()); }); } } else { const D3D11TextureInfo* textureInfo = GetCommonTextureInfo(pDstResource); const VkImageSubresource subresource = GetSubresourceFromIndex(VK_IMAGE_ASPECT_COLOR_BIT, textureInfo->image->info().mipLevels, DstSubresource); VkOffset3D offset = { 0, 0, 0 }; VkExtent3D extent = textureInfo->image->mipLevelExtent(subresource.mipLevel); if (pDstBox != nullptr) { if (pDstBox->left >= pDstBox->right || pDstBox->top >= pDstBox->bottom || pDstBox->front >= pDstBox->back) return; // no-op, but legal offset.x = pDstBox->left; offset.y = pDstBox->top; offset.z = pDstBox->front; extent.width = pDstBox->right - pDstBox->left; extent.height = pDstBox->bottom - pDstBox->top; extent.depth = pDstBox->back - pDstBox->front; } const VkImageSubresourceLayers layers = { subresource.aspectMask, subresource.mipLevel, subresource.arrayLayer, 1 }; auto formatInfo = imageFormatInfo( textureInfo->image->info().format); const VkExtent3D regionExtent = util::computeBlockCount(extent, formatInfo->blockSize); const VkDeviceSize bytesPerRow = regionExtent.width * formatInfo->elementSize; const VkDeviceSize bytesPerLayer = regionExtent.height * bytesPerRow; const VkDeviceSize bytesTotal = regionExtent.depth * bytesPerLayer; DxvkDataSlice imageDataBuffer = AllocUpdateBufferSlice(bytesTotal); util::packImageData( reinterpret_cast(imageDataBuffer.ptr()), reinterpret_cast(pSrcData), regionExtent, formatInfo->elementSize, SrcRowPitch, SrcDepthPitch); EmitCs([ cDstImage = textureInfo->image, cDstLayers = layers, cDstOffset = offset, cDstExtent = extent, cSrcData = std::move(imageDataBuffer), cSrcBytesPerRow = bytesPerRow, cSrcBytesPerLayer = bytesPerLayer ] (DxvkContext* ctx) { ctx->updateImage(cDstImage, cDstLayers, cDstOffset, cDstExtent, cSrcData.ptr(), cSrcBytesPerRow, cSrcBytesPerLayer); }); } } void STDMETHODCALLTYPE D3D11DeviceContext::SetResourceMinLOD( ID3D11Resource* pResource, FLOAT MinLOD) { Logger::err("D3D11DeviceContext::SetResourceMinLOD: Not implemented"); } FLOAT STDMETHODCALLTYPE D3D11DeviceContext::GetResourceMinLOD(ID3D11Resource* pResource) { Logger::err("D3D11DeviceContext::GetResourceMinLOD: Not implemented"); return 0.0f; } void STDMETHODCALLTYPE D3D11DeviceContext::ResolveSubresource( ID3D11Resource* pDstResource, UINT DstSubresource, ID3D11Resource* pSrcResource, UINT SrcSubresource, DXGI_FORMAT Format) { D3D11_RESOURCE_DIMENSION dstResourceType; D3D11_RESOURCE_DIMENSION srcResourceType; pDstResource->GetType(&dstResourceType); pSrcResource->GetType(&srcResourceType); if (dstResourceType != D3D11_RESOURCE_DIMENSION_TEXTURE2D || srcResourceType != D3D11_RESOURCE_DIMENSION_TEXTURE2D) { Logger::err("D3D11: ResolveSubresource: Incompatible resources"); return; } auto dstTexture = static_cast(pDstResource); auto srcTexture = static_cast(pSrcResource); D3D11_TEXTURE2D_DESC dstDesc; D3D11_TEXTURE2D_DESC srcDesc; dstTexture->GetDesc(&dstDesc); srcTexture->GetDesc(&srcDesc); if (dstDesc.SampleDesc.Count != 1) { Logger::err("D3D11: ResolveSubresource: Resource sample count invalid"); return; } const D3D11TextureInfo* dstTextureInfo = GetCommonTextureInfo(pDstResource); const D3D11TextureInfo* srcTextureInfo = GetCommonTextureInfo(pSrcResource); const DxgiFormatInfo dstFormatInfo = m_parent->LookupFormat(dstDesc.Format, DxgiFormatMode::Any); const DxgiFormatInfo srcFormatInfo = m_parent->LookupFormat(srcDesc.Format, DxgiFormatMode::Any); const VkImageSubresource dstSubresource = GetSubresourceFromIndex(dstFormatInfo.aspect, dstTextureInfo->image->info().mipLevels, DstSubresource); const VkImageSubresource srcSubresource = GetSubresourceFromIndex(srcFormatInfo.aspect, srcTextureInfo->image->info().mipLevels, SrcSubresource); const VkImageSubresourceLayers dstSubresourceLayers = { dstSubresource.aspectMask, dstSubresource.mipLevel, dstSubresource.arrayLayer, 1 }; const VkImageSubresourceLayers srcSubresourceLayers = { srcSubresource.aspectMask, srcSubresource.mipLevel, srcSubresource.arrayLayer, 1 }; if (srcDesc.SampleDesc.Count == 1) { EmitCs([ cDstImage = dstTextureInfo->image, cSrcImage = srcTextureInfo->image, cDstLayers = dstSubresourceLayers, cSrcLayers = srcSubresourceLayers ] (DxvkContext* ctx) { ctx->copyImage( cDstImage, cDstLayers, VkOffset3D { 0, 0, 0 }, cSrcImage, cSrcLayers, VkOffset3D { 0, 0, 0 }, cDstImage->mipLevelExtent(cDstLayers.mipLevel)); }); } else { const VkFormat format = m_parent->LookupFormat( Format, DxgiFormatMode::Any).format; EmitCs([ cDstImage = dstTextureInfo->image, cSrcImage = srcTextureInfo->image, cDstSubres = dstSubresourceLayers, cSrcSubres = srcSubresourceLayers, cFormat = format ] (DxvkContext* ctx) { ctx->resolveImage( cDstImage, cDstSubres, cSrcImage, cSrcSubres, cFormat); }); } } void STDMETHODCALLTYPE D3D11DeviceContext::DrawAuto() { Logger::err("D3D11DeviceContext::DrawAuto: Not implemented"); } void STDMETHODCALLTYPE D3D11DeviceContext::Draw( UINT VertexCount, UINT StartVertexLocation) { EmitCs([=] (DxvkContext* ctx) { ctx->draw( VertexCount, 1, StartVertexLocation, 0); }); m_drawCount += 1; } void STDMETHODCALLTYPE D3D11DeviceContext::DrawIndexed( UINT IndexCount, UINT StartIndexLocation, INT BaseVertexLocation) { EmitCs([=] (DxvkContext* ctx) { ctx->drawIndexed( IndexCount, 1, StartIndexLocation, BaseVertexLocation, 0); }); m_drawCount += 1; } void STDMETHODCALLTYPE D3D11DeviceContext::DrawInstanced( UINT VertexCountPerInstance, UINT InstanceCount, UINT StartVertexLocation, UINT StartInstanceLocation) { EmitCs([=] (DxvkContext* ctx) { ctx->draw( VertexCountPerInstance, InstanceCount, StartVertexLocation, StartInstanceLocation); }); m_drawCount += 1; } void STDMETHODCALLTYPE D3D11DeviceContext::DrawIndexedInstanced( UINT IndexCountPerInstance, UINT InstanceCount, UINT StartIndexLocation, INT BaseVertexLocation, UINT StartInstanceLocation) { EmitCs([=] (DxvkContext* ctx) { ctx->drawIndexed( IndexCountPerInstance, InstanceCount, StartIndexLocation, BaseVertexLocation, StartInstanceLocation); }); m_drawCount += 1; } void STDMETHODCALLTYPE D3D11DeviceContext::DrawIndexedInstancedIndirect( ID3D11Buffer* pBufferForArgs, UINT AlignedByteOffsetForArgs) { D3D11Buffer* buffer = static_cast(pBufferForArgs); EmitCs([bufferSlice = buffer->GetBufferSlice(AlignedByteOffsetForArgs)] (DxvkContext* ctx) { ctx->drawIndexedIndirect( bufferSlice, 1, 0); }); m_drawCount += 1; } void STDMETHODCALLTYPE D3D11DeviceContext::DrawInstancedIndirect( ID3D11Buffer* pBufferForArgs, UINT AlignedByteOffsetForArgs) { D3D11Buffer* buffer = static_cast(pBufferForArgs); EmitCs([bufferSlice = buffer->GetBufferSlice(AlignedByteOffsetForArgs)] (DxvkContext* ctx) { ctx->drawIndirect(bufferSlice, 1, 0); }); m_drawCount += 1; } void STDMETHODCALLTYPE D3D11DeviceContext::Dispatch( UINT ThreadGroupCountX, UINT ThreadGroupCountY, UINT ThreadGroupCountZ) { EmitCs([=] (DxvkContext* ctx) { ctx->dispatch( ThreadGroupCountX, ThreadGroupCountY, ThreadGroupCountZ); }); m_drawCount += 1; } void STDMETHODCALLTYPE D3D11DeviceContext::DispatchIndirect( ID3D11Buffer* pBufferForArgs, UINT AlignedByteOffsetForArgs) { D3D11Buffer* buffer = static_cast(pBufferForArgs); EmitCs([bufferSlice = buffer->GetBufferSlice(AlignedByteOffsetForArgs)] (DxvkContext* ctx) { ctx->dispatchIndirect(bufferSlice); }); m_drawCount += 1; } void STDMETHODCALLTYPE D3D11DeviceContext::IASetInputLayout(ID3D11InputLayout* pInputLayout) { auto inputLayout = static_cast(pInputLayout); if (m_state.ia.inputLayout != inputLayout) { m_state.ia.inputLayout = inputLayout; ApplyInputLayout(); } } void STDMETHODCALLTYPE D3D11DeviceContext::IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY Topology) { if (m_state.ia.primitiveTopology != Topology) { m_state.ia.primitiveTopology = Topology; ApplyPrimitiveTopology(); } } void STDMETHODCALLTYPE D3D11DeviceContext::IASetVertexBuffers( UINT StartSlot, UINT NumBuffers, ID3D11Buffer* const* ppVertexBuffers, const UINT* pStrides, const UINT* pOffsets) { for (uint32_t i = 0; i < NumBuffers; i++) { auto newBuffer = static_cast(ppVertexBuffers[i]); m_state.ia.vertexBuffers[StartSlot + i].buffer = newBuffer; m_state.ia.vertexBuffers[StartSlot + i].offset = pOffsets[i]; m_state.ia.vertexBuffers[StartSlot + i].stride = pStrides[i]; BindVertexBuffer(StartSlot + i, newBuffer, pOffsets[i], pStrides[i]); } } void STDMETHODCALLTYPE D3D11DeviceContext::IASetIndexBuffer( ID3D11Buffer* pIndexBuffer, DXGI_FORMAT Format, UINT Offset) { auto newBuffer = static_cast(pIndexBuffer); m_state.ia.indexBuffer.buffer = newBuffer; m_state.ia.indexBuffer.offset = Offset; m_state.ia.indexBuffer.format = Format; BindIndexBuffer(newBuffer, Offset, Format); } void STDMETHODCALLTYPE D3D11DeviceContext::IAGetInputLayout(ID3D11InputLayout** ppInputLayout) { *ppInputLayout = m_state.ia.inputLayout.ref(); } void STDMETHODCALLTYPE D3D11DeviceContext::IAGetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY* pTopology) { *pTopology = m_state.ia.primitiveTopology; } void STDMETHODCALLTYPE D3D11DeviceContext::IAGetVertexBuffers( UINT StartSlot, UINT NumBuffers, ID3D11Buffer** ppVertexBuffers, UINT* pStrides, UINT* pOffsets) { for (uint32_t i = 0; i < NumBuffers; i++) { if (ppVertexBuffers != nullptr) ppVertexBuffers[i] = m_state.ia.vertexBuffers[StartSlot + i].buffer.ref(); if (pStrides != nullptr) pStrides[i] = m_state.ia.vertexBuffers[StartSlot + i].stride; if (pOffsets != nullptr) pOffsets[i] = m_state.ia.vertexBuffers[StartSlot + i].offset; } } void STDMETHODCALLTYPE D3D11DeviceContext::IAGetIndexBuffer( ID3D11Buffer** ppIndexBuffer, DXGI_FORMAT* pFormat, UINT* pOffset) { if (ppIndexBuffer != nullptr) *ppIndexBuffer = m_state.ia.indexBuffer.buffer.ref(); if (pFormat != nullptr) *pFormat = m_state.ia.indexBuffer.format; if (pOffset != nullptr) *pOffset = m_state.ia.indexBuffer.offset; } void STDMETHODCALLTYPE D3D11DeviceContext::VSSetShader( ID3D11VertexShader* pVertexShader, ID3D11ClassInstance* const* ppClassInstances, UINT NumClassInstances) { auto shader = static_cast(pVertexShader); if (NumClassInstances != 0) Logger::err("D3D11DeviceContext::VSSetShader: Class instances not supported"); if (m_state.vs.shader != shader) { m_state.vs.shader = shader; BindShader(shader, VK_SHADER_STAGE_VERTEX_BIT); } } void STDMETHODCALLTYPE D3D11DeviceContext::VSSetConstantBuffers( UINT StartSlot, UINT NumBuffers, ID3D11Buffer* const* ppConstantBuffers) { this->SetConstantBuffers( DxbcProgramType::VertexShader, m_state.vs.constantBuffers, StartSlot, NumBuffers, ppConstantBuffers); } void STDMETHODCALLTYPE D3D11DeviceContext::VSSetShaderResources( UINT StartSlot, UINT NumViews, ID3D11ShaderResourceView* const* ppShaderResourceViews) { this->SetShaderResources( DxbcProgramType::VertexShader, m_state.vs.shaderResources, StartSlot, NumViews, ppShaderResourceViews); } void STDMETHODCALLTYPE D3D11DeviceContext::VSSetSamplers( UINT StartSlot, UINT NumSamplers, ID3D11SamplerState* const* ppSamplers) { this->SetSamplers( DxbcProgramType::VertexShader, m_state.vs.samplers, StartSlot, NumSamplers, ppSamplers); } void STDMETHODCALLTYPE D3D11DeviceContext::VSGetShader( ID3D11VertexShader** ppVertexShader, ID3D11ClassInstance** ppClassInstances, UINT* pNumClassInstances) { if (ppVertexShader != nullptr) *ppVertexShader = m_state.vs.shader.ref(); if (pNumClassInstances != nullptr) *pNumClassInstances = 0; } void STDMETHODCALLTYPE D3D11DeviceContext::VSGetConstantBuffers( UINT StartSlot, UINT NumBuffers, ID3D11Buffer** ppConstantBuffers) { for (uint32_t i = 0; i < NumBuffers; i++) ppConstantBuffers[i] = m_state.vs.constantBuffers.at(StartSlot + i).ref(); } void STDMETHODCALLTYPE D3D11DeviceContext::VSGetShaderResources( UINT StartSlot, UINT NumViews, ID3D11ShaderResourceView** ppShaderResourceViews) { for (uint32_t i = 0; i < NumViews; i++) ppShaderResourceViews[i] = m_state.vs.shaderResources.at(StartSlot + i).ref(); } void STDMETHODCALLTYPE