#include "dxbc_compiler.h" namespace dxvk { constexpr uint32_t PerVertex_Position = 0; constexpr uint32_t PerVertex_CullDist = 1; constexpr uint32_t PerVertex_ClipDist = 2; constexpr uint32_t PushConstant_InstanceId = 0; DxbcCompiler::DxbcCompiler( const DxbcOptions& options, const DxbcProgramVersion& version, const Rc& isgn, const Rc& osgn) : m_options (options), m_version (version), m_isgn (isgn), m_osgn (osgn) { // Declare an entry point ID. We'll need it during the // initialization phase where the execution mode is set. m_entryPointId = m_module.allocateId(); // Set the memory model. This is the same for all shaders. m_module.setMemoryModel( spv::AddressingModelLogical, spv::MemoryModelGLSL450); // Make sure our interface registers are clear for (uint32_t i = 0; i < DxbcMaxInterfaceRegs; i++) { m_ps.oTypes.at(i).ctype = DxbcScalarType::Float32; m_ps.oTypes.at(i).ccount = 0; m_vRegs.at(i) = 0; m_oRegs.at(i) = 0; } this->emitInit(); } DxbcCompiler::~DxbcCompiler() { } void DxbcCompiler::processInstruction(const DxbcShaderInstruction& ins) { switch (ins.opClass) { case DxbcInstClass::Declaration: return this->emitDcl(ins); case DxbcInstClass::CustomData: return this->emitCustomData(ins); case DxbcInstClass::Atomic: return this->emitAtomic(ins); case DxbcInstClass::AtomicCounter: return this->emitAtomicCounter(ins); case DxbcInstClass::Barrier: return this->emitBarrier(ins); case DxbcInstClass::BitExtract: return this->emitBitExtract(ins); case DxbcInstClass::BitInsert: return this->emitBitInsert(ins); case DxbcInstClass::BufferQuery: return this->emitBufferQuery(ins); case DxbcInstClass::BufferLoad: return this->emitBufferLoad(ins); case DxbcInstClass::BufferStore: return this->emitBufferStore(ins); case DxbcInstClass::ConvertFloat16: return this->emitConvertFloat16(ins); case DxbcInstClass::ControlFlow: return this->emitControlFlow(ins); case DxbcInstClass::GeometryEmit: return this->emitGeometryEmit(ins); case DxbcInstClass::HullShaderPhase: return this->emitHullShaderPhase(ins); case DxbcInstClass::HullShaderInstCnt: return this->emitHullShaderInstCnt(ins); case DxbcInstClass::Interpolate: return this->emitInterpolate(ins); case DxbcInstClass::TextureQuery: return this->emitTextureQuery(ins); case DxbcInstClass::TextureQueryLod: return this->emitTextureQueryLod(ins); case DxbcInstClass::TextureQueryMs: return this->emitTextureQueryMs(ins); case DxbcInstClass::TextureFetch: return this->emitTextureFetch(ins); case DxbcInstClass::TextureGather: return this->emitTextureGather(ins); case DxbcInstClass::TextureSample: return this->emitTextureSample(ins); case DxbcInstClass::TypedUavLoad: return this->emitTypedUavLoad(ins); case DxbcInstClass::TypedUavStore: return this->emitTypedUavStore(ins); case DxbcInstClass::VectorAlu: return this->emitVectorAlu(ins); case DxbcInstClass::VectorCmov: return this->emitVectorCmov(ins); case DxbcInstClass::VectorCmp: return this->emitVectorCmp(ins); case DxbcInstClass::VectorDeriv: return this->emitVectorDeriv(ins); case DxbcInstClass::VectorDot: return this->emitVectorDot(ins); case DxbcInstClass::VectorIdiv: return this->emitVectorIdiv(ins); case DxbcInstClass::VectorImul: return this->emitVectorImul(ins); case DxbcInstClass::VectorShift: return this->emitVectorShift(ins); case DxbcInstClass::VectorSinCos: return this->emitVectorSinCos(ins); default: Logger::warn( str::format("DxbcCompiler: Unhandled opcode class: ", ins.op)); } } Rc DxbcCompiler::finalize() { // Depending on the shader type, this will prepare // input registers, call various shader functions // and write back the output registers. switch (m_version.type()) { case DxbcProgramType::VertexShader: this->emitVsFinalize(); break; case DxbcProgramType::HullShader: this->emitHsFinalize(); break; case DxbcProgramType::DomainShader: this->emitDsFinalize(); break; case DxbcProgramType::GeometryShader: this->emitGsFinalize(); break; case DxbcProgramType::PixelShader: this->emitPsFinalize(); break; case DxbcProgramType::ComputeShader: this->emitCsFinalize(); break; } // Declare the entry point, we now have all the // information we need, including the interfaces m_module.addEntryPoint(m_entryPointId, m_version.executionModel(), "main", m_entryPointInterfaces.size(), m_entryPointInterfaces.data()); m_module.setDebugName(m_entryPointId, "main"); // Create the shader module object return new DxvkShader( m_version.shaderStage(), m_resourceSlots.size(), m_resourceSlots.data(), m_interfaceSlots, m_module.compile()); } void DxbcCompiler::emitDcl(const DxbcShaderInstruction& ins) { switch (ins.op) { case DxbcOpcode::DclGlobalFlags: return this->emitDclGlobalFlags(ins); case DxbcOpcode::DclIndexRange: return; // not needed for anything case DxbcOpcode::DclTemps: return this->emitDclTemps(ins); case DxbcOpcode::DclIndexableTemp: return this->emitDclIndexableTemp(ins); case DxbcOpcode::DclInput: case DxbcOpcode::DclInputSgv: case DxbcOpcode::DclInputSiv: case DxbcOpcode::DclInputPs: case DxbcOpcode::DclInputPsSgv: case DxbcOpcode::DclInputPsSiv: case DxbcOpcode::DclOutput: case DxbcOpcode::DclOutputSgv: case DxbcOpcode::DclOutputSiv: return this->emitDclInterfaceReg(ins); case DxbcOpcode::DclConstantBuffer: return this->emitDclConstantBuffer(ins); case DxbcOpcode::DclSampler: return this->emitDclSampler(ins); case DxbcOpcode::DclStream: return this->emitDclStream(ins); case DxbcOpcode::DclUavTyped: case DxbcOpcode::DclResource: return this->emitDclResourceTyped(ins); case DxbcOpcode::DclUavRaw: case DxbcOpcode::DclResourceRaw: case DxbcOpcode::DclUavStructured: case DxbcOpcode::DclResourceStructured: return this->emitDclResourceRawStructured(ins); case DxbcOpcode::DclThreadGroupSharedMemoryRaw: case DxbcOpcode::DclThreadGroupSharedMemoryStructured: return this->emitDclThreadGroupSharedMemory(ins); case DxbcOpcode::DclGsInputPrimitive: return this->emitDclGsInputPrimitive(ins); case DxbcOpcode::DclGsOutputPrimitiveTopology: return this->emitDclGsOutputTopology(ins); case DxbcOpcode::DclMaxOutputVertexCount: return this->emitDclMaxOutputVertexCount(ins); case DxbcOpcode::DclInputControlPointCount: return this->emitDclInputControlPointCount(ins); case DxbcOpcode::DclOutputControlPointCount: return this->emitDclOutputControlPointCount(ins); case DxbcOpcode::DclTessDomain: return this->emitDclTessDomain(ins); case DxbcOpcode::DclTessPartitioning: return this->emitDclTessPartitioning(ins); case DxbcOpcode::DclTessOutputPrimitive: return this->emitDclTessOutputPrimitive(ins); case DxbcOpcode::DclThreadGroup: return this->emitDclThreadGroup(ins); default: Logger::warn( str::format("DxbcCompiler: Unhandled opcode: ", ins.op)); } } void DxbcCompiler::emitDclGlobalFlags(const DxbcShaderInstruction& ins) { const DxbcGlobalFlags flags = ins.controls.globalFlags; if (flags.test(DxbcGlobalFlag::EarlyFragmentTests)) m_module.setExecutionMode(m_entryPointId, spv::ExecutionModeEarlyFragmentTests); } void DxbcCompiler::emitDclTemps(const DxbcShaderInstruction& ins) { // dcl_temps has one operand: // (imm0) Number of temp registers const uint32_t oldCount = m_rRegs.size(); const uint32_t newCount = ins.imm[0].u32; if (newCount > oldCount) { m_rRegs.resize(newCount); DxbcRegisterInfo info; info.type.ctype = DxbcScalarType::Float32; info.type.ccount = 4; info.type.alength = 0; info.sclass = spv::StorageClassPrivate; for (uint32_t i = oldCount; i < newCount; i++) { const uint32_t varId = this->emitNewVariable(info); m_module.setDebugName(varId, str::format("r", i).c_str()); m_rRegs.at(i) = varId; } } } void DxbcCompiler::emitDclIndexableTemp(const DxbcShaderInstruction& ins) { // dcl_indexable_temps has three operands: // (imm0) Array register index (x#) // (imm1) Number of vectors stored in the array // (imm2) Component count of each individual vector DxbcRegisterInfo info; info.type.ctype = DxbcScalarType::Float32; info.type.ccount = ins.imm[2].u32; info.type.alength = ins.imm[1].u32; info.sclass = spv::StorageClassPrivate; const uint32_t regId = ins.imm[0].u32; if (regId >= m_xRegs.size()) m_xRegs.resize(regId + 1); m_xRegs.at(regId).ccount = info.type.ccount; m_xRegs.at(regId).varId = emitNewVariable(info); m_module.setDebugName(m_xRegs.at(regId).varId, str::format("x", regId).c_str()); } void DxbcCompiler::emitDclInterfaceReg(const DxbcShaderInstruction& ins) { switch (ins.dst[0].type) { case DxbcOperandType::Input: case DxbcOperandType::Output: { // dcl_input and dcl_output instructions // have the following operands: // (dst0) The register to declare // (imm0) The system value (optional) uint32_t regDim = 0; uint32_t regIdx = 0; // In the vertex and fragment shader stage, the // operand indices will have the following format: // (0) Register index // // In other stages, the input and output registers // may be declared as arrays of a fixed size: // (0) Array length // (1) Register index if (ins.dst[0].idxDim == 2) { regDim = ins.dst[0].idx[0].offset; regIdx = ins.dst[0].idx[1].offset; } else if (ins.dst[0].idxDim == 1) { regIdx = ins.dst[0].idx[0].offset; } else { Logger::err(str::format( "DxbcCompiler: ", ins.op, ": Invalid index dimension")); return; } // This declaration may map an output register to a system // value. If that is the case, the system value type will // be stored in the second operand. const bool hasSv = ins.op == DxbcOpcode::DclInputSgv || ins.op == DxbcOpcode::DclInputSiv || ins.op == DxbcOpcode::DclInputPsSgv || ins.op == DxbcOpcode::DclInputPsSiv || ins.op == DxbcOpcode::DclOutputSgv || ins.op == DxbcOpcode::DclOutputSiv; DxbcSystemValue sv = DxbcSystemValue::None; if (hasSv) sv = static_cast(ins.imm[0].u32); // In the pixel shader, inputs are declared with an // interpolation mode that is part of the op token. const bool hasInterpolationMode = ins.op == DxbcOpcode::DclInputPs || ins.op == DxbcOpcode::DclInputPsSiv; DxbcInterpolationMode im = DxbcInterpolationMode::Undefined; if (hasInterpolationMode) im = ins.controls.interpolation; // Declare the actual input/output variable switch (ins.op) { case DxbcOpcode::DclInput: case DxbcOpcode::DclInputSgv: case DxbcOpcode::DclInputSiv: case DxbcOpcode::DclInputPs: case DxbcOpcode::DclInputPsSgv: case DxbcOpcode::DclInputPsSiv: this->emitDclInput(regIdx, regDim, ins.dst[0].mask, sv, im); break; case DxbcOpcode::DclOutput: case DxbcOpcode::DclOutputSgv: case DxbcOpcode::DclOutputSiv: this->emitDclOutput(regIdx, regDim, ins.dst[0].mask, sv, im); break; default: Logger::err(str::format( "DxbcCompiler: Unexpected opcode: ", ins.op)); } } break; case DxbcOperandType::InputThreadId: { m_cs.builtinGlobalInvocationId = emitNewBuiltinVariable({ { DxbcScalarType::Uint32, 3, 0 }, spv::StorageClassInput }, spv::BuiltInGlobalInvocationId, "vThreadId"); } break; case DxbcOperandType::InputThreadGroupId: { m_cs.builtinWorkgroupId = emitNewBuiltinVariable({ { DxbcScalarType::Uint32, 3, 0 }, spv::StorageClassInput }, spv::BuiltInWorkgroupId, "vThreadGroupId"); } break; case DxbcOperandType::InputThreadIdInGroup: { m_cs.builtinLocalInvocationId = emitNewBuiltinVariable({ { DxbcScalarType::Uint32, 3, 0 }, spv::StorageClassInput }, spv::BuiltInLocalInvocationId, "vThreadIdInGroup"); } break; case DxbcOperandType::InputThreadIndexInGroup: { m_cs.builtinLocalInvocationIndex = emitNewBuiltinVariable({ { DxbcScalarType::Uint32, 1, 0 }, spv::StorageClassInput }, spv::BuiltInLocalInvocationIndex, "vThreadIndexInGroup"); } break; case DxbcOperandType::InputCoverageMask: { m_module.enableCapability(spv::CapabilitySampleRateShading); m_ps.builtinSampleMaskIn = emitNewBuiltinVariable({ { DxbcScalarType::Uint32, 1, 1 }, spv::StorageClassInput }, spv::BuiltInSampleMask, "vCoverage"); } break; case DxbcOperandType::OutputCoverageMask: { m_module.enableCapability(spv::CapabilitySampleRateShading); m_ps.builtinSampleMaskOut = emitNewBuiltinVariable({ { DxbcScalarType::Uint32, 1, 1 }, spv::StorageClassOutput }, spv::BuiltInSampleMask, "oMask"); } break; case DxbcOperandType::OutputDepth: { m_module.setExecutionMode(m_entryPointId, spv::ExecutionModeDepthReplacing); m_ps.builtinDepth = emitNewBuiltinVariable({ { DxbcScalarType::Float32, 1, 0 }, spv::StorageClassOutput }, spv::BuiltInFragDepth, "oDepth"); } break; case DxbcOperandType::OutputDepthGe: { m_module.setExecutionMode(m_entryPointId, spv::ExecutionModeDepthReplacing); m_module.setExecutionMode(m_entryPointId, spv::ExecutionModeDepthGreater); m_ps.builtinDepth = emitNewBuiltinVariable({ { DxbcScalarType::Float32, 1, 0 }, spv::StorageClassOutput }, spv::BuiltInFragDepth, "oDepthGe"); } break; case DxbcOperandType::OutputDepthLe: { m_module.setExecutionMode(m_entryPointId, spv::ExecutionModeDepthReplacing); m_module.setExecutionMode(m_entryPointId, spv::ExecutionModeDepthLess); m_ps.builtinDepth = emitNewBuiltinVariable({ { DxbcScalarType::Float32, 1, 0 }, spv::StorageClassOutput }, spv::BuiltInFragDepth, "oDepthLe"); } break; case DxbcOperandType::InputDomainPoint: { m_ds.builtinTessCoord = emitNewBuiltinVariable({ { DxbcScalarType::Float32, 3, 0 }, spv::StorageClassInput }, spv::BuiltInTessCoord, "vDomain"); } break; case DxbcOperandType::InputForkInstanceId: case DxbcOperandType::InputJoinInstanceId: { auto phase = this->getCurrentHsForkJoinPhase(); phase->instanceIdPtr = m_module.newVar( m_module.defPointerType( m_module.defIntType(32, 0), spv::StorageClassFunction), spv::StorageClassFunction); m_module.opStore(phase->instanceIdPtr, phase->instanceId); m_module.setDebugName(phase->instanceIdPtr, ins.dst[0].type == DxbcOperandType::InputForkInstanceId ? "vForkInstanceId" : "vJoinInstanceId"); } break; case DxbcOperandType::OutputControlPointId: { // This system value map to the invocation // ID, which has been declared already. } break; case DxbcOperandType::InputControlPoint: case DxbcOperandType::InputPatchConstant: case DxbcOperandType::OutputControlPoint: { // These have been declared as global input and // output arrays, so there's nothing left to do. } break; default: Logger::err(str::format( "DxbcCompiler: Unsupported operand type declaration: ", ins.dst[0].type)); } } void DxbcCompiler::emitDclInput( uint32_t regIdx, uint32_t regDim, DxbcRegMask regMask, DxbcSystemValue sv, DxbcInterpolationMode im) { // Avoid declaring the same variable multiple times. // This may happen when multiple system values are // mapped to different parts of the same register. if (m_vRegs.at(regIdx) == 0 && sv == DxbcSystemValue::None) { const DxbcVectorType regType = getInputRegType(regIdx); DxbcRegisterInfo info; info.type.ctype = regType.ctype; info.type.ccount = regType.ccount; info.type.alength = regDim; info.sclass = spv::StorageClassInput; const uint32_t varId = emitNewVariable(info); m_module.decorateLocation(varId, regIdx); m_module.setDebugName(varId, str::format("v", regIdx).c_str()); m_entryPointInterfaces.push_back(varId); m_vRegs.at(regIdx) = varId; // Interpolation mode, used in pixel shaders if (im == DxbcInterpolationMode::Constant) m_module.decorate(varId, spv::DecorationFlat); if (im == DxbcInterpolationMode::LinearCentroid || im == DxbcInterpolationMode::LinearNoPerspectiveCentroid) m_module.decorate(varId, spv::DecorationCentroid); if (im == DxbcInterpolationMode::LinearNoPerspective || im == DxbcInterpolationMode::LinearNoPerspectiveCentroid || im == DxbcInterpolationMode::LinearNoPerspectiveSample) m_module.decorate(varId, spv::DecorationNoPerspective); if (im == DxbcInterpolationMode::LinearSample || im == DxbcInterpolationMode::LinearNoPerspectiveSample) m_module.decorate(varId, spv::DecorationSample); // Declare the input slot as defined m_interfaceSlots.inputSlots |= 1u << regIdx; } else if (sv != DxbcSystemValue::None) { // Add a new system value mapping if needed m_vMappings.push_back({ regIdx, regMask, sv }); } } void DxbcCompiler::emitDclOutput( uint32_t regIdx, uint32_t regDim, DxbcRegMask regMask, DxbcSystemValue sv, DxbcInterpolationMode im) { // Add a new system value mapping if needed if (sv != DxbcSystemValue::None) m_oMappings.push_back({ regIdx, regMask, sv }); // Hull shaders don't use standard outputs if (m_version.type() == DxbcProgramType::HullShader) return; // Avoid declaring the same variable multiple times. // This may happen when multiple system values are // mapped to different parts of the same register. if (m_oRegs.at(regIdx) == 0) { DxbcRegisterInfo info; info.type.ctype = DxbcScalarType::Float32; info.type.ccount = 4; info.type.alength = regDim; info.sclass = spv::StorageClassOutput; const uint32_t varId = this->emitNewVariable(info); m_module.decorateLocation(varId, regIdx); m_module.setDebugName(varId, str::format("o", regIdx).c_str()); m_entryPointInterfaces.push_back(varId); m_oRegs.at(regIdx) = varId; // Declare the output slot as defined m_interfaceSlots.outputSlots |= 1u << regIdx; } } void DxbcCompiler::emitDclConstantBuffer(const DxbcShaderInstruction& ins) { // dcl_constant_buffer has one operand with two indices: // (0) Constant buffer register ID (cb#) // (1) Number of constants in the buffer const uint32_t bufferId = ins.dst[0].idx[0].offset; const uint32_t elementCount = ins.dst[0].idx[1].offset; // Uniform buffer data is stored as a fixed-size array // of 4x32-bit vectors. SPIR-V requires explicit strides. const uint32_t arrayType = m_module.defArrayTypeUnique( getVectorTypeId({ DxbcScalarType::Float32, 4 }), m_module.constu32(elementCount)); m_module.decorateArrayStride(arrayType, 16); // SPIR-V requires us to put that array into a // struct and decorate that struct as a block. const uint32_t structType = m_module.defStructTypeUnique(1, &arrayType); m_module.decorateBlock (structType); m_module.memberDecorateOffset(structType, 0, 0); m_module.setDebugName (structType, str::format("struct_cb", bufferId).c_str()); m_module.setDebugMemberName (structType, 0, "m"); // Variable that we'll use to access the buffer const uint32_t varId = m_module.newVar( m_module.defPointerType(structType, spv::StorageClassUniform), spv::StorageClassUniform); m_module.setDebugName(varId, str::format("cb", bufferId).c_str()); // Compute the DXVK binding slot index for the buffer. // D3D11 needs to bind the actual buffers to this slot. const uint32_t bindingId = computeResourceSlotId( m_version.type(), DxbcBindingType::ConstantBuffer, bufferId); m_module.decorateDescriptorSet(varId, 0); m_module.decorateBinding(varId, bindingId); // Declare a specialization constant which will // store whether or not the resource is bound. const uint32_t specConstId = m_module.specConstBool(true); m_module.decorateSpecId(specConstId, bindingId); m_module.setDebugName(specConstId, str::format("cb", bufferId, "_bound").c_str()); DxbcConstantBuffer buf; buf.varId = varId; buf.specId = specConstId; buf.size = elementCount; m_constantBuffers.at(bufferId) = buf; // Store descriptor info for the shader interface DxvkResourceSlot resource; resource.slot = bindingId; resource.type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; resource.view = VK_IMAGE_VIEW_TYPE_MAX_ENUM; m_resourceSlots.push_back(resource); } void DxbcCompiler::emitDclSampler(const DxbcShaderInstruction& ins) { // dclSampler takes one operand: // (dst0) The sampler register to declare const uint32_t samplerId = ins.dst[0].idx[0].offset; // The sampler type is opaque, but we still have to // define a pointer and a variable in oder to use it const uint32_t samplerType = m_module.defSamplerType(); const uint32_t samplerPtrType = m_module.defPointerType( samplerType, spv::StorageClassUniformConstant); // Define the sampler variable const uint32_t varId = m_module.newVar(samplerPtrType, spv::StorageClassUniformConstant); m_module.setDebugName(varId, str::format("s", samplerId).c_str()); m_samplers.at(samplerId).varId = varId; m_samplers.at(samplerId).typeId = samplerType; // Compute binding slot index for the sampler const uint32_t bindingId = computeResourceSlotId( m_version.type(), DxbcBindingType::ImageSampler, samplerId); m_module.decorateDescriptorSet(varId, 0); m_module.decorateBinding(varId, bindingId); // Store descriptor info for the shader interface DxvkResourceSlot resource; resource.slot = bindingId; resource.type = VK_DESCRIPTOR_TYPE_SAMPLER; resource.view = VK_IMAGE_VIEW_TYPE_MAX_ENUM; m_resourceSlots.push_back(resource); } void DxbcCompiler::emitDclStream(const DxbcShaderInstruction& ins) { if (ins.dst[0].idx[0].offset != 0) Logger::err("Dxbc: Multiple streams not supported"); } void DxbcCompiler::emitDclResourceTyped(const DxbcShaderInstruction& ins) { // dclResource takes two operands: // (dst0) The resource register ID // (imm0) The resource return type const uint32_t registerId = ins.dst[0].idx[0].offset; // We also handle unordered access views here const bool isUav = ins.op == DxbcOpcode::DclUavTyped; if (isUav) { m_module.enableCapability(spv::CapabilityStorageImageReadWithoutFormat); m_module.enableCapability(spv::CapabilityStorageImageWriteWithoutFormat); } // Defines the type of the resource (texture2D, ...) const DxbcResourceDim resourceType = ins.controls.resourceDim; // Defines the type of a read operation. DXBC has the ability // to define four different types whereas SPIR-V only allows // one, but in practice this should not be much of a problem. auto xType = static_cast( bit::extract(ins.imm[0].u32, 0, 3)); auto yType = static_cast( bit::extract(ins.imm[0].u32, 4, 7)); auto zType = static_cast( bit::extract(ins.imm[0].u32, 8, 11)); auto wType = static_cast( bit::extract(ins.imm[0].u32, 12, 15)); if ((xType != yType) || (xType != zType) || (xType != wType)) Logger::warn("DxbcCompiler: dcl_resource: Ignoring resource return types"); // Declare the actual sampled type const DxbcScalarType sampledType = [xType] { switch (xType) { case DxbcResourceReturnType::Float: return DxbcScalarType::Float32; case DxbcResourceReturnType::Sint: return DxbcScalarType::Sint32; case DxbcResourceReturnType::Uint: return DxbcScalarType::Uint32; default: throw DxvkError(str::format("DxbcCompiler: Invalid sampled type: ", xType)); } }(); const uint32_t sampledTypeId = getScalarTypeId(sampledType); // Declare the resource type // TODO test multisampled images const DxbcImageInfo typeInfo = [resourceType, isUav] () -> DxbcImageInfo { switch (resourceType) { case DxbcResourceDim::Buffer: return { spv::DimBuffer, 0, 0, isUav ? 2u : 1u }; case DxbcResourceDim::Texture1D: return { spv::Dim1D, 0, 0, isUav ? 2u : 1u }; case DxbcResourceDim::Texture1DArr: return { spv::Dim1D, 1, 0, isUav ? 