D3D11DeviceContext::VSGetSamplers( UINT StartSlot, UINT NumSamplers, ID3D11SamplerState** ppSamplers) { for (uint32_t i = 0; i < NumSamplers; i++) ppSamplers[i] = m_state.vs.samplers.at(StartSlot + i).ref(); } void STDMETHODCALLTYPE D3D11DeviceContext::HSSetShader( ID3D11HullShader* pHullShader, ID3D11ClassInstance* const* ppClassInstances, UINT NumClassInstances) { auto shader = static_cast(pHullShader); if (NumClassInstances != 0) Logger::err("D3D11DeviceContext::HSSetShader: Class instances not supported"); if (m_state.hs.shader != shader) { m_state.hs.shader = shader; BindShader(shader, VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT); } } void STDMETHODCALLTYPE D3D11DeviceContext::HSSetShaderResources( UINT StartSlot, UINT NumViews, ID3D11ShaderResourceView* const* ppShaderResourceViews) { this->SetShaderResources( DxbcProgramType::HullShader, m_state.hs.shaderResources, StartSlot, NumViews, ppShaderResourceViews); } void STDMETHODCALLTYPE D3D11DeviceContext::HSSetConstantBuffers( UINT StartSlot, UINT NumBuffers, ID3D11Buffer* const* ppConstantBuffers) { this->SetConstantBuffers( DxbcProgramType::HullShader, m_state.hs.constantBuffers, StartSlot, NumBuffers, ppConstantBuffers); } void STDMETHODCALLTYPE D3D11DeviceContext::HSSetSamplers( UINT StartSlot, UINT NumSamplers, ID3D11SamplerState* const* ppSamplers) { this->SetSamplers( DxbcProgramType::HullShader, m_state.hs.samplers, StartSlot, NumSamplers, ppSamplers); } void STDMETHODCALLTYPE D3D11DeviceContext::HSGetShader( ID3D11HullShader** ppHullShader, ID3D11ClassInstance** ppClassInstances, UINT* pNumClassInstances) { if (ppHullShader != nullptr) *ppHullShader = m_state.hs.shader.ref(); if (pNumClassInstances != nullptr) *pNumClassInstances = 0; } void STDMETHODCALLTYPE D3D11DeviceContext::HSGetConstantBuffers( UINT StartSlot, UINT NumBuffers, ID3D11Buffer** ppConstantBuffers) { for (uint32_t i = 0; i < NumBuffers; i++) ppConstantBuffers[i] = m_state.hs.constantBuffers.at(StartSlot + i).ref(); } void STDMETHODCALLTYPE D3D11DeviceContext::HSGetShaderResources( UINT StartSlot, UINT NumViews, ID3D11ShaderResourceView** ppShaderResourceViews) { for (uint32_t i = 0; i < NumViews; i++) ppShaderResourceViews[i] = m_state.hs.shaderResources.at(StartSlot + i).ref(); } void STDMETHODCALLTYPE D3D11DeviceContext::HSGetSamplers( UINT StartSlot, UINT NumSamplers, ID3D11SamplerState** ppSamplers) { for (uint32_t i = 0; i < NumSamplers; i++) ppSamplers[i] = m_state.hs.samplers.at(StartSlot + i).ref(); } void STDMETHODCALLTYPE D3D11DeviceContext::DSSetShader( ID3D11DomainShader* pDomainShader, ID3D11ClassInstance* const* ppClassInstances, UINT NumClassInstances) { auto shader = static_cast(pDomainShader); if (NumClassInstances != 0) Logger::err("D3D11DeviceContext::DSSetShader: Class instances not supported"); if (m_state.ds.shader != shader) { m_state.ds.shader = shader; BindShader(shader, VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT); } } void STDMETHODCALLTYPE D3D11DeviceContext::DSSetShaderResources( UINT StartSlot, UINT NumViews, ID3D11ShaderResourceView* const* ppShaderResourceViews) { this->SetShaderResources( DxbcProgramType::DomainShader, m_state.ds.shaderResources, StartSlot, NumViews, ppShaderResourceViews); } void STDMETHODCALLTYPE D3D11DeviceContext::DSSetConstantBuffers( UINT StartSlot, UINT NumBuffers, ID3D11Buffer* const* ppConstantBuffers) { this->SetConstantBuffers( DxbcProgramType::DomainShader, m_state.ds.constantBuffers, StartSlot, NumBuffers, ppConstantBuffers); } void STDMETHODCALLTYPE D3D11DeviceContext::DSSetSamplers( UINT StartSlot, UINT NumSamplers, ID3D11SamplerState* const* ppSamplers) { this->SetSamplers( DxbcProgramType::DomainShader, m_state.ds.samplers, StartSlot, NumSamplers, ppSamplers); } void STDMETHODCALLTYPE D3D11DeviceContext::DSGetShader( ID3D11DomainShader** ppDomainShader, ID3D11ClassInstance** ppClassInstances, UINT* pNumClassInstances) { if (ppDomainShader != nullptr) *ppDomainShader = m_state.ds.shader.ref(); if (pNumClassInstances != nullptr) *pNumClassInstances = 0; } void STDMETHODCALLTYPE D3D11DeviceContext::DSGetConstantBuffers( UINT StartSlot, UINT NumBuffers, ID3D11Buffer** ppConstantBuffers) { for (uint32_t i = 0; i < NumBuffers; i++) ppConstantBuffers[i] = m_state.ds.constantBuffers.at(StartSlot + i).ref(); } void STDMETHODCALLTYPE D3D11DeviceContext::DSGetShaderResources( UINT StartSlot, UINT NumViews, ID3D11ShaderResourceView** ppShaderResourceViews) { for (uint32_t i = 0; i < NumViews; i++) ppShaderResourceViews[i] = m_state.ds.shaderResources.at(StartSlot + i).ref(); } void STDMETHODCALLTYPE D3D11DeviceContext::DSGetSamplers( UINT StartSlot, UINT NumSamplers, ID3D11SamplerState** ppSamplers) { for (uint32_t i = 0; i < NumSamplers; i++) ppSamplers[i] = m_state.ds.samplers.at(StartSlot + i).ref(); } void STDMETHODCALLTYPE D3D11DeviceContext::GSSetShader( ID3D11GeometryShader* pShader, ID3D11ClassInstance* const* ppClassInstances, UINT NumClassInstances) { auto shader = static_cast(pShader); if (NumClassInstances != 0) Logger::err("D3D11DeviceContext::GSSetShader: Class instances not supported"); if (m_state.gs.shader != shader) { m_state.gs.shader = shader; BindShader(shader, VK_SHADER_STAGE_GEOMETRY_BIT); } } void STDMETHODCALLTYPE D3D11DeviceContext::GSSetConstantBuffers( UINT StartSlot, UINT NumBuffers, ID3D11Buffer* const* ppConstantBuffers) { this->SetConstantBuffers( DxbcProgramType::GeometryShader, m_state.gs.constantBuffers, StartSlot, NumBuffers, ppConstantBuffers); } void STDMETHODCALLTYPE D3D11DeviceContext::GSSetShaderResources( UINT StartSlot, UINT NumViews, ID3D11ShaderResourceView* const* ppShaderResourceViews) { this->SetShaderResources( DxbcProgramType::GeometryShader, m_state.gs.shaderResources, StartSlot, NumViews, ppShaderResourceViews); } void STDMETHODCALLTYPE D3D11DeviceContext::GSSetSamplers( UINT StartSlot, UINT NumSamplers, ID3D11SamplerState* const* ppSamplers) { this->SetSamplers( DxbcProgramType::GeometryShader, m_state.gs.samplers, StartSlot, NumSamplers, ppSamplers); } void STDMETHODCALLTYPE D3D11DeviceContext::GSGetShader( ID3D11GeometryShader** ppGeometryShader, ID3D11ClassInstance** ppClassInstances, UINT* pNumClassInstances) { if (ppGeometryShader != nullptr) *ppGeometryShader = m_state.gs.shader.ref(); if (pNumClassInstances != nullptr) *pNumClassInstances = 0; } void STDMETHODCALLTYPE D3D11DeviceContext::GSGetConstantBuffers( UINT StartSlot, UINT NumBuffers, ID3D11Buffer** ppConstantBuffers) { for (uint32_t i = 0; i < NumBuffers; i++) ppConstantBuffers[i] = m_state.gs.constantBuffers.at(StartSlot + i).ref(); } void STDMETHODCALLTYPE D3D11DeviceContext::GSGetShaderResources( UINT StartSlot, UINT NumViews, ID3D11ShaderResourceView** ppShaderResourceViews) { for (uint32_t i = 0; i < NumViews; i++) ppShaderResourceViews[i] = m_state.gs.shaderResources.at(StartSlot + i).ref(); } void STDMETHODCALLTYPE D3D11DeviceContext::GSGetSamplers( UINT StartSlot, UINT NumSamplers, ID3D11SamplerState** ppSamplers) { for (uint32_t i = 0; i < NumSamplers; i++) ppSamplers[i] = m_state.gs.samplers.at(StartSlot + i).ref(); } void STDMETHODCALLTYPE D3D11DeviceContext::PSSetShader( ID3D11PixelShader* pPixelShader, ID3D11ClassInstance* const* ppClassInstances, UINT NumClassInstances) { auto shader = static_cast(pPixelShader); if (NumClassInstances != 0) Logger::err("D3D11DeviceContext::PSSetShader: Class instances not supported"); if (m_state.ps.shader != shader) { m_state.ps.shader = shader; BindShader(shader, VK_SHADER_STAGE_FRAGMENT_BIT); } } void STDMETHODCALLTYPE D3D11DeviceContext::PSSetConstantBuffers( UINT StartSlot, UINT NumBuffers, ID3D11Buffer* const* ppConstantBuffers) { this->SetConstantBuffers( DxbcProgramType::PixelShader, m_state.ps.constantBuffers, StartSlot, NumBuffers, ppConstantBuffers); } void STDMETHODCALLTYPE D3D11DeviceContext::PSSetShaderResources( UINT StartSlot, UINT NumViews, ID3D11ShaderResourceView* const* ppShaderResourceViews) { this->SetShaderResources( DxbcProgramType::PixelShader, m_state.ps.shaderResources, StartSlot, NumViews, ppShaderResourceViews); } void STDMETHODCALLTYPE D3D11DeviceContext::PSSetSamplers( UINT StartSlot, UINT NumSamplers, ID3D11SamplerState* const* ppSamplers) { this->SetSamplers( DxbcProgramType::PixelShader, m_state.ps.samplers, StartSlot, NumSamplers, ppSamplers); } void STDMETHODCALLTYPE D3D11DeviceContext::PSGetShader( ID3D11PixelShader** ppPixelShader, ID3D11ClassInstance** ppClassInstances, UINT* pNumClassInstances) { if (ppPixelShader != nullptr) *ppPixelShader = m_state.ps.shader.ref(); if (pNumClassInstances != nullptr) *pNumClassInstances = 0; } void STDMETHODCALLTYPE D3D11DeviceContext::PSGetConstantBuffers( UINT StartSlot, UINT NumBuffers, ID3D11Buffer** ppConstantBuffers) { for (uint32_t i = 0; i < NumBuffers; i++) ppConstantBuffers[i] = m_state.ps.constantBuffers.at(StartSlot + i).ref(); } void STDMETHODCALLTYPE D3D11DeviceContext::PSGetShaderResources( UINT StartSlot, UINT NumViews, ID3D11ShaderResourceView** ppShaderResourceViews) { for (uint32_t i = 0; i < NumViews; i++) ppShaderResourceViews[i] = m_state.ps.shaderResources.at(StartSlot + i).ref(); } void STDMETHODCALLTYPE D3D11DeviceContext::PSGetSamplers( UINT StartSlot, UINT NumSamplers, ID3D11SamplerState** ppSamplers) { for (uint32_t i = 0; i < NumSamplers; i++) ppSamplers[i] = m_state.ps.samplers.at(StartSlot + i).ref(); } void STDMETHODCALLTYPE D3D11DeviceContext::CSSetShader( ID3D11ComputeShader* pComputeShader, ID3D11ClassInstance* const* ppClassInstances, UINT NumClassInstances) { auto shader = static_cast(pComputeShader); if (NumClassInstances != 0) Logger::err("D3D11DeviceContext::CSSetShader: Class instances not supported"); if (m_state.cs.shader != shader) { m_state.cs.shader = shader; BindShader(shader, VK_SHADER_STAGE_COMPUTE_BIT); } } void STDMETHODCALLTYPE D3D11DeviceContext::CSSetConstantBuffers( UINT StartSlot, UINT NumBuffers, ID3D11Buffer* const* ppConstantBuffers) { this->SetConstantBuffers( DxbcProgramType::ComputeShader, m_state.cs.constantBuffers, StartSlot, NumBuffers, ppConstantBuffers); } void STDMETHODCALLTYPE D3D11DeviceContext::CSSetShaderResources( UINT StartSlot, UINT NumViews, ID3D11ShaderResourceView* const* ppShaderResourceViews) { this->SetShaderResources( DxbcProgramType::ComputeShader, m_state.cs.shaderResources, StartSlot, NumViews, ppShaderResourceViews); } void STDMETHODCALLTYPE D3D11DeviceContext::CSSetSamplers( UINT StartSlot, UINT NumSamplers, ID3D11SamplerState* const* ppSamplers) { this->SetSamplers( DxbcProgramType::ComputeShader, m_state.cs.samplers, StartSlot, NumSamplers, ppSamplers); } void STDMETHODCALLTYPE D3D11DeviceContext::CSSetUnorderedAccessViews( UINT StartSlot, UINT NumUAVs, ID3D11UnorderedAccessView* const* ppUnorderedAccessViews, const UINT* pUAVInitialCounts) { this->SetUnorderedAccessViews( DxbcProgramType::ComputeShader, m_state.cs.unorderedAccessViews, StartSlot, NumUAVs, ppUnorderedAccessViews); if (pUAVInitialCounts != nullptr) { this->InitUnorderedAccessViewCounters( NumUAVs, ppUnorderedAccessViews, pUAVInitialCounts); } } void STDMETHODCALLTYPE D3D11DeviceContext::CSGetShader( ID3D11ComputeShader** ppComputeShader, ID3D11ClassInstance** ppClassInstances, UINT* pNumClassInstances) { if (ppComputeShader != nullptr) *ppComputeShader = m_state.cs.shader.ref(); if (pNumClassInstances != nullptr) *pNumClassInstances = 0; } void STDMETHODCALLTYPE D3D11DeviceContext::CSGetConstantBuffers( UINT StartSlot, UINT NumBuffers, ID3D11Buffer** ppConstantBuffers) { for (uint32_t i = 0; i < NumBuffers; i++) ppConstantBuffers[i] = m_state.cs.constantBuffers.at(StartSlot + i).ref(); } void STDMETHODCALLTYPE D3D11DeviceContext::CSGetShaderResources( UINT StartSlot, UINT NumViews, ID3D11ShaderResourceView** ppShaderResourceViews) { for (uint32_t i = 0; i < NumViews; i++) ppShaderResourceViews[i] = m_state.cs.shaderResources.at(StartSlot + i).ref(); } void STDMETHODCALLTYPE D3D11DeviceContext::CSGetSamplers( UINT StartSlot, UINT NumSamplers, ID3D11SamplerState** ppSamplers) { for (uint32_t i = 0; i < NumSamplers; i++) ppSamplers[i] = m_state.cs.samplers.at(StartSlot + i).ref(); } void STDMETHODCALLTYPE D3D11DeviceContext::CSGetUnorderedAccessViews( UINT StartSlot, UINT NumUAVs, ID3D11UnorderedAccessView** ppUnorderedAccessViews) { for (uint32_t i = 0; i < NumUAVs; i++) ppUnorderedAccessViews[i] = m_state.cs.unorderedAccessViews.at(StartSlot + i).ref(); } void STDMETHODCALLTYPE D3D11DeviceContext::OMSetRenderTargets( UINT NumViews, ID3D11RenderTargetView* const* ppRenderTargetViews, ID3D11DepthStencilView* pDepthStencilView) { // Optimization: If the number of draw and dispatch calls issued // prior to the previous context flush is above a certain threshold, // submit the current command buffer in order to keep the GPU busy. // This also helps keep the command buffers at a reasonable size. if (m_drawCount >= 500) Flush(); for (UINT i = 0; i < m_state.om.renderTargetViews.size(); i++) { D3D11RenderTargetView* view = nullptr; if ((i < NumViews) && (ppRenderTargetViews[i] != nullptr)) view = static_cast(ppRenderTargetViews[i]); m_state.om.renderTargetViews.at(i) = view; } m_state.om.depthStencilView = static_cast(pDepthStencilView); BindFramebuffer(); } void STDMETHODCALLTYPE D3D11DeviceContext::OMSetRenderTargetsAndUnorderedAccessViews( UINT NumRTVs, ID3D11RenderTargetView* const* ppRenderTargetViews, ID3D11DepthStencilView* pDepthStencilView, UINT UAVStartSlot, UINT NumUAVs, ID3D11UnorderedAccessView* const* ppUnorderedAccessViews, const UINT* pUAVInitialCounts) { if (NumRTVs != D3D11_KEEP_RENDER_TARGETS_AND_DEPTH_STENCIL) OMSetRenderTargets(NumRTVs, ppRenderTargetViews, pDepthStencilView); if (NumUAVs != D3D11_KEEP_UNORDERED_ACCESS_VIEWS) { // UAVs are made available to all shader stages in // the graphics pipeline even though this code may // suggest that they are limited to the pixel shader. // This behaviour is only required for FL_11_1. SetUnorderedAccessViews( DxbcProgramType::PixelShader, m_state.ps.unorderedAccessViews, UAVStartSlot, NumUAVs, ppUnorderedAccessViews); if (pUAVInitialCounts != nullptr) { InitUnorderedAccessViewCounters(NumUAVs, ppUnorderedAccessViews, pUAVInitialCounts); } } } void STDMETHODCALLTYPE D3D11DeviceContext::OMSetBlendState( ID3D11BlendState* pBlendState, const FLOAT BlendFactor[4], UINT SampleMask) { auto blendState = static_cast(pBlendState); if (m_state.om.cbState != blendState || m_state.om.sampleMask != SampleMask) { m_state.om.cbState = blendState; m_state.om.sampleMask = SampleMask; ApplyBlendState(); } if (BlendFactor != nullptr) { for (uint32_t i = 0; i < 4; i++) m_state.om.blendFactor[i] = BlendFactor[i]; ApplyBlendFactor(); } } void STDMETHODCALLTYPE D3D11DeviceContext::OMSetDepthStencilState( ID3D11DepthStencilState* pDepthStencilState, UINT StencilRef) { auto depthStencilState = static_cast(pDepthStencilState); if (m_state.om.dsState != depthStencilState) { m_state.om.dsState = depthStencilState; ApplyDepthStencilState(); } if (m_state.om.stencilRef != StencilRef) { m_state.om.stencilRef = StencilRef; ApplyStencilRef(); } } void STDMETHODCALLTYPE D3D11DeviceContext::OMGetRenderTargets( UINT NumViews, ID3D11RenderTargetView** ppRenderTargetViews, ID3D11DepthStencilView** ppDepthStencilView) { if (ppRenderTargetViews != nullptr) { for (UINT i = 0; i < NumViews; i++) ppRenderTargetViews[i] = m_state.om.renderTargetViews[i].ref(); } if (ppDepthStencilView != nullptr) *ppDepthStencilView = m_state.om.depthStencilView.ref(); } void STDMETHODCALLTYPE D3D11DeviceContext::OMGetRenderTargetsAndUnorderedAccessViews( UINT NumRTVs, ID3D11RenderTargetView** ppRenderTargetViews, ID3D11DepthStencilView** ppDepthStencilView, UINT UAVStartSlot, UINT NumUAVs, ID3D11UnorderedAccessView** ppUnorderedAccessViews) { OMGetRenderTargets(NumRTVs, ppRenderTargetViews, ppDepthStencilView); if (ppUnorderedAccessViews != nullptr) { for (UINT i = 0; i < NumUAVs; i++) ppUnorderedAccessViews[i] = m_state.ps.unorderedAccessViews[UAVStartSlot + i].ref(); } } void STDMETHODCALLTYPE D3D11DeviceContext::OMGetBlendState( ID3D11BlendState** ppBlendState, FLOAT BlendFactor[4], UINT* pSampleMask) { if (ppBlendState != nullptr) *ppBlendState = m_state.om.cbState.ref(); if (BlendFactor != nullptr) std::memcpy(BlendFactor, m_state.om.blendFactor, sizeof(FLOAT) * 4); if (pSampleMask != nullptr) *pSampleMask = m_state.om.sampleMask; } void STDMETHODCALLTYPE D3D11DeviceContext::OMGetDepthStencilState( ID3D11DepthStencilState** ppDepthStencilState, UINT* pStencilRef) { if (ppDepthStencilState != nullptr) *ppDepthStencilState = m_state.om.dsState.ref(); if (pStencilRef != nullptr) *pStencilRef = m_state.om.stencilRef; } void STDMETHODCALLTYPE D3D11DeviceContext::RSSetState(ID3D11RasterizerState* pRasterizerState) { auto rasterizerState = static_cast(pRasterizerState); if (m_state.rs.state != rasterizerState) { m_state.rs.state = rasterizerState; // In D3D11, the rasterizer state defines whether the // scissor test is enabled, so we have to update the // scissor rectangles as well. ApplyRasterizerState(); ApplyViewportState(); } } void STDMETHODCALLTYPE D3D11DeviceContext::RSSetViewports( UINT NumViewports, const D3D11_VIEWPORT* pViewports) { m_state.rs.numViewports = NumViewports; for (uint32_t i = 0; i < NumViewports; i++) m_state.rs.viewports.at(i) = pViewports[i]; ApplyViewportState(); } void STDMETHODCALLTYPE D3D11DeviceContext::RSSetScissorRects( UINT NumRects, const D3D11_RECT* pRects) { m_state.rs.numScissors = NumRects; for (uint32_t i = 0; i < NumRects; i++) m_state.rs.scissors.at(i) = pRects[i]; if (m_state.rs.state != nullptr) { D3D11_RASTERIZER_DESC rsDesc; m_state.rs.state->GetDesc(&rsDesc); if (rsDesc.ScissorEnable) ApplyViewportState(); } } void STDMETHODCALLTYPE