2u : 1u }; case DxbcResourceDim::Texture2D: return { spv::Dim2D, 0, 0, isUav ? 2u : 1u }; case DxbcResourceDim::Texture2DArr: return { spv::Dim2D, 1, 0, isUav ? 2u : 1u }; case DxbcResourceDim::Texture2DMs: return { spv::Dim2D, 0, 1, isUav ? 2u : 1u }; case DxbcResourceDim::Texture2DMsArr: return { spv::Dim2D, 1, 1, isUav ? 2u : 1u }; case DxbcResourceDim::Texture3D: return { spv::Dim3D, 0, 0, isUav ? 2u : 1u }; // Apps may bind cube maps to a slot that expects cube map arrays case DxbcResourceDim::TextureCube: return { spv::DimCube, 1, 0, isUav ? 2u : 1u }; case DxbcResourceDim::TextureCubeArr: return { spv::DimCube, 1, 0, isUav ? 2u : 1u }; default: throw DxvkError(str::format("DxbcCompiler: Unsupported resource type: ", resourceType)); } }(); // Declare additional capabilities if necessary switch (resourceType) { case DxbcResourceDim::Buffer: m_module.enableCapability(spv::CapabilityImageBuffer); break; case DxbcResourceDim::Texture1D: m_module.enableCapability(spv::CapabilityImage1D); break; case DxbcResourceDim::Texture1DArr: m_module.enableCapability(spv::CapabilityImage1D); break; case DxbcResourceDim::TextureCube: m_module.enableCapability(spv::CapabilityImageCubeArray); break; case DxbcResourceDim::TextureCubeArr: m_module.enableCapability(spv::CapabilityImageCubeArray); break; case DxbcResourceDim::Texture2DMsArr: m_module.enableCapability(spv::CapabilityImageMSArray); break; default: break; // No additional capabilities required } // We do not know whether the image is going to be used as // a color image or a depth image yet, but we can pick the // correct type when creating a sampled image object. const uint32_t imageTypeId = m_module.defImageType(sampledTypeId, typeInfo.dim, 0, typeInfo.array, typeInfo.ms, typeInfo.sampled, spv::ImageFormatUnknown); // We'll declare the texture variable with the color type // and decide which one to use when the texture is sampled. const uint32_t resourcePtrType = m_module.defPointerType( imageTypeId, spv::StorageClassUniformConstant); const uint32_t varId = m_module.newVar(resourcePtrType, spv::StorageClassUniformConstant); m_module.setDebugName(varId, str::format(isUav ? "u" : "t", registerId).c_str()); // Compute the DXVK binding slot index for the resource. // D3D11 needs to bind the actual resource to this slot. const uint32_t bindingId = computeResourceSlotId( m_version.type(), isUav ? DxbcBindingType::UnorderedAccessView : DxbcBindingType::ShaderResource, registerId); m_module.decorateDescriptorSet(varId, 0); m_module.decorateBinding(varId, bindingId); // Declare a specialization constant which will // store whether or not the resource is bound. const uint32_t specConstId = m_module.specConstBool(true); m_module.decorateSpecId(specConstId, bindingId); m_module.setDebugName(specConstId, str::format(isUav ? "u" : "t", registerId, "_bound").c_str()); if (isUav) { DxbcUav uav; uav.type = DxbcResourceType::Typed; uav.imageInfo = typeInfo; uav.varId = varId; uav.ctrId = 0; uav.specId = specConstId; uav.sampledType = sampledType; uav.sampledTypeId = sampledTypeId; uav.imageTypeId = imageTypeId; uav.structStride = 0; m_uavs.at(registerId) = uav; } else { DxbcShaderResource res; res.type = DxbcResourceType::Typed; res.imageInfo = typeInfo; res.varId = varId; res.specId = specConstId; res.sampledType = sampledType; res.sampledTypeId = sampledTypeId; res.imageTypeId = imageTypeId; res.colorTypeId = imageTypeId; res.depthTypeId = 0; res.structStride = 0; if ((sampledType == DxbcScalarType::Float32) && (resourceType == DxbcResourceDim::Texture2D || resourceType == DxbcResourceDim::Texture2DArr || resourceType == DxbcResourceDim::TextureCube || resourceType == DxbcResourceDim::TextureCubeArr)) { res.depthTypeId = m_module.defImageType(sampledTypeId, typeInfo.dim, 1, typeInfo.array, typeInfo.ms, typeInfo.sampled, spv::ImageFormatUnknown); } m_textures.at(registerId) = res; } // Store descriptor info for the shader interface DxvkResourceSlot resource; resource.slot = bindingId; resource.view = getViewType(resourceType); if (isUav) { resource.type = resourceType == DxbcResourceDim::Buffer ? VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER : VK_DESCRIPTOR_TYPE_STORAGE_IMAGE; } else { resource.type = resourceType == DxbcResourceDim::Buffer ? VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER : VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE; } m_resourceSlots.push_back(resource); } void DxbcCompiler::emitDclResourceRawStructured(const DxbcShaderInstruction& ins) { // dcl_resource_raw and dcl_uav_raw take one argument: // (dst0) The resource register ID // dcl_resource_structured and dcl_uav_structured take two arguments: // (dst0) The resource register ID // (imm0) Structure stride, in bytes const uint32_t registerId = ins.dst[0].idx[0].offset; const bool isUav = ins.op == DxbcOpcode::DclUavRaw || ins.op == DxbcOpcode::DclUavStructured; const bool isStructured = ins.op == DxbcOpcode::DclUavStructured || ins.op == DxbcOpcode::DclResourceStructured; // Structured and raw buffers are represented as // texel buffers consisting of 32-bit integers. m_module.enableCapability(spv::CapabilityImageBuffer); const DxbcScalarType sampledType = DxbcScalarType::Uint32; const uint32_t sampledTypeId = getScalarTypeId(sampledType); const DxbcImageInfo typeInfo = { spv::DimBuffer, 0, 0, isUav ? 2u : 1u }; // Declare the resource type const uint32_t resTypeId = m_module.defImageType(sampledTypeId, typeInfo.dim, 0, typeInfo.array, typeInfo.ms, typeInfo.sampled, spv::ImageFormatR32ui); const uint32_t varId = m_module.newVar( m_module.defPointerType(resTypeId, spv::StorageClassUniformConstant), spv::StorageClassUniformConstant); m_module.setDebugName(varId, str::format(isUav ? "u" : "t", registerId).c_str()); // Write back resource info const DxbcResourceType resType = isStructured ? DxbcResourceType::Structured : DxbcResourceType::Raw; const uint32_t resStride = isStructured ? ins.imm[0].u32 : 0; // Compute the DXVK binding slot index for the resource. const uint32_t bindingId = computeResourceSlotId( m_version.type(), isUav ? DxbcBindingType::UnorderedAccessView : DxbcBindingType::ShaderResource, registerId); m_module.decorateDescriptorSet(varId, 0); m_module.decorateBinding(varId, bindingId); // Declare a specialization constant which will // store whether or not the resource is bound. const uint32_t specConstId = m_module.specConstBool(true); m_module.decorateSpecId(specConstId, bindingId); m_module.setDebugName(specConstId, str::format(isUav ? "u" : "t", registerId, "_bound").c_str()); if (isUav) { DxbcUav uav; uav.type = resType; uav.imageInfo = typeInfo; uav.varId = varId; uav.ctrId = 0; uav.specId = specConstId; uav.sampledType = sampledType; uav.sampledTypeId = sampledTypeId; uav.imageTypeId = resTypeId; uav.structStride = resStride; m_uavs.at(registerId) = uav; } else { DxbcShaderResource res; res.type = resType; res.imageInfo = typeInfo; res.varId = varId; res.specId = specConstId; res.sampledType = sampledType; res.sampledTypeId = sampledTypeId; res.imageTypeId = resTypeId; res.colorTypeId = resTypeId; res.depthTypeId = 0; res.structStride = resStride; m_textures.at(registerId) = res; } // Store descriptor info for the shader interface DxvkResourceSlot resource; resource.slot = bindingId; resource.type = isUav ? VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER : VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER; resource.view = VK_IMAGE_VIEW_TYPE_MAX_ENUM; m_resourceSlots.push_back(resource); } void DxbcCompiler::emitDclThreadGroupSharedMemory(const DxbcShaderInstruction& ins) { // dcl_tgsm_raw takes two arguments: // (dst0) The resource register ID // (imm0) Block size, in DWORDs // dcl_tgsm_structured takes three arguments: // (dst0) The resource register ID // (imm0) Structure stride, in bytes // (imm1) Structure count const bool isStructured = ins.op == DxbcOpcode::DclThreadGroupSharedMemoryStructured; const uint32_t regId = ins.dst[0].idx[0].offset; if (regId >= m_gRegs.size()) m_gRegs.resize(regId + 1); const uint32_t elementStride = isStructured ? ins.imm[0].u32 : 0; const uint32_t elementCount = isStructured ? ins.imm[1].u32 : ins.imm[0].u32; DxbcRegisterInfo varInfo; varInfo.type.ctype = DxbcScalarType::Uint32; varInfo.type.ccount = 1; varInfo.type.alength = isStructured ? elementCount * elementStride / 4 : elementCount; varInfo.sclass = spv::StorageClassWorkgroup; m_gRegs[regId].type = isStructured ? DxbcResourceType::Structured : DxbcResourceType::Raw; m_gRegs[regId].elementStride = elementStride; m_gRegs[regId].elementCount = elementCount; m_gRegs[regId].varId = emitNewVariable(varInfo); m_module.setDebugName(m_gRegs[regId].varId, str::format("g", regId).c_str()); } void DxbcCompiler::emitDclGsInputPrimitive(const DxbcShaderInstruction& ins) { // The input primitive type is stored within in the // control bits of the opcode token. In SPIR-V, we // have to define an execution mode. const spv::ExecutionMode mode = [&] { switch (ins.controls.primitive) { case DxbcPrimitive::Point: return spv::ExecutionModeInputPoints; case DxbcPrimitive::Line: return spv::ExecutionModeInputLines; case DxbcPrimitive::Triangle: return spv::ExecutionModeTriangles; case DxbcPrimitive::LineAdj: return spv::ExecutionModeInputLinesAdjacency; case DxbcPrimitive::TriangleAdj: return spv::ExecutionModeInputTrianglesAdjacency; default: throw DxvkError("DxbcCompiler: Unsupported primitive type"); } }(); m_gs.inputPrimitive = ins.controls.primitive; m_module.setExecutionMode(m_entryPointId, mode); const uint32_t vertexCount = primitiveVertexCount(m_gs.inputPrimitive); emitDclInputArray(vertexCount); emitDclInputPerVertex(vertexCount, "gs_vertex_in"); } void DxbcCompiler::emitDclGsOutputTopology(const DxbcShaderInstruction& ins) { // The input primitive topology is stored within in the // control bits of the opcode token. In SPIR-V, we have // to define an execution mode. const spv::ExecutionMode mode = [&] { switch (ins.controls.primitiveTopology) { case DxbcPrimitiveTopology::PointList: return spv::ExecutionModeOutputPoints; case DxbcPrimitiveTopology::LineStrip: return spv::ExecutionModeOutputLineStrip; case DxbcPrimitiveTopology::TriangleStrip: return spv::ExecutionModeOutputTriangleStrip; default: throw DxvkError("DxbcCompiler: Unsupported primitive topology"); } }(); m_module.setExecutionMode(m_entryPointId, mode); } void DxbcCompiler::emitDclMaxOutputVertexCount(const DxbcShaderInstruction& ins) { // dcl_max_output_vertex_count has one operand: // (imm0) The maximum number of vertices m_gs.outputVertexCount = ins.imm[0].u32; m_module.setOutputVertices(m_entryPointId, m_gs.outputVertexCount); } void DxbcCompiler::emitDclInputControlPointCount(const DxbcShaderInstruction& ins) { // dcl_input_control_points has the control point // count embedded within the opcode token. if (m_version.type() == DxbcProgramType::HullShader) { m_hs.vertexCountIn = ins.controls.controlPointCount; emitDclInputArray(m_hs.vertexCountIn); } else { m_ds.vertexCountIn = ins.controls.controlPointCount; m_ds.inputPerPatch = emitTessInterfacePerPatch (spv::StorageClassInput); m_ds.inputPerVertex = emitTessInterfacePerVertex(spv::StorageClassInput, m_ds.vertexCountIn); } } void