D3D11DeviceContext::RSGetState(ID3D11RasterizerState** ppRasterizerState) { if (ppRasterizerState != nullptr) *ppRasterizerState = m_state.rs.state.ref(); } void STDMETHODCALLTYPE D3D11DeviceContext::RSGetViewports( UINT* pNumViewports, D3D11_VIEWPORT* pViewports) { if (pViewports != nullptr) { for (uint32_t i = 0; i < *pNumViewports; i++) { if (i < m_state.rs.numViewports) { pViewports[i] = m_state.rs.viewports.at(i); } else { pViewports[i].TopLeftX = 0.0f; pViewports[i].TopLeftY = 0.0f; pViewports[i].Width = 0.0f; pViewports[i].Height = 0.0f; pViewports[i].MinDepth = 0.0f; pViewports[i].MaxDepth = 0.0f; } } } *pNumViewports = m_state.rs.numViewports; } void STDMETHODCALLTYPE D3D11DeviceContext::RSGetScissorRects( UINT* pNumRects, D3D11_RECT* pRects) { if (pRects != nullptr) { for (uint32_t i = 0; i < *pNumRects; i++) { if (i < m_state.rs.numScissors) { pRects[i] = m_state.rs.scissors.at(i); } else { pRects[i].left = 0; pRects[i].top = 0; pRects[i].right = 0; pRects[i].bottom = 0; } } } *pNumRects = m_state.rs.numScissors; } void STDMETHODCALLTYPE D3D11DeviceContext::SOSetTargets( UINT NumBuffers, ID3D11Buffer* const* ppSOTargets, const UINT* pOffsets) { // TODO implement properly, including pOffsets for (uint32_t i = 0; i < D3D11_SO_STREAM_COUNT; i++) { m_state.so.targets[i] = (ppSOTargets != nullptr && i < NumBuffers) ? static_cast(ppSOTargets[i]) : nullptr; } } void STDMETHODCALLTYPE D3D11DeviceContext::SOGetTargets( UINT NumBuffers, ID3D11Buffer** ppSOTargets) { for (uint32_t i = 0; i < NumBuffers; i++) ppSOTargets[i] = m_state.so.targets[i].ref(); } void D3D11DeviceContext::ApplyInputLayout() { if (m_state.ia.inputLayout != nullptr) { EmitCs([cInputLayout = m_state.ia.inputLayout] (DxvkContext* ctx) { cInputLayout->BindToContext(ctx); }); } else { EmitCs([] (DxvkContext* ctx) { ctx->setInputLayout(0, nullptr, 0, nullptr); }); } } void D3D11DeviceContext::ApplyPrimitiveTopology() { if (m_state.ia.primitiveTopology == D3D11_PRIMITIVE_TOPOLOGY_UNDEFINED) return; const DxvkInputAssemblyState iaState = [Topology = m_state.ia.primitiveTopology] () -> DxvkInputAssemblyState { if (Topology >= D3D11_PRIMITIVE_TOPOLOGY_1_CONTROL_POINT_PATCHLIST && Topology <= D3D11_PRIMITIVE_TOPOLOGY_32_CONTROL_POINT_PATCHLIST) { // Tessellation patch. The number of control points per // patch can be inferred from the enum value in D3D11. return { VK_PRIMITIVE_TOPOLOGY_PATCH_LIST, VK_FALSE, uint32_t(Topology - D3D11_PRIMITIVE_TOPOLOGY_1_CONTROL_POINT_PATCHLIST + 1) }; } else { switch (Topology) { case D3D11_PRIMITIVE_TOPOLOGY_POINTLIST: return { VK_PRIMITIVE_TOPOLOGY_POINT_LIST, VK_FALSE, 0 }; case D3D11_PRIMITIVE_TOPOLOGY_LINELIST: return { VK_PRIMITIVE_TOPOLOGY_LINE_LIST, VK_FALSE, 0 }; case D3D11_PRIMITIVE_TOPOLOGY_LINESTRIP: return { VK_PRIMITIVE_TOPOLOGY_LINE_STRIP, VK_TRUE, 0 }; case D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST: return { VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, VK_FALSE, 0 }; case D3D11_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP: return { VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, VK_TRUE, 0 }; case D3D11_PRIMITIVE_TOPOLOGY_LINELIST_ADJ: return { VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY, VK_FALSE, 0 }; case D3D11_PRIMITIVE_TOPOLOGY_LINESTRIP_ADJ: return { VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY, VK_TRUE, 0 }; case D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST_ADJ: return { VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY, VK_FALSE, 0 }; case D3D11_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP_ADJ: return { VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY, VK_TRUE, 0 }; default: Logger::err(str::format("D3D11: Invalid primitive topology: ", Topology)); return { }; } } }(); EmitCs([iaState] (DxvkContext* ctx) { ctx->setInputAssemblyState(iaState); }); } void D3D11DeviceContext::ApplyBlendState() { EmitCs([ cBlendState = m_state.om.cbState != nullptr ? m_state.om.cbState : m_defaultBlendState, cSampleMask = m_state.om.sampleMask ] (DxvkContext* ctx) { cBlendState->BindToContext(ctx, cSampleMask); }); } void D3D11DeviceContext::ApplyBlendFactor() { EmitCs([ cBlendConstants = DxvkBlendConstants { m_state.om.blendFactor[0], m_state.om.blendFactor[1], m_state.om.blendFactor[2], m_state.om.blendFactor[3] } ] (DxvkContext* ctx) { ctx->setBlendConstants(cBlendConstants); }); } void D3D11DeviceContext::ApplyDepthStencilState() { EmitCs([ cDepthStencilState = m_state.om.dsState != nullptr ? m_state.om.dsState : m_defaultDepthStencilState ] (DxvkContext* ctx) { cDepthStencilState->BindToContext(ctx); }); } void D3D11DeviceContext::ApplyStencilRef() { EmitCs([ cStencilRef = m_state.om.stencilRef ] (DxvkContext* ctx) { ctx->setStencilReference(cStencilRef); }); } void D3D11DeviceContext::ApplyRasterizerState() { EmitCs([ cRasterizerState = m_state.rs.state != nullptr ? m_state.rs.state : m_defaultRasterizerState ] (DxvkContext* ctx) { cRasterizerState->BindToContext(ctx); }); } void D3D11DeviceContext::ApplyViewportState() { // We cannot set less than one viewport in Vulkan, and // rendering with no active viewport is illegal anyway. if (m_state.rs.numViewports == 0) return; std::array viewports; std::array scissors; // D3D11's coordinate system has its origin in the bottom left, // but the viewport coordinates are aligned to the top-left // corner so we can get away with flipping the viewport. for (uint32_t i = 0; i < m_state.rs.numViewports; i++) { const D3D11_VIEWPORT& vp = m_state.rs.viewports.at(i); viewports.at(i) = VkViewport { vp.TopLeftX, vp.Height + vp.TopLeftY, vp.Width, -vp.Height, vp.MinDepth, vp.MaxDepth, }; } // Scissor rectangles. Vulkan does not provide an easy way // to disable the scissor test, so we'll have to set scissor // rects that are at least as large as the framebuffer. bool enableScissorTest = false; if (m_state.rs.state != nullptr) { D3D11_RASTERIZER_DESC rsDesc; m_state.rs.state->GetDesc(&rsDesc); enableScissorTest = rsDesc.ScissorEnable; } for (uint32_t i = 0; i < m_state.rs.numViewports; i++) { // TODO D3D11 docs aren't clear about what should happen // when there are undefined scissor rects for a viewport. // Figure out what it does on Windows. if (enableScissorTest && (i < m_state.rs.numScissors)) { const D3D11_RECT& sr = m_state.rs.scissors.at(i); scissors.at(i) = VkRect2D { VkOffset2D { sr.left, sr.top }, VkExtent2D { static_cast(sr.right - sr.left), static_cast(sr.bottom - sr.top) } }; } else { scissors.at(i) = VkRect2D { VkOffset2D { 0, 0 }, VkExtent2D { D3D11_VIEWPORT_BOUNDS_MAX, D3D11_VIEWPORT_BOUNDS_MAX } }; } } EmitCs([ cViewportCount = m_state.rs.numViewports, cViewports = viewports, cScissors = scissors ] (DxvkContext* ctx) { ctx->setViewports( cViewportCount, cViewports.data(), cScissors.data()); }); } void D3D11DeviceContext::BindFramebuffer() { // NOTE According to the Microsoft docs, we are supposed to // unbind overlapping shader resource views. Since this comes // with a large performance penalty we'll ignore this until an // application actually relies on this behaviour. DxvkRenderTargets attachments; // D3D11 doesn't have the concept of a framebuffer object, // so we'll just create a new one every time the render // target bindings are updated. Set up the attachments. for (UINT i = 0; i < m_state.om.renderTargetViews.size(); i++) { if (m_state.om.renderTargetViews.at(i) != nullptr) { attachments.setColorTarget(i, m_state.om.renderTargetViews.at(i)->GetImageView(), m_state.om.renderTargetViews.at(i)->GetRenderLayout()); } } if (m_state.om.depthStencilView != nullptr) { attachments.setDepthTarget( m_state.om.depthStencilView->GetImageView(), m_state.om.depthStencilView->GetRenderLayout()); } // Create and bind the framebuffer object to the context EmitCs([attachments, dev = m_device] (DxvkContext* ctx) { Rc framebuffer = nullptr; if (attachments.hasAttachments()) framebuffer = dev->createFramebuffer(attachments); ctx->bindFramebuffer(framebuffer); }); } void D3D11DeviceContext::BindVertexBuffer( UINT Slot, D3D11Buffer* pBuffer, UINT Offset, UINT Stride) { EmitCs([ cSlotId = Slot, cBufferSlice = pBuffer != nullptr ? pBuffer->GetBufferSlice(Offset) : DxvkBufferSlice(), cStride = pBuffer != nullptr ? Stride : 0 ] (DxvkContext* ctx) { ctx->bindVertexBuffer(cSlotId, cBufferSlice, cStride); }); } void D3D11DeviceContext::BindIndexBuffer( D3D11Buffer* pBuffer, UINT Offset, DXGI_FORMAT Format) { // As in Vulkan, the index format can be either a 32-bit // or 16-bit unsigned integer, no other formats are allowed. VkIndexType indexType = VK_INDEX_TYPE_UINT32; if (pBuffer != nullptr) { switch (Format) { case DXGI_FORMAT_R16_UINT: indexType = VK_INDEX_TYPE_UINT16; break; case DXGI_FORMAT_R32_UINT: indexType = VK_INDEX_TYPE_UINT32; break; default: Logger::err(str::format("D3D11: Invalid index format: ", Format)); } } EmitCs([ cBufferSlice = pBuffer != nullptr ? pBuffer->GetBufferSlice(Offset) : DxvkBufferSlice(), cIndexType = indexType ] (DxvkContext* ctx) { ctx->bindIndexBuffer(cBufferSlice, cIndexType); }); } void D3D11DeviceContext::BindConstantBuffer( UINT Slot, D3D11Buffer* pBuffer) { EmitCs([ cSlotId = Slot, cBufferSlice = pBuffer != nullptr ? pBuffer->GetBufferSlice() : DxvkBufferSlice() ] (DxvkContext* ctx) { ctx->bindResourceBuffer(cSlotId, cBufferSlice); }); } void D3D11DeviceContext::BindSampler( UINT Slot, D3D11SamplerState* pSampler) { EmitCs([ cSlotId = Slot, cSampler = pSampler != nullptr ? pSampler->GetDXVKSampler() : nullptr ] (DxvkContext* ctx) { ctx->bindResourceSampler(cSlotId, cSampler); }); } void D3D11DeviceContext::BindShaderResource( UINT Slot, D3D11ShaderResourceView* pResource) { EmitCs([ cSlotId = Slot, cImageView = pResource != nullptr ? pResource->GetImageView() : nullptr, cBufferView = pResource != nullptr ? pResource->GetBufferView() : nullptr ] (DxvkContext* ctx) { ctx->bindResourceView(cSlotId, cImageView, cBufferView); }); } void D3D11DeviceContext::BindUnorderedAccessView( UINT UavSlot, UINT CtrSlot, D3D11UnorderedAccessView* pUav) { EmitCs([ cUavSlotId = UavSlot, cCtrSlotId = CtrSlot, cImageView = pUav != nullptr ? pUav->GetImageView() : nullptr, cBufferView = pUav != nullptr ? pUav->GetBufferView() : nullptr, cCounterSlice = pUav != nullptr ? pUav->GetCounterSlice() : DxvkBufferSlice() ] (DxvkContext* ctx) { ctx->bindResourceView (cUavSlotId, cImageView, cBufferView); ctx->bindResourceBuffer (cCtrSlotId, cCounterSlice); }); } void D3D11DeviceContext::SetConstantBuffers( DxbcProgramType ShaderStage, D3D11ConstantBufferBindings& Bindings, UINT StartSlot, UINT NumBuffers, ID3D11Buffer* const* ppConstantBuffers) { const uint32_t slotId = computeResourceSlotId( ShaderStage, DxbcBindingType::ConstantBuffer, StartSlot); for (uint32_t i = 0; i < NumBuffers; i++) { auto newBuffer = static_cast(ppConstantBuffers[i]); if (Bindings[StartSlot + i] != newBuffer) { Bindings[StartSlot + i] = newBuffer; BindConstantBuffer(slotId + i, newBuffer); } } } void D3D11DeviceContext::SetSamplers( DxbcProgramType ShaderStage, D3D11SamplerBindings& Bindings, UINT StartSlot, UINT NumSamplers, ID3D11SamplerState* const* ppSamplers) { const uint32_t slotId = computeResourceSlotId( ShaderStage, DxbcBindingType::ImageSampler, StartSlot); for (uint32_t i = 0; i < NumSamplers; i++) { auto sampler = static_cast(ppSamplers[i]); if (Bindings[StartSlot + i] != sampler) { Bindings[StartSlot + i] = sampler; BindSampler(slotId + i, sampler); } } } void D3D11DeviceContext::SetShaderResources( DxbcProgramType ShaderStage, D3D11ShaderResourceBindings& Bindings, UINT StartSlot, UINT NumResources, ID3D11ShaderResourceView* const* ppResources) { const uint32_t slotId = computeResourceSlotId( ShaderStage, DxbcBindingType::ShaderResource, StartSlot); for (uint32_t i = 0; i < NumResources; i++) { auto resView = static_cast(ppResources[i]); if (Bindings[StartSlot + i] != resView) { Bindings[StartSlot + i] = resView; BindShaderResource(slotId + i, resView); } } } void D3D11DeviceContext::SetUnorderedAccessViews( DxbcProgramType ShaderStage, D3D11UnorderedAccessBindings& Bindings, UINT StartSlot, UINT NumUAVs, ID3D11UnorderedAccessView* const* ppUnorderedAccessViews) { const uint32_t uavSlotId = computeResourceSlotId( ShaderStage, DxbcBindingType::UnorderedAccessView, StartSlot); const uint32_t ctrSlotId = computeResourceSlotId( ShaderStage, DxbcBindingType::UavCounter, StartSlot); for (uint32_t i = 0; i < NumUAVs; i++) { auto uav = static_cast(ppUnorderedAccessViews[i]); if (Bindings[StartSlot + i] != uav) { Bindings[StartSlot + i] = uav; BindUnorderedAccessView(uavSlotId + i, ctrSlotId + i, uav); } } } void D3D11DeviceContext::InitUnorderedAccessViewCounters( UINT NumUAVs, ID3D11UnorderedAccessView* const* ppUnorderedAccessViews, const UINT* pUAVInitialCounts) { for (uint32_t i = 0; i < NumUAVs; i++) { auto uav = static_cast(ppUnorderedAccessViews[i]); if (uav != nullptr) { const DxvkBufferSlice counterSlice = uav->GetCounterSlice(); const D3D11UavCounter counterValue = { pUAVInitialCounts[i] }; if (counterSlice.defined() && counterValue.atomicCtr != 0xFFFFFFFFu) { EmitCs([counterSlice, counterValue] (DxvkContext* ctx) { ctx->updateBuffer( counterSlice.buffer(), counterSlice.offset(), counterSlice.length(), &counterValue); }); } } } } void D3D11DeviceContext::RestoreState() { BindFramebuffer(); BindShader(m_state.vs.shader.ptr(), VK_SHADER_STAGE_VERTEX_BIT); BindShader(m_state.hs.shader.ptr(), VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT); BindShader(m_state.ds.shader.ptr(), VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT); BindShader(m_state.gs.shader.ptr(), VK_SHADER_STAGE_GEOMETRY_BIT); BindShader(m_state.ps.shader.ptr(), VK_SHADER_STAGE_FRAGMENT_BIT); BindShader(m_state.cs.shader.ptr(), VK_SHADER_STAGE_COMPUTE_BIT); ApplyInputLayout(); ApplyPrimitiveTopology(); ApplyBlendState(); ApplyBlendFactor(); ApplyDepthStencilState(); ApplyStencilRef(); ApplyRasterizerState(); ApplyViewportState(); BindIndexBuffer( m_state.ia.indexBuffer.buffer.ptr(), m_state.ia.indexBuffer.offset, m_state.ia.indexBuffer.format); for (uint32_t i = 0; i < m_state.ia.vertexBuffers.size(); i++) { BindVertexBuffer(i, m_state.ia.vertexBuffers[i].buffer.ptr(), m_state.ia.vertexBuffers[i].offset, m_state.ia.vertexBuffers[i].stride); } RestoreConstantBuffers(DxbcProgramType::VertexShader, m_state.vs.constantBuffers); RestoreConstantBuffers(DxbcProgramType::HullShader, m_state.hs.constantBuffers); RestoreConstantBuffers(DxbcProgramType::DomainShader, m_state.ds.constantBuffers); RestoreConstantBuffers(DxbcProgramType::GeometryShader, m_state.gs.constantBuffers); RestoreConstantBuffers(DxbcProgramType::PixelShader, m_state.ps.constantBuffers); RestoreConstantBuffers(DxbcProgramType::ComputeShader, m_state.cs.constantBuffers); RestoreSamplers(DxbcProgramType::VertexShader, m_state.vs.samplers); RestoreSamplers(DxbcProgramType::HullShader, m_state.hs.samplers); RestoreSamplers(DxbcProgramType::DomainShader, m_state.ds.samplers); RestoreSamplers(DxbcProgramType::GeometryShader, m_state.gs.samplers); RestoreSamplers(DxbcProgramType::PixelShader, m_state.ps.samplers); RestoreSamplers(DxbcProgramType::ComputeShader, m_state.cs.samplers); RestoreShaderResources(DxbcProgramType::VertexShader, m_state.vs.shaderResources); RestoreShaderResources(DxbcProgramType::HullShader, m_state.hs.shaderResources); RestoreShaderResources(DxbcProgramType::DomainShader, m_state.ds.shaderResources); RestoreShaderResources(DxbcProgramType::GeometryShader, m_state.gs.shaderResources); RestoreShaderResources(DxbcProgramType::PixelShader, m_state.ps.shaderResources); RestoreShaderResources(DxbcProgramType::ComputeShader, m_state.cs.shaderResources); RestoreUnorderedAccessViews(DxbcProgramType::PixelShader, m_state.ps.unorderedAccessViews, D3D11_SIMULTANEOUS_RENDER_TARGET_COUNT); RestoreUnorderedAccessViews(DxbcProgramType::ComputeShader, m_state.cs.unorderedAccessViews, D3D11_1_UAV_SLOT_COUNT); } void D3D11DeviceContext::RestoreConstantBuffers( DxbcProgramType Stage, D3D11ConstantBufferBindings& Bindings) { const uint32_t slotId = computeResourceSlotId( Stage, DxbcBindingType::ConstantBuffer, 0); for (uint32_t i = 0; i < Bindings.size(); i++) BindConstantBuffer(slotId + i, Bindings[i].ptr()); } void D3D11DeviceContext::RestoreSamplers( DxbcProgramType Stage, D3D11SamplerBindings& Bindings) { const uint32_t slotId = computeResourceSlotId( Stage, DxbcBindingType::ImageSampler, 0); for (uint32_t i = 0; i < Bindings.size(); i++) BindSampler(slotId + i, Bindings[i].ptr()); } void D3D11DeviceContext::RestoreShaderResources( DxbcProgramType Stage, D3D11ShaderResourceBindings& Bindings) { const uint32_t slotId = computeResourceSlotId( Stage, DxbcBindingType::ShaderResource, 0); for (uint32_t i = 0; i < Bindings.size(); i++) BindShaderResource(slotId + i, Bindings[i].ptr()); } void D3D11DeviceContext::RestoreUnorderedAccessViews( DxbcProgramType Stage, D3D11UnorderedAccessBindings& Bindings, UINT SlotCount) { const uint32_t uavSlotId = computeResourceSlotId( Stage, DxbcBindingType::UnorderedAccessView, 0); const uint32_t ctrSlotId = computeResourceSlotId( Stage, DxbcBindingType::UavCounter, 0); for (uint32_t i = 0; i < SlotCount; i++) { BindUnorderedAccessView( uavSlotId + i, ctrSlotId + i, Bindings[i].ptr()); } } DxvkDataSlice D3D11DeviceContext::AllocUpdateBufferSlice(size_t Size) { constexpr size_t UpdateBufferSize = 4 * 1024 * 1024; if (Size >= UpdateBufferSize) { Rc buffer = new DxvkDataBuffer(Size); return buffer->alloc(Size); } else { if (m_updateBuffer == nullptr) m_updateBuffer = new DxvkDataBuffer(Size); DxvkDataSlice slice = m_updateBuffer->alloc(Size); if (slice.ptr() == nullptr) { m_updateBuffer = new DxvkDataBuffer(Size); slice = m_updateBuffer->alloc(Size); } return slice; } } }