DxbcCompiler::emitDclOutputControlPointCount(const DxbcShaderInstruction& ins) { // dcl_output_control_points has the control point // count embedded within the opcode token. m_hs.vertexCountOut = ins.controls.controlPointCount; m_hs.outputPerPatch = emitTessInterfacePerPatch (spv::StorageClassOutput); m_hs.outputPerVertex = emitTessInterfacePerVertex(spv::StorageClassOutput, m_hs.vertexCountOut); m_module.setOutputVertices(m_entryPointId, ins.controls.controlPointCount); } void DxbcCompiler::emitDclTessDomain(const DxbcShaderInstruction& ins) { const spv::ExecutionMode executionMode = [&] { switch (ins.controls.tessDomain) { case DxbcTessDomain::Isolines: return spv::ExecutionModeIsolines; case DxbcTessDomain::Triangles: return spv::ExecutionModeTriangles; case DxbcTessDomain::Quads: return spv::ExecutionModeQuads; default: throw DxvkError("Dxbc: Invalid tess domain"); } }(); m_module.setExecutionMode(m_entryPointId, executionMode); } void DxbcCompiler::emitDclTessPartitioning(const DxbcShaderInstruction& ins) { const spv::ExecutionMode executionMode = [&] { switch (ins.controls.tessPartitioning) { case DxbcTessPartitioning::Pow2: case DxbcTessPartitioning::Integer: return spv::ExecutionModeSpacingEqual; case DxbcTessPartitioning::FractOdd: return spv::ExecutionModeSpacingFractionalOdd; case DxbcTessPartitioning::FractEven: return spv::ExecutionModeSpacingFractionalEven; default: throw DxvkError("Dxbc: Invalid tess partitioning"); } }(); m_module.setExecutionMode(m_entryPointId, executionMode); } void DxbcCompiler::emitDclTessOutputPrimitive(const DxbcShaderInstruction& ins) { switch (ins.controls.tessOutputPrimitive) { case DxbcTessOutputPrimitive::Point: m_module.setExecutionMode(m_entryPointId, spv::ExecutionModePointMode); break; case DxbcTessOutputPrimitive::Line: break; case DxbcTessOutputPrimitive::TriangleCw: m_module.setExecutionMode(m_entryPointId, spv::ExecutionModeVertexOrderCw); break; case DxbcTessOutputPrimitive::TriangleCcw: m_module.setExecutionMode(m_entryPointId, spv::ExecutionModeVertexOrderCcw); break; default: throw DxvkError("Dxbc: Invalid tess output primitive"); } } void DxbcCompiler::emitDclThreadGroup(const DxbcShaderInstruction& ins) { // dcl_thread_group has three operands: // (imm0) Number of threads in X dimension // (imm1) Number of threads in Y dimension // (imm2) Number of threads in Z dimension m_module.setLocalSize(m_entryPointId, ins.imm[0].u32, ins.imm[1].u32, ins.imm[2].u32); } uint32_t DxbcCompiler::emitDclUavCounter(uint32_t regId) { // Declare a structure type which holds the UAV counter if (m_uavCtrStructType == 0) { const uint32_t t_u32 = m_module.defIntType(32, 0); const uint32_t t_struct = m_module.defStructTypeUnique(1, &t_u32); m_module.decorate(t_struct, spv::DecorationBufferBlock); m_module.memberDecorateOffset(t_struct, 0, 0); m_module.setDebugName (t_struct, "uav_meta"); m_module.setDebugMemberName(t_struct, 0, "ctr"); m_uavCtrStructType = t_struct; m_uavCtrPointerType = m_module.defPointerType( t_struct, spv::StorageClassUniform); } // Declare the buffer variable const uint32_t varId = m_module.newVar( m_uavCtrPointerType, spv::StorageClassUniform); m_module.setDebugName(varId, str::format("u", regId, "_meta").c_str()); const uint32_t bindingId = computeResourceSlotId( m_version.type(), DxbcBindingType::UavCounter, regId); m_module.decorateDescriptorSet(varId, 0); m_module.decorateBinding(varId, bindingId); // Declare the storage buffer binding DxvkResourceSlot resource; resource.slot = bindingId; resource.type = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER; resource.view = VK_IMAGE_VIEW_TYPE_MAX_ENUM; m_resourceSlots.push_back(resource); return varId; } void DxbcCompiler::emitDclImmediateConstantBuffer(const DxbcShaderInstruction& ins) { if (m_immConstBuf != 0) throw DxvkError("DxbcCompiler: Immediate constant buffer already declared"); if ((ins.customDataSize & 0x3) != 0) throw DxvkError("DxbcCompiler: Immediate constant buffer size not a multiple of four DWORDs"); // Declare individual vector constants as 4x32-bit vectors std::array vectorIds; DxbcVectorType vecType; vecType.ctype = DxbcScalarType::Uint32; vecType.ccount = 4; const uint32_t vectorTypeId = getVectorTypeId(vecType); const uint32_t vectorCount = ins.customDataSize / 4; for (uint32_t i = 0; i < vectorCount; i++) { std::array scalarIds = { m_module.constu32(ins.customData[4 * i + 0]), m_module.constu32(ins.customData[4 * i + 1]), m_module.constu32(ins.customData[4 * i + 2]), m_module.constu32(ins.customData[4 * i + 3]), }; vectorIds.at(i) = m_module.constComposite( vectorTypeId, scalarIds.size(), scalarIds.data()); } // Declare the array that contains all the vectors DxbcArrayType arrInfo; arrInfo.ctype = DxbcScalarType::Uint32; arrInfo.ccount = 4; arrInfo.alength = vectorCount; const uint32_t arrayTypeId = getArrayTypeId(arrInfo); const uint32_t arrayId = m_module.constComposite( arrayTypeId, vectorCount, vectorIds.data()); // Declare the variable that will hold the constant // data and initialize it with the constant array. const uint32_t pointerTypeId = m_module.defPointerType( arrayTypeId, spv::StorageClassPrivate); m_immConstBuf = m_module.newVarInit( pointerTypeId, spv::StorageClassPrivate, arrayId); m_module.setDebugName(m_immConstBuf, "icb"); } void DxbcCompiler::emitCustomData(const DxbcShaderInstruction& ins) { switch (ins.customDataType) { case DxbcCustomDataClass::ImmConstBuf: return emitDclImmediateConstantBuffer(ins); default: Logger::warn(str::format( "DxbcCompiler: Unsupported custom data block: ", ins.customDataType)); } } void DxbcCompiler::emitVectorAlu(const DxbcShaderInstruction& ins) { std::array src; for (uint32_t i = 0; i < ins.srcCount; i++) src.at(i) = emitRegisterLoad(ins.src[i], ins.dst[0].mask); DxbcRegisterValue dst; dst.type.ctype = ins.dst[0].dataType; dst.type.ccount = ins.dst[0].mask.setCount(); const uint32_t typeId = getVectorTypeId(dst.type); switch (ins.op) { ///////////////////// // Move instructions case DxbcOpcode::Mov: dst.id = src.at(0).id; break; ///////////////////////////////////// // ALU operations on float32 numbers case DxbcOpcode::Add: dst.id = m_module.opFAdd(typeId, src.at(0).id, src.at(1).id); break; case DxbcOpcode::Div: dst.id = m_module.opFDiv(typeId, src.at(0).id, src.at(1).id); break; case DxbcOpcode::Exp: dst.id = m_module.opExp2( typeId, src.at(0).id); break; case DxbcOpcode::Frc: dst.id = m_module.opFract( typeId, src.at(0).id); break; case DxbcOpcode::Log: dst.id = m_module.opLog2( typeId, src.at(0).id); break; case DxbcOpcode::Mad: dst.id = m_module.opFFma(typeId, src.at(0).id, src.at(1).id, src.at(2).id); break; case DxbcOpcode::Max: dst.id = m_options.useSimpleMinMaxClamp ? m_module.opFMax(typeId, src.at(0).id, src.at(1).id) : m_module.opNMax(typeId, src.at(0).id, src.at(1).id); break; case DxbcOpcode::Min: dst.id = m_options.useSimpleMinMaxClamp ? m_module.opFMin(typeId, src.at(0).id, src.at(1).id) : m_module.opNMin(typeId, src.at(0).id, src.at(1).id); break; case DxbcOpcode::Mul: dst.id = m_module.opFMul(typeId, src.at(0).id, src.at(1).id); break; case DxbcOpcode::Rcp: { dst.id = m_module.opFDiv(typeId, emitBuildConstVecf32( 1.0f, 1.0f, 1.0f, 1.0f, ins.dst[0].mask).id, src.at(0).id); } break; case DxbcOpcode::RoundNe: dst.id = m_module.opRoundEven( typeId, src.at(0).id); break; case DxbcOpcode::RoundNi: dst.id = m_module.opFloor( typeId, src.at(0).id); break; case DxbcOpcode::RoundPi: dst.id = m_module.opCeil( typeId, src.at(0).id); break; case DxbcOpcode::RoundZ: dst.id = m_module.opTrunc( typeId, src.at(0).id); break; case DxbcOpcode::Rsq: dst.id = m_module.opInverseSqrt( typeId, src.at(0).id); break; case DxbcOpcode::Sqrt: dst.id = m_module.opSqrt( typeId, src.at(0).id); break; ///////////////////////////////////// // ALU operations on signed integers case DxbcOpcode::IAdd: dst.id = m_module.opIAdd(typeId, src.at(0).id, src.at(1).id); break; case DxbcOpcode::IMad: case DxbcOpcode::UMad: dst.id = m_module.opIAdd(typeId, m_module.opIMul(typeId, src.at(0).id, src.at(1).id), src.at(2).id); break; case DxbcOpcode::IMax: dst.id = m_module.opSMax(typeId, src.at(0).id, src.at(1).id); break; case DxbcOpcode::IMin: dst.id = m_module.opSMin(typeId, src.at(0).id, src.at(1).id); break; case DxbcOpcode::INeg: dst.id = m_module.opSNegate( typeId, src.at(0).id); break; /////////////////////////////////////// // ALU operations on unsigned integers case DxbcOpcode::UMax: dst.id = m_module.opUMax(typeId, src.at(0).id, src.at(1).id); break; case DxbcOpcode::UMin: dst.id = m_module.opUMin(typeId, src.at(0).id, src.at(1).id); break; /////////////////////////////////////// // Bit operations on unsigned integers case DxbcOpcode::And: dst.id = m_module.opBitwiseAnd(typeId, src.at(0).id, src.at(1).id); break; case DxbcOpcode::Not: dst.id = m_module.opNot( typeId, src.at(0).id); break; case DxbcOpcode::Or: dst.id = m_module.opBitwiseOr(typeId, src.at(0).id, src.at(1).id); break; case DxbcOpcode::Xor: dst.id = m_module.opBitwiseXor(typeId, src.at(0).id, src.at(1).id); break; case DxbcOpcode::CountBits: dst.id = m_module.opBitCount( typeId, src.at(0).id); break; case DxbcOpcode::FirstBitLo: dst.id = m_module.opFindILsb( typeId, src.at(0).id); break; case DxbcOpcode::FirstBitHi: dst.id = m_module.opFindUMsb( typeId, src.at(0).id); break; case DxbcOpcode::FirstBitShi: dst.id = m_module.opFindSMsb( typeId, src.at(0).id); break; case DxbcOpcode::BfRev: dst.id = m_module.opBitReverse( typeId, src.at(0).id); break; /////////////////////////// // Conversion instructions case DxbcOpcode::ItoF: dst.id = m_module.opConvertStoF( typeId, src.at(0).id); break; case DxbcOpcode::UtoF: dst.id = m_module.opConvertUtoF( typeId, src.at(0).id); break; case DxbcOpcode::FtoI: dst.id = m_module.opConvertFtoS( typeId, src.at(0).id); break; case DxbcOpcode::FtoU: dst.id = m_module.opConvertFtoU( typeId, src.at(0).id); break; default: Logger::warn(str::format( "DxbcCompiler: Unhandled instruction: ", ins.op)); return; } // Store computed value dst = emitDstOperandModifiers(dst, ins.modifiers); emitRegisterStore(ins.dst[0], dst); } void DxbcCompiler::emitVectorCmov(const DxbcShaderInstruction& ins) { // movc and swapc have the following operands: // (dst0) The first destination register // (dst1) The second destination register (swapc only) // (src0) The condition vector // (src1) Vector to select from if the condition is not 0 // (src2) Vector to select from if the condition is 0 const DxbcRegisterValue condition = emitRegisterLoad(ins.src[0], ins.dst[0].mask); const DxbcRegisterValue selectTrue = emitRegisterLoad(ins.src[1], ins.dst[0].mask); const DxbcRegisterValue selectFalse = emitRegisterLoad(ins.src[2], ins.dst[0].mask); const uint32_t componentCount = ins.dst[0].mask.setCount(); // We'll compare against a vector of zeroes to generate a // boolean vector, which in turn will be used by OpSelect uint32_t zeroType = m_module.defIntType(32, 0); uint32_t boolType = m_module.defBoolType(); uint32_t zero = m_module.constu32(0); if (componentCount > 1) { zeroType = m_module.defVectorType(zeroType, componentCount); boolType = m_module.defVectorType(boolType, componentCount); const std::array zeroVec = { zero, zero, zero, zero }; zero = m_module.constComposite(zeroType, componentCount, zeroVec.data()); } // In case of swapc, the second destination operand receives // the output that a cmov instruction would normally get const uint32_t trueIndex = ins.op == DxbcOpcode::Swapc ? 1 : 0; for (uint32_t i = 0; i < ins.dstCount; i++) { DxbcRegisterValue result; result.type.ctype = ins.dst[i].dataType; result.type.ccount = componentCount; result.id = m_module.opSelect( getVectorTypeId(result.type), m_module.opINotEqual(boolType, condition.id, zero), i == trueIndex ? selectTrue.id : selectFalse.id, i != trueIndex ? selectTrue.id : selectFalse.id); result = emitDstOperandModifiers(result, ins.modifiers); emitRegisterStore(ins.dst[i], result); } } void DxbcCompiler::emitVectorCmp(const DxbcShaderInstruction& ins) { // Compare instructions have three operands: // (dst0) The destination register // (src0) The first vector to compare // (src1) The second vector to compare const std::array src = { emitRegisterLoad(ins.src[0], ins.dst[0].mask), emitRegisterLoad(ins.src[1], ins.dst[0].mask), }; const uint32_t componentCount = ins.dst[0].mask.setCount(); // Condition, which is a boolean vector used // to select between the ~0u and 0u vectors. uint32_t condition = 0; uint32_t conditionType = m_module.defBoolType(); if (componentCount > 1) conditionType = m_module.defVectorType(conditionType, componentCount); switch (ins.op) { case DxbcOpcode::Eq: condition = m_module.opFOrdEqual( conditionType, src.at(0).id, src.at(1).id); break; case DxbcOpcode::Ge: condition = m_module.opFOrdGreaterThanEqual( conditionType, src.at(0).id, src.at(1).id); break; case DxbcOpcode::Lt: condition = m_module.opFOrdLessThan( conditionType, src.at(0).id, src.at(1).id); break; case DxbcOpcode::Ne: condition = m_module.opFOrdNotEqual( conditionType, src.at(0).id, src.at(1).id); break; case DxbcOpcode::IEq: condition = m_module.opIEqual( conditionType, src.at(0).id, src.at(1).id); break; case DxbcOpcode::IGe: condition = m_module.opSGreaterThanEqual( conditionType, src.at(0).id, src.at(1).id); break; case DxbcOpcode::ILt: condition = m_module.opSLessThan( conditionType, src.at(0).id, src.at(1).id); break; case DxbcOpcode::INe: condition = m_module.opINotEqual( conditionType, src.at(0).id, src.at(1).id); break; case DxbcOpcode::UGe: condition = m_module.opUGreaterThanEqual( conditionType, src.at(0).id, src.at(1).id); break; case DxbcOpcode::ULt: condition = m_module.opULessThan( conditionType, src.at(0).id, src.at(1).id); break; default: Logger::warn(str::format( "DxbcCompiler: Unhandled instruction: ", ins.op)); return; } // Generate constant vectors for selection uint32_t sFalse = m_module.constu32( 0u); uint32_t sTrue = m_module.constu32(~0u); DxbcRegisterValue result; result.type.ctype = DxbcScalarType::Uint32; result.type.ccount = componentCount; const uint32_t typeId = getVectorTypeId(result.type); if (componentCount > 1) { const std::array vFalse = { sFalse, sFalse, sFalse, sFalse }; const std::array vTrue = { sTrue, sTrue, sTrue, sTrue }; sFalse = m_module.constComposite(typeId, componentCount, vFalse.data()); sTrue = m_module.constComposite(typeId, componentCount, vTrue .data()); } // Perform component-wise mask selection // based on the condition evaluated above. result.id = m_module.opSelect( typeId, condition, sTrue, sFalse); emitRegisterStore(ins.dst[0], result); } void DxbcCompiler::emitVectorDeriv(const DxbcShaderInstruction& ins) { // Derivative instructions have two operands: // (dst0) Destination register for the derivative // (src0) The operand to compute the derivative of DxbcRegisterValue value = emitRegisterLoad(ins.src[0], ins.dst[0].mask); const uint32_t typeId = getVectorTypeId(value.type); switch (ins.op) { case DxbcOpcode::DerivRtx: value.id = m_module.opDpdx(typeId, value.id); break; case DxbcOpcode::DerivRty: value.id = m_module.opDpdy(typeId, value.id); break; case DxbcOpcode::DerivRtxCoarse: value.id = m_module.opDpdxCoarse(typeId, value.id); break; case DxbcOpcode::DerivRtyCoarse: value.id = m_module.opDpdyCoarse(typeId, value.id); break; case DxbcOpcode::DerivRtxFine: value.id = m_module.opDpdxFine(typeId, value.id); break; case DxbcOpcode::DerivRtyFine: value.id = m_module.opDpdyFine(typeId, value.id); break; default: Logger::warn(str::format( "DxbcCompiler: Unhandled instruction: ", ins.op)); return; } value = emitDstOperandModifiers(value, ins.modifiers); emitRegisterStore(ins.dst[0], value); } void DxbcCompiler::emitVectorDot(const DxbcShaderInstruction& ins) { const DxbcRegMask srcMask(true, ins.op >= DxbcOpcode::Dp2, ins.op >= DxbcOpcode::Dp3, ins.op >= DxbcOpcode::Dp4); const std::array src = { emitRegisterLoad(ins.src[0], srcMask), emitRegisterLoad(ins.src[1], srcMask), }; DxbcRegisterValue dst; dst.type.ctype = ins.dst[0].dataType; dst.type.ccount = 1; dst.id = m_module.opDot( getVectorTypeId(dst.type), src.at(0).id, src.at(1).id); dst = emitDstOperandModifiers(dst, ins.modifiers); emitRegisterStore(ins.dst[0], dst); } void DxbcCompiler::emitVectorIdiv(const DxbcShaderInstruction& ins) { // udiv has four operands: // (dst0) Quotient destination register // (dst1) Remainder destination register // (src0) The first vector to compare // (src1) The second vector to compare if (ins.dst[0].type == DxbcOperandType::Null && ins.dst[1].type == DxbcOperandType::Null) return; // FIXME support this if applications require it if (ins.dst[0].type != DxbcOperandType::Null && ins.dst[1].type != DxbcOperandType::Null && ins.dst[0].mask != ins.dst[1].mask) { Logger::warn("DxbcCompiler: Idiv with different destination masks not supported"); return; } // Load source operands as integers with the // mask of one non-NULL destination operand const DxbcRegMask srcMask = ins.dst[0].type != DxbcOperandType::Null ? ins.dst[0].mask : ins.dst[1].mask; const std::array src = { emitRegisterLoad(ins.src[0], srcMask), emitRegisterLoad(ins.src[1], srcMask), }; // Compute results only if the destination // operands are not NULL. if (ins.dst[0].type != DxbcOperandType::Null) { DxbcRegisterValue quotient; quotient.type.ctype = ins.dst[0].dataType; quotient.type.ccount = ins.dst[0].mask.setCount(); quotient.id = m_module.opUDiv( getVectorTypeId(quotient.type), src.at(0).id, src.at(1).id); quotient = emitDstOperandModifiers(quotient, ins.modifiers); emitRegisterStore(ins.dst[0], quotient); } if (ins.dst[1].type != DxbcOperandType::Null) { DxbcRegisterValue remainder; remainder.type.ctype = ins.dst[1].dataType; remainder.type.ccount = ins.dst[1].mask.setCount(); remainder.id = m_module.opUMod( getVectorTypeId(remainder.type), src.at(0).id, src.at(1).id); remainder = emitDstOperandModifiers(remainder, ins.modifiers); emitRegisterStore(ins.dst[1], remainder); } } void DxbcCompiler::emitVectorImul(const DxbcShaderInstruction& ins) { // imul and umul have four operands: // (dst0) High destination register // (dst1) Low destination register // (src0) The first vector to compare // (src1) The second vector to compare if (ins.dst[0].type == DxbcOperandType::Null) { if (ins.dst[1].type == DxbcOperandType::Null) return; // If dst0 is NULL, this instruction behaves just // like any other three-operand ALU instruction const std::array src = { emitRegisterLoad(ins.src[0], ins.dst[1].mask), emitRegisterLoad(ins.src[1], ins.dst[1].mask), }; DxbcRegisterValue result; result.type.ctype = ins.dst[1].dataType; result.type.ccount = ins.dst[1].mask.setCount(); result.id = m_module.opIMul( getVectorTypeId(result.type), src.at(0).id, src.at(1).id); result = emitDstOperandModifiers(result, ins.modifiers); emitRegisterStore(ins.dst[1], result); } else { // TODO implement this Logger::warn("DxbcCompiler: Extended Imul not yet supported"); } } void DxbcCompiler::emitVectorShift(const DxbcShaderInstruction& ins) { // Shift operations have three operands: // (dst0) The destination register // (src0) The register to shift // (src1) The shift amount (scalar) DxbcRegisterValue shiftReg = emitRegisterLoad(ins.src[0], ins.dst[0].mask); DxbcRegisterValue countReg = emitRegisterLoad(ins.src[1], ins.dst[0].mask); if (countReg.type.ccount == 1) countReg = emitRegisterExtend(countReg, shiftReg.type.ccount); DxbcRegisterValue result; result.type.ctype = ins.dst[0].dataType; result.type.ccount = ins.dst[0].mask.setCount(); switch (ins.op) { case DxbcOpcode::IShl: result.id = m_module.opShiftLeftLogical( getVectorTypeId(result.type), shiftReg.id, countReg.id); break; case DxbcOpcode::IShr: result.id = m_module.opShiftRightArithmetic( getVectorTypeId(result.type), shiftReg.id, countReg.id); break; case DxbcOpcode::UShr: result.id = m_module.opShiftRightLogical( getVectorTypeId(result.type), shiftReg.id, countReg.id); break; default: Logger::warn(str::format( "DxbcCompiler: Unhandled instruction: ", ins.op)); return; } result = emitDstOperandModifiers(result, ins.modifiers); emitRegisterStore(ins.dst[0], result); } void DxbcCompiler::emitVectorSinCos(const DxbcShaderInstruction& ins) { // sincos has three operands: // (dst0) Destination register for sin(x) // (dst1) Destination register for cos(x) // (src0) Source operand x // Load source operand as 32-bit float vector. const DxbcRegisterValue srcValue = emitRegisterLoad( ins.src[0], DxbcRegMask(true, true, true, true)); // Either output may be DxbcOperandType::Null, in // which case we don't have to generate any code. if (ins.dst[0].type != DxbcOperandType::Null) { const DxbcRegisterValue sinInput = emitRegisterExtract(srcValue, ins.dst[0].mask); DxbcRegisterValue sin; sin.type = sinInput.type; sin.id = m_module.opSin( getVectorTypeId(sin.type), sinInput.id); emitRegisterStore(ins.dst[0], sin); } if (ins.dst[1].type != DxbcOperandType::Null) { const DxbcRegisterValue cosInput = emitRegisterExtract(srcValue, ins.dst[1].mask); DxbcRegisterValue cos; cos.type = cosInput.type; cos.id = m_module.opCos( getVectorTypeId(cos.type), cosInput.id); emitRegisterStore(ins.dst[1], cos); } } void DxbcCompiler::emitGeometryEmit(const DxbcShaderInstruction& ins) { switch (ins.op) { case DxbcOpcode::Emit: case DxbcOpcode::EmitStream: { emitOutputSetup(); m_module.opEmitVertex(); } break; case DxbcOpcode::Cut: case DxbcOpcode::CutStream: { m_module.opEndPrimitive(); } break; default: Logger::warn(str::format( "DxbcCompiler: Unhandled instruction: ", ins.op)); } } void DxbcCompiler::emitAtomic(const DxbcShaderInstruction& ins) { // atomic_* operations have the following operands: // (dst0) Destination u# or g# register // (src0) Index into the texture or buffer // (src1) The source value for the operation // (src2) Second source operand (optional) // imm_atomic_* operations have the following operands: // (dst0) Register that receives the result // (dst1) Destination u# or g# register // (srcX) As above const bool isImm = ins.dstCount == 2; const bool isUav = ins.dst[ins.dstCount - 1].type == DxbcOperandType::UnorderedAccessView; // Retrieve destination pointer for the atomic operation const DxbcRegisterPointer pointer = emitGetAtomicPointer( ins.dst[ins.dstCount - 1], ins.src[0]); // Load source values std::array src; for (uint32_t i = 1; i < ins.srcCount; i++) { src[i - 1] = emitRegisterLoad(ins.src[i], DxbcRegMask(true, false, false, false)); } // Define memory scope and semantics based on the operands uint32_t semantics = isUav ? spv::MemorySemanticsUniformMemoryMask : spv::MemorySemanticsWorkgroupMemoryMask; // TODO verify whether this is even remotely correct semantics |= spv::MemorySemanticsAcquireReleaseMask; // TODO for UAVs, respect globally coherent flag const uint32_t scopeId = m_module.constu32(spv::ScopeWorkgroup); const uint32_t semanticsId = m_module.constu32(semantics); // Perform the atomic operation on the given pointer DxbcRegisterValue value; value.type.ctype = ins.dst[0].dataType; value.type.ccount = 1; value.id = 0; // The result type, which is a scalar integer const uint32_t typeId = getVectorTypeId(value.type); // TODO add signed min/max switch (ins.op) { case DxbcOpcode::ImmAtomicExch: value.id = m_module.opAtomicExchange(typeId, pointer.id, scopeId, semanticsId, src[0].id); break; case DxbcOpcode::AtomicIAdd: case DxbcOpcode::ImmAtomicIAdd: value.id = m_module.opAtomicIAdd(typeId, pointer.id, scopeId, semanticsId, src[0].id); break; case DxbcOpcode::AtomicAnd: case DxbcOpcode::ImmAtomicAnd: value.id = m_module.opAtomicAnd(typeId, pointer.id, scopeId, semanticsId, src[0].id); break; case DxbcOpcode::AtomicOr: case DxbcOpcode::ImmAtomicOr: value.id = m_module.opAtomicOr(typeId, pointer.id, scopeId, semanticsId, src[0].id); break; case DxbcOpcode::AtomicXor: case DxbcOpcode::ImmAtomicXor: value.id = m_module.opAtomicXor(typeId, pointer.id, scopeId, semanticsId, src[0].id); break; case DxbcOpcode::AtomicIMin: value.id = m_module.opAtomicSMin(typeId, pointer.id, scopeId, semanticsId, src[0].id); break; case DxbcOpcode::AtomicIMax: value.id = m_module.opAtomicSMax(typeId, pointer.id, scopeId, semanticsId, src[0].id); break; case DxbcOpcode::AtomicUMin: value.id = m_module.opAtomicUMin(typeId, pointer.id, scopeId, semanticsId, src[0].id); break; case DxbcOpcode::AtomicUMax: value.id = m_module.opAtomicUMax(typeId, pointer.id, scopeId, semanticsId, src[0].id); break; default: Logger::warn(str::format( "DxbcCompiler: Unhandled instruction: ", ins.op)); return; } // Write back the result to the destination // register if this is an imm_atomic_* opcode. if (isImm) emitRegisterStore(ins.dst[0], value); } void DxbcCompiler::emitAtomicCounter(const DxbcShaderInstruction& ins) { // imm_atomic_alloc and imm_atomic_consume have the following operands: // (dst0) The register that will hold the old counter value // (dst1) The UAV whose counter is going to be modified // TODO check if the corresponding UAV is bound const uint32_t registerId = ins.dst[1].idx[0].offset; if (m_uavs.at(registerId).ctrId == 0) m_uavs.at(registerId).ctrId = emitDclUavCounter(registerId); // Get a pointer to the atomic counter in question DxbcRegisterInfo ptrType; ptrType.type.ctype = DxbcScalarType::Uint32; ptrType.type.ccount = 1; ptrType.type.alength = 0; ptrType.sclass = spv::StorageClassUniform; const uint32_t zeroId = m_module.consti32(0); const uint32_t ptrId = m_module.opAccessChain( getPointerTypeId(ptrType), m_uavs.at(registerId).ctrId, 1, &zeroId); // Define memory scope and semantics based on the operands uint32_t scope = spv::ScopeDevice; uint32_t semantics = spv::MemorySemanticsUniformMemoryMask | spv::MemorySemanticsAcquireReleaseMask; const uint32_t scopeId = m_module.constu32(scope); const uint32_t semanticsId = m_module.constu32(semantics); // Compute the result value DxbcRegisterValue value; value.type.ctype = DxbcScalarType::Uint32; value.type.ccount = 1; const uint32_t typeId = getVectorTypeId(value.type); switch (ins.op) { case DxbcOpcode::ImmAtomicAlloc: value.id = m_module.opAtomicIAdd(typeId, ptrId, scopeId, semanticsId, m_module.constu32(1)); break; case DxbcOpcode::ImmAtomicConsume: value.id = m_module.opAtomicISub(typeId, ptrId, scopeId, semanticsId, m_module.constu32(1)); break; default: Logger::warn(str::format( "DxbcCompiler: Unhandled instruction: ", ins.op)); return; } // Store the result emitRegisterStore(ins.dst[0], value); } void DxbcCompiler::emitBarrier(const DxbcShaderInstruction& ins) { // sync takes no operands. Instead, the synchronization // scope is defined by the operand control bits. const DxbcSyncFlags flags = ins.controls.syncFlags; uint32_t executionScope = 0; uint32_t memoryScope = 0; uint32_t memorySemantics = 0; if (flags.test(DxbcSyncFlag::ThreadsInGroup)) executionScope = spv::ScopeWorkgroup; if (flags.test(DxbcSyncFlag::ThreadGroupSharedMemory)) { memoryScope = spv::ScopeWorkgroup; memorySemantics |= spv::MemorySemanticsWorkgroupMemoryMask; } if (flags.test(DxbcSyncFlag::UavMemoryGroup)) { memoryScope = spv::ScopeWorkgroup; memorySemantics |= spv::MemorySemanticsUniformMemoryMask; } if (flags.test(DxbcSyncFlag::UavMemoryGlobal)) { memoryScope = spv::ScopeDevice; memorySemantics |= spv::MemorySemanticsUniformMemoryMask; } if (executionScope != 0) { m_module.opControlBarrier( m_module.constu32(executionScope), m_module.constu32(memoryScope), m_module.constu32(memorySemantics)); } else if (memorySemantics != spv::MemorySemanticsMaskNone) { m_module.opMemoryBarrier( m_module.constu32(memoryScope), m_module.constu32(memorySemantics)); } else { Logger::warn("DxbcCompiler: sync instruction has no effect"); } } void DxbcCompiler::emitBitExtract(const DxbcShaderInstruction& ins) { // ibfe and ubfe take the following arguments: // (dst0) The destination register // (src0) Number of bits to extact // (src1) Offset of the bits to extract // (src2) Register to extract bits from const bool isSigned = ins.op == DxbcOpcode::IBfe; const DxbcRegisterValue bitCnt = emitRegisterLoad(ins.src[0], ins.dst[0].mask); const DxbcRegisterValue bitOfs = emitRegisterLoad(ins.src[1], ins.dst[0].mask); const DxbcRegisterValue src = emitRegisterLoad(ins.src[2], ins.dst[0].mask); const uint32_t componentCount = src.type.ccount; std::array componentIds = {{ 0, 0, 0, 0 }}; for (uint32_t i = 0; i < componentCount; i++) { const DxbcRegisterValue currBitCnt = emitRegisterExtract(bitCnt, DxbcRegMask::select(i)); const DxbcRegisterValue currBitOfs = emitRegisterExtract(bitOfs, DxbcRegMask::select(i)); const DxbcRegisterValue currSrc = emitRegisterExtract(src, DxbcRegMask::select(i)); const uint32_t typeId = getVectorTypeId(currSrc.type); componentIds[i] = isSigned ? m_module.opBitFieldSExtract(typeId, currSrc.id, currBitOfs.id, currBitCnt.id) : m_module.opBitFieldUExtract(typeId, currSrc.id, currBitOfs.id, currBitCnt.id); } DxbcRegisterValue result; result.type = src.type; result.id = componentCount > 1 ? m_module.opCompositeConstruct( getVectorTypeId(result.type), componentCount, componentIds.data()) : componentIds[0]; emitRegisterStore(ins.dst[0], result); } void DxbcCompiler::emitBitInsert(const DxbcShaderInstruction& ins) { // ibfe and ubfe take the following arguments: // (dst0) The destination register // (src0) Number of bits to extact // (src1) Offset of the bits to extract // (src2) Register to take bits from // (src3) Register to replace bits in const DxbcRegisterValue bitCnt = emitRegisterLoad(ins.src[0], ins.dst[0].mask); const DxbcRegisterValue bitOfs = emitRegisterLoad(ins.src[1], ins.dst[0].mask); const DxbcRegisterValue insert = emitRegisterLoad(ins.src[2], ins.dst[0].mask); const DxbcRegisterValue base = emitRegisterLoad(ins.src[3], ins.dst[0].mask); const uint32_t componentCount = base.type.ccount; std::array componentIds = {{ 0, 0, 0, 0 }}; for (uint32_t i = 0; i < componentCount; i++) { const DxbcRegisterValue currBitCnt = emitRegisterExtract(bitCnt, DxbcRegMask::select(i)); const DxbcRegisterValue currBitOfs = emitRegisterExtract(bitOfs, DxbcRegMask::select(i)); const DxbcRegisterValue currInsert = emitRegisterExtract(insert, DxbcRegMask::select(i)); const DxbcRegisterValue currBase = emitRegisterExtract(base, DxbcRegMask::select(i)); componentIds[i] = m_module.opBitFieldInsert( getVectorTypeId(currBase.type), currBase.id, currInsert.id, currBitOfs.id, currBitCnt.id); } DxbcRegisterValue result; result.type = base.type; result.id = componentCount > 1 ? m_module.opCompositeConstruct( getVectorTypeId(result.type), componentCount, componentIds.data()) : componentIds[0]; emitRegisterStore(ins.dst[0], result); } void DxbcCompiler::emitBufferQuery(const DxbcShaderInstruction& ins) { // bufinfo takes two arguments // (dst0) The destination register // (src0) The buffer register to query // TODO Check if resource is bound const DxbcBufferInfo bufferInfo = getBufferInfo(ins.src[0]); // We'll store this as a scalar unsigned integer DxbcRegisterValue result = emitQueryTexelBufferSize(ins.src[0]); const uint32_t typeId = getVectorTypeId(result.type); // Adjust returned size if this is a raw or structured // buffer, as emitQueryTexelBufferSize only returns the // number of typed elements in the buffer. if (bufferInfo.type == DxbcResourceType::Raw) { result.id = m_module.opIMul(typeId, result.id, m_module.constu32(4)); } else if (bufferInfo.type == DxbcResourceType::Structured) { result.id = m_module.opUDiv(typeId, result.id, m_module.constu32(bufferInfo.stride / 4)); } // Store the result. The scalar will be extended to a // vector if the write mask consists of more than one // component, which is the desired behaviour. emitRegisterStore(ins.dst[0], result); } void DxbcCompiler::emitBufferLoad(const DxbcShaderInstruction& ins) { // ld_raw takes three arguments: // (dst0) Destination register // (src0) Byte offset // (src1) Source register // ld_structured takes four arguments: // (dst0) Destination register // (src0) Structure index // (src1) Byte offset // (src2) Source register // TODO Check if resource is bound const bool isStructured = ins.op == DxbcOpcode::LdStructured; // Source register. The exact way we access // the data depends on the register type. const DxbcRegister& dstReg = ins.dst[0]; const DxbcRegister& srcReg = isStructured ? ins.src[2] : ins.src[1]; // Retrieve common info about the buffer const DxbcBufferInfo bufferInfo = getBufferInfo(srcReg); // Compute element index const DxbcRegisterValue elementIndex = isStructured ? emitCalcBufferIndexStructured( emitRegisterLoad(ins.src[0], DxbcRegMask(true, false, false, false)), emitRegisterLoad(ins.src[1], DxbcRegMask(true, false, false, false)), bufferInfo.stride) : emitCalcBufferIndexRaw( emitRegisterLoad(ins.src[0], DxbcRegMask(true, false, false, false))); emitRegisterStore(dstReg, emitRawBufferLoad(srcReg, elementIndex, dstReg.mask)); } void DxbcCompiler::emitBufferStore(const DxbcShaderInstruction& ins) { // store_raw takes three arguments: // (dst0) Destination register // (src0) Byte offset // (src1) Source register // store_structured takes four arguments: // (dst0) Destination register // (src0) Structure index // (src1) Byte offset // (src2) Source register // TODO Check if resource is bound const bool isStructured = ins.op == DxbcOpcode::StoreStructured; // Source register. The exact way we access // the data depends on the register type. const DxbcRegister& dstReg = ins.dst[0]; const DxbcRegister& srcReg = isStructured ? ins.src[2] : ins.src[1]; // Retrieve common info about the buffer const DxbcBufferInfo bufferInfo = getBufferInfo(dstReg); // Compute element index const DxbcRegisterValue elementIndex = isStructured ? emitCalcBufferIndexStructured( emitRegisterLoad(ins.src[0], DxbcRegMask(true, false, false, false)), emitRegisterLoad(ins.src[1], DxbcRegMask(true, false, false, false)), bufferInfo.stride) : emitCalcBufferIndexRaw( emitRegisterLoad(ins.src[0], DxbcRegMask(true, false, false, false))); emitRawBufferStore(dstReg, elementIndex, emitRegisterLoad(srcReg, dstReg.mask)); } void DxbcCompiler::emitConvertFloat16(const DxbcShaderInstruction& ins) { // f32tof16 takes two operands: // (dst0) Destination register as a uint32 vector // (src0) Source register as a float32 vector // f16tof32 takes two operands: // (dst0) Destination register as a float32 vector // (src0) Source register as a uint32 vector const DxbcRegisterValue src = emitRegisterLoad(ins.src[0], ins.dst[0].mask); // We handle both packing and unpacking here const bool isPack = ins.op == DxbcOpcode::F32toF16; // The conversion instructions do not map very well to the // SPIR-V pack instructions, which operate on 2D vectors. std::array scalarIds = {{ 0, 0, 0, 0 }}; const uint32_t componentCount = src.type.ccount; // These types are used in both pack and unpack operations const uint32_t t_u32 = getVectorTypeId({ DxbcScalarType::Uint32, 1 }); const uint32_t t_f32 = getVectorTypeId({ DxbcScalarType::Float32, 1 }); const uint32_t t_f32v2 = getVectorTypeId({ DxbcScalarType::Float32, 2 }); // Constant zero-bit pattern, used for packing const uint32_t zerof32 = isPack ? m_module.constf32(0.0f) : 0; for (uint32_t i = 0; i < componentCount; i++) { const DxbcRegisterValue componentValue = emitRegisterExtract(src, DxbcRegMask::select(i)); if (isPack) { // f32tof16 const std::array packIds = {{ componentValue.id, zerof32 }}; scalarIds[i] = m_module.opPackHalf2x16(t_u32, m_module.opCompositeConstruct(t_f32v2, packIds.size(), packIds.data())); } else { // f16tof32 const uint32_t zeroIndex = 0; scalarIds[i] = m_module.opCompositeExtract(t_f32, m_module.opUnpackHalf2x16(t_f32v2, componentValue.id), 1, &zeroIndex); } } // Store result in the destination register DxbcRegisterValue result; result.type.ctype = ins.dst[0].dataType; result.type.ccount = componentCount; result.id = componentCount > 1 ? m_module.opCompositeConstruct( getVectorTypeId(result.type), componentCount, scalarIds.data()) : scalarIds[0]; emitRegisterStore(ins.dst[0], result); } void DxbcCompiler::emitHullShaderInstCnt(const DxbcShaderInstruction& ins) { this->getCurrentHsForkJoinPhase()->instanceCount = ins.imm[0].u32; } void DxbcCompiler::emitHullShaderPhase(const DxbcShaderInstruction& ins) { switch (ins.op) { case DxbcOpcode::HsDecls: { if (m_hs.currPhaseType != DxbcCompilerHsPhase::None) Logger::err("DXBC: HsDecls not the first phase in hull shader"); m_hs.currPhaseType = DxbcCompilerHsPhase::Decl; } break; case DxbcOpcode::HsControlPointPhase: { m_hs.cpPhase = this->emitNewHullShaderControlPointPhase(); m_hs.currPhaseType = DxbcCompilerHsPhase::ControlPoint; m_hs.currPhaseId = 0; m_module.setDebugName(m_hs.cpPhase.functionId, "hs_control_point"); } break; case DxbcOpcode::HsForkPhase: { auto phase = this->emitNewHullShaderForkJoinPhase(); m_hs.forkPhases.push_back(phase); m_hs.currPhaseType = DxbcCompilerHsPhase::Fork; m_hs.currPhaseId = m_hs.forkPhases.size() - 1; m_module.setDebugName(phase.functionId, str::format("hs_fork_", m_hs.currPhaseId).c_str()); } break; case DxbcOpcode::HsJoinPhase: { auto phase = this->emitNewHullShaderForkJoinPhase(); m_hs.joinPhases.push_back(phase); m_hs.currPhaseType = DxbcCompilerHsPhase::Join; m_hs.currPhaseId = m_hs.joinPhases.size() - 1; m_module.setDebugName(phase.functionId, str::format("hs_join_", m_hs.currPhaseId).c_str()); } break; default: Logger::warn(str::format( "DxbcCompiler: Unhandled instruction: ", ins.op)); } } void DxbcCompiler::emitInterpolate(const DxbcShaderInstruction& ins) { // The SPIR-V instructions operate on input variable pointers, // which are all declared as four-component float vectors. const uint32_t registerId = ins.src[0].idx[0].offset; DxbcRegisterValue result; result.type.ctype = DxbcScalarType::Float32; result.type.ccount = 4; switch (ins.op) { case DxbcOpcode::EvalCentroid: { result.id = m_module.opInterpolateAtCentroid( getVectorTypeId(result.type), m_vRegs.at(registerId)); } break; case DxbcOpcode::EvalSampleIndex: { const DxbcRegisterValue sampleIndex = emitRegisterLoad( ins.src[1], DxbcRegMask(true, false, false, false)); result.id = m_module.opInterpolateAtSample( getVectorTypeId(result.type), m_vRegs.at(registerId), sampleIndex.id); } break; case DxbcOpcode::EvalSnapped: { const DxbcRegisterValue offset = emitRegisterLoad( ins.src[1], DxbcRegMask(true, true, false, false)); result.id = m_module.opInterpolateAtOffset( getVectorTypeId(result.type), m_vRegs.at(registerId), offset.id); } break; default: Logger::warn(str::format( "DxbcCompiler: Unhandled instruction: ", ins.op)); return; } result = emitRegisterSwizzle(result, ins.src[0].swizzle, ins.dst[0].mask); emitRegisterStore(ins.dst[0], result); } void DxbcCompiler::emitTextureQuery(const DxbcShaderInstruction& ins) { // resinfo has three operands: // (dst0) The destination register // (src0) Resource LOD to query // (src1) Resource to query // TODO Check if resource is bound const DxbcBufferInfo resourceInfo = getBufferInfo(ins.src[1]); const DxbcResinfoType resinfoType = ins.controls.resinfoType; // Read the exact LOD for the image query const DxbcRegisterValue mipLod = emitRegisterLoad( ins.src[0], DxbcRegMask(true, false, false, false)); const DxbcScalarType returnType = resinfoType == DxbcResinfoType::Uint ? DxbcScalarType::Uint32 : DxbcScalarType::Float32; // Query the size of the selected mip level, as well as the // total number of mip levels. We will have to combine the // result into a four-component vector later. DxbcRegisterValue imageSize = emitQueryTextureSize(ins.src[1], mipLod); DxbcRegisterValue imageLevels = emitQueryTextureLods(ins.src[1]); // Convert intermediates to the requested type if (returnType == DxbcScalarType::Float32) { imageSize.type.ctype = DxbcScalarType::Float32; imageSize.id = m_module.opConvertUtoF( getVectorTypeId(imageSize.type), imageSize.id); imageLevels.type.ctype = DxbcScalarType::Float32; imageLevels.id = m_module.opConvertUtoF( getVectorTypeId(imageLevels.type), imageLevels.id); } // If the selected return type is rcpFloat, we need // to compute the reciprocal of the image dimensions, // but not the array size, so we need to separate it. const uint32_t imageCoordDim = imageSize.type.ccount; DxbcRegisterValue imageLayers; imageLayers.type = imageSize.type; imageLayers.id = 0; if (resinfoType == DxbcResinfoType::RcpFloat && resourceInfo.image.array) { imageLayers = emitRegisterExtract(imageSize, DxbcRegMask::select(imageCoordDim - 1)); imageSize = emitRegisterExtract(imageSize, DxbcRegMask::firstN(imageCoordDim - 1)); } if (resinfoType == DxbcResinfoType::RcpFloat) { const uint32_t typeId = getVectorTypeId(imageSize.type); const uint32_t one = m_module.constf32(1.0f); std::array constIds = { one, one, one, one }; imageSize.id = m_module.opFDiv(typeId, m_module.constComposite(typeId, imageSize.type.ccount, constIds.data()), imageSize.id); } // Concatenate result vectors and scalars to form a // 4D vector. Unused components will be set to zero. std::array vectorIds = { imageSize.id, 0, 0, 0 }; uint32_t numVectorIds = 1; if (imageLayers.id != 0) vectorIds[numVectorIds++] = imageLayers.id; if (imageCoordDim < 3) { const uint32_t zero = returnType == DxbcScalarType::Uint32 ? m_module.constu32(0) : m_module.constf32(0.0f); for (uint32_t i = imageCoordDim; i < 3; i++) vectorIds[numVectorIds++] = zero; } vectorIds[numVectorIds++] = imageLevels.id; // Create the actual result vector DxbcRegisterValue result; result.type.ctype = returnType; result.type.ccount = 4; result.id = m_module.opCompositeConstruct( getVectorTypeId(result.type), numVectorIds, vectorIds.data()); // Swizzle components using the resource swizzle // and the destination operand's write mask result = emitRegisterSwizzle(result, ins.src[1].swizzle, ins.dst[0].mask); emitRegisterStore(ins.dst[0], result); } void DxbcCompiler::emitTextureQueryLod(const DxbcShaderInstruction& ins) { // All sample instructions have at least these operands: // (dst0) The destination register // (src0) Texture coordinates // (src1) The texture itself // (src2) The sampler object const DxbcRegister& texCoordReg = ins.src[0]; const DxbcRegister& textureReg = ins.src[1]; const DxbcRegister& samplerReg = ins.src[2]; // Texture and sampler register IDs const uint32_t textureId = textureReg.idx[0].offset; const uint32_t samplerId = samplerReg.idx[0].offset; // Load texture coordinates const uint32_t imageCoordDim = getTexCoordDim( m_textures.at(textureId).imageInfo); const DxbcRegisterValue coord = emitRegisterLoad( texCoordReg, DxbcRegMask::firstN(imageCoordDim)); // Query the LOD. The result is a two-dimensional float32 // vector containing the mip level and virtual LOD numbers. const uint32_t sampledImageId = emitLoadSampledImage( m_textures.at(textureId), m_samplers.at(samplerId), false); const uint32_t queriedLodId = m_module.opImageQueryLod( getVectorTypeId({ DxbcScalarType::Float32, 2 }), sampledImageId, coord.id); // Build the result array vector by filling up // the remaining two components with zeroes. const uint32_t zero = m_module.constf32(0.0f); const std::array resultIds = {{ queriedLodId, zero, zero }}; DxbcRegisterValue result; result.type = DxbcVectorType { DxbcScalarType::Float32, 4 }; result.id = m_module.opCompositeConstruct( getVectorTypeId(result.type), resultIds.size(), resultIds.data()); emitRegisterStore(ins.dst[0], result); } void DxbcCompiler::emitTextureQueryMs(const DxbcShaderInstruction& ins) { // sampleinfo has two operands: // (dst0) The destination register // (src0) Resource to query // TODO Check if resource is bound DxbcRegisterValue sampleCount = emitQueryTextureSamples(ins.src[0]); if (ins.controls.resinfoType != DxbcResinfoType::Uint) { sampleCount.type.ctype = DxbcScalarType::Float32; sampleCount.type.ccount = 1; sampleCount.id = m_module.opConvertUtoF( getVectorTypeId(sampleCount.type), sampleCount.id); } emitRegisterStore(ins.dst[0], sampleCount); } void DxbcCompiler::emitTextureFetch(const DxbcShaderInstruction& ins) { // ld has three operands: // (dst0) The destination register // (src0) Source address // (src1) Source texture // ld2dms has four operands: // (dst0) The destination register // (src0) Source address // (src1) Source texture // (src2) Sample number const uint32_t textureId = ins.src[1].idx[0].offset; // Image type, which stores the image dimensions etc. const DxbcImageInfo imageType = m_textures.at(textureId).imageInfo; const DxbcRegMask coordArrayMask = getTexCoordMask(imageType); const uint32_t imageLayerDim = getTexLayerDim(imageType); // Load the texture coordinates. The last component // contains the LOD if the resource is an image. const DxbcRegisterValue address = emitRegisterLoad( ins.src[0], DxbcRegMask(true, true, true, true)); // Additional image operands. This will store // the LOD and the address offset if present. SpirvImageOperands imageOperands; if (ins.sampleControls.u != 0 || ins.sampleControls.v != 0 || ins.sampleControls.w != 0) { const std::array offsetIds = { imageLayerDim >= 1 ? m_module.consti32(ins.sampleControls.u) : 0, imageLayerDim >= 2 ? m_module.consti32(ins.sampleControls.v) : 0, imageLayerDim >= 3 ? m_module.consti32(ins.sampleControls.w) : 0, }; imageOperands.flags |= spv::ImageOperandsConstOffsetMask; imageOperands.sConstOffset = m_module.constComposite( getVectorTypeId({ DxbcScalarType::Sint32, imageLayerDim }), imageLayerDim, offsetIds.data()); } // The LOD is not present when reading from // a buffer or from a multisample texture. if (imageType.dim != spv::DimBuffer && imageType.ms == 0) { DxbcRegisterValue imageLod = emitRegisterExtract( address, DxbcRegMask(false, false, false, true)); imageOperands.flags |= spv::ImageOperandsLodMask; imageOperands.sLod = imageLod.id; } // The ld2ms instruction has a sample index, but we // are only allowed to set it for multisample views if (ins.op == DxbcOpcode::LdMs && imageType.ms == 1) { DxbcRegisterValue sampleId = emitRegisterLoad( ins.src[2], DxbcRegMask(true, false, false, false)); imageOperands.flags |= spv::ImageOperandsSampleMask; imageOperands.sSampleId = sampleId.id; } // Extract coordinates from address const DxbcRegisterValue coord = emitRegisterExtract(address, coordArrayMask); // Fetch texels only if the resource is actually bound const uint32_t labelMerge = m_module.allocateId(); const uint32_t labelBound = m_module.allocateId(); const uint32_t labelUnbound = m_module.allocateId(); m_module.opSelectionMerge(labelMerge, spv::SelectionControlMaskNone); m_module.opBranchConditional(m_textures.at(textureId).specId, labelBound, labelUnbound); m_module.opLabel(labelBound); // Reading a typed image or buffer view // always returns a four-component vector. const uint32_t imageId = m_module.opLoad( m_textures.at(textureId).imageTypeId, m_textures.at(textureId).varId); DxbcRegisterValue result; result.type.ctype = m_textures.at(textureId).sampledType; result.type.ccount = 4; result.id = m_module.opImageFetch( getVectorTypeId(result.type), imageId, coord.id, imageOperands); // Swizzle components using the texture swizzle // and the destination operand's write mask result = emitRegisterSwizzle(result, ins.src[1].swizzle, ins.dst[0].mask); // If the texture is not bound, return zeroes m_module.opBranch(labelMerge); m_module.opLabel(labelUnbound); DxbcRegisterValue zeroes = [&] { switch (result.type.ctype) { case DxbcScalarType::Float32: return emitBuildConstVecf32(0.0f, 0.0f, 0.0f, 0.0f, ins.dst[0].mask); case DxbcScalarType::Uint32: return emitBuildConstVecu32(0u, 0u, 0u, 0u, ins.dst[0].mask); case DxbcScalarType::Sint32: return emitBuildConstVeci32(0, 0, 0, 0, ins.dst[0].mask); default: throw DxvkError("DxbcCompiler: Invalid scalar type"); } }(); m_module.opBranch(labelMerge); m_module.opLabel(labelMerge); // Merge the result with a phi function const std::array phiLabels = {{ { result.id, labelBound }, { zeroes.id, labelUnbound }, }}; DxbcRegisterValue mergedResult; mergedResult.type = result.type; mergedResult.id = m_module.opPhi( getVectorTypeId(mergedResult.type), phiLabels.size(), phiLabels.data()); emitRegisterStore(ins.dst[0], mergedResult); } void DxbcCompiler::emitTextureGather(const DxbcShaderInstruction& ins) { // Gather4 takes the following operands: // (dst0) The destination register // (src0) Texture coordinates // (src1) The texture itself // (src2) The sampler, with a component selector // Gather4C takes the following additional operand: // (src3) The depth reference value // The Gather4Po variants take an additional operand // which defines an extended constant offset. // TODO reduce code duplication by moving some common code // in both sample() and gather() into separate methods const bool isExtendedGather = ins.op == DxbcOpcode::Gather4Po || ins.op == DxbcOpcode::Gather4PoC; const DxbcRegister& texCoordReg = ins.src[0]; const DxbcRegister& textureReg = ins.src[1 + isExtendedGather]; const DxbcRegister& samplerReg = ins.src[2 + isExtendedGather]; // Texture and sampler register IDs const uint32_t textureId = textureReg.idx[0].offset; const uint32_t samplerId = samplerReg.idx[0].offset; // Image type, which stores the image dimensions etc. const DxbcImageInfo imageType = m_textures.at(textureId).imageInfo; const uint32_t imageLayerDim = getTexLayerDim(imageType); const uint32_t imageCoordDim = getTexCoordDim(imageType); const DxbcRegMask coordArrayMask = DxbcRegMask::firstN(imageCoordDim); // Load the texture coordinates. SPIR-V allows these // to be float4 even if not all components are used. DxbcRegisterValue coord = emitRegisterLoad(texCoordReg, coordArrayMask); // Load reference value for depth-compare operations const bool isDepthCompare = ins.op == DxbcOpcode::Gather4C || ins.op == DxbcOpcode::Gather4PoC; const DxbcRegisterValue referenceValue = isDepthCompare ? emitRegisterLoad(ins.src[3 + isExtendedGather], DxbcRegMask(true, false, false, false)) : DxbcRegisterValue(); if (isDepthCompare && m_options.addExtraDrefCoordComponent && coord.type.ccount < 4) coord = emitRegisterConcat(coord, referenceValue); // Determine the sampled image type based on the opcode. const uint32_t sampledImageType = isDepthCompare ? m_module.defSampledImageType(m_textures.at(textureId).depthTypeId) : m_module.defSampledImageType(m_textures.at(textureId).colorTypeId); // Accumulate additional image operands. SpirvImageOperands imageOperands; if (isExtendedGather) { m_module.enableCapability(spv::CapabilityImageGatherExtended); DxbcRegisterValue gatherOffset = emitRegisterLoad( ins.src[1], DxbcRegMask::firstN(imageLayerDim)); imageOperands.flags |= spv::ImageOperandsOffsetMask; imageOperands.gOffset = gatherOffset.id; } else if (ins.sampleControls.u != 0 || ins.sampleControls.v != 0 || ins.sampleControls.w != 0) { const std::array offsetIds = { imageLayerDim >= 1 ? m_module.consti32(ins.sampleControls.u) : 0, imageLayerDim >= 2 ? m_module.consti32(ins.sampleControls.v) : 0, imageLayerDim >= 3 ? m_module.consti32(ins.sampleControls.w) : 0, }; imageOperands.flags |= spv::ImageOperandsConstOffsetMask; imageOperands.sConstOffset = m_module.constComposite( getVectorTypeId({ DxbcScalarType::Sint32, imageLayerDim }), imageLayerDim, offsetIds.data()); } // Combine the texture and the sampler into a sampled image const uint32_t sampledImageId = m_module.opSampledImage( sampledImageType, m_module.opLoad( m_textures.at(textureId).imageTypeId, m_textures.at(textureId).varId), m_module.opLoad( m_samplers.at(samplerId).typeId, m_samplers.at(samplerId).varId)); // Gathering texels always returns a four-component // vector, even for the depth-compare variants. DxbcRegisterValue result; result.type.ctype = m_textures.at(textureId).sampledType; result.type.ccount = 4; switch (ins.op) { // Simple image gather operation case DxbcOpcode::Gather4: case DxbcOpcode::Gather4Po: { result.id = m_module.opImageGather( getVectorTypeId(result.type), sampledImageId, coord.id, m_module.constu32(samplerReg.swizzle[0]), imageOperands); } break; // Depth-compare operation case DxbcOpcode::Gather4C: case DxbcOpcode::Gather4PoC: { result.id = m_module.opImageDrefGather( getVectorTypeId(result.type), sampledImageId, coord.id, referenceValue.id, imageOperands); } break; default: Logger::warn(str::format( "DxbcCompiler: Unhandled instruction: ", ins.op)); return; } // Swizzle components using the texture swizzle // and the destination operand's write mask result = emitRegisterSwizzle(result, textureReg.swizzle, ins.dst[0].mask); emitRegisterStore(ins.dst[0], result); } void DxbcCompiler::emitTextureSample(const DxbcShaderInstruction& ins) { // All sample instructions have at least these operands: // (dst0) The destination register // (src0) Texture coordinates // (src1) The texture itself // (src2) The sampler object const DxbcRegister& texCoordReg = ins.src[0]; const DxbcRegister& textureReg = ins.src[1]; const DxbcRegister& samplerReg = ins.src[2]; // Texture and sampler register IDs const uint32_t textureId = textureReg.idx[0].offset; const uint32_t samplerId = samplerReg.idx[0].offset; // Image type, which stores the image dimensions etc. const DxbcImageInfo imageType = m_textures.at(textureId).imageInfo; const uint32_t imageLayerDim = getTexLayerDim(imageType); const uint32_t imageCoordDim = getTexCoordDim(imageType); const DxbcRegMask coordArrayMask = DxbcRegMask::firstN(imageCoordDim); const DxbcRegMask coordLayerMask = DxbcRegMask::firstN(imageLayerDim); // Load the texture coordinates. SPIR-V allows these // to be float4 even if not all components are used. DxbcRegisterValue coord = emitRegisterLoad(texCoordReg, coordArrayMask); // Load reference value for depth-compare operations const bool isDepthCompare = ins.op == DxbcOpcode::SampleC || ins.op == DxbcOpcode::SampleClz; const DxbcRegisterValue referenceValue = isDepthCompare ? emitRegisterLoad(ins.src[3], DxbcRegMask(true, false, false, false)) : DxbcRegisterValue(); if (isDepthCompare && m_options.addExtraDrefCoordComponent && coord.type.ccount < 4) coord = emitRegisterConcat(coord, referenceValue); // Load explicit gradients for sample operations that require them const bool hasExplicitGradients = ins.op == DxbcOpcode::SampleD; const DxbcRegisterValue explicitGradientX = hasExplicitGradients ? emitRegisterLoad(ins.src[3], coordLayerMask) : DxbcRegisterValue(); const DxbcRegisterValue explicitGradientY = hasExplicitGradients ? emitRegisterLoad(ins.src[4], coordLayerMask) : DxbcRegisterValue(); // LOD for certain sample operations const bool hasLod = ins.op == DxbcOpcode::SampleL || ins.op == DxbcOpcode::SampleB; const DxbcRegisterValue lod = hasLod ? emitRegisterLoad(ins.src[3], DxbcRegMask(true, false, false, false)) : DxbcRegisterValue(); // Accumulate additional image operands. These are // not part of the actual operand token in SPIR-V. SpirvImageOperands imageOperands; if (ins.sampleControls.u != 0 || ins.sampleControls.v != 0 || ins.sampleControls.w != 0) { const std::array offsetIds = { imageLayerDim >= 1 ? m_module.consti32(ins.sampleControls.u) : 0, imageLayerDim >= 2 ? m_module.consti32(ins.sampleControls.v) : 0, imageLayerDim >= 3 ? m_module.consti32(ins.sampleControls.w) : 0, }; imageOperands.flags |= spv::ImageOperandsConstOffsetMask; imageOperands.sConstOffset = m_module.constComposite( getVectorTypeId({ DxbcScalarType::Sint32, imageLayerDim }), imageLayerDim, offsetIds.data()); } // Combine the texture and the sampler into a sampled image const uint32_t sampledImageId = emitLoadSampledImage( m_textures.at(textureId), m_samplers.at(samplerId), isDepthCompare); // Sampling an image always returns a four-component // vector, whereas depth-compare ops return a scalar. DxbcRegisterValue result; result.type.ctype = m_textures.at(textureId).sampledType; result.type.ccount = isDepthCompare ? 1 : 4; switch (ins.op) { // Simple image sample operation case DxbcOpcode::Sample: { result.id = m_module.opImageSampleImplicitLod( getVectorTypeId(result.type), sampledImageId, coord.id, imageOperands); } break; // Depth-compare operation case DxbcOpcode::SampleC: { result.id = m_module.opImageSampleDrefImplicitLod( getVectorTypeId(result.type), sampledImageId, coord.id, referenceValue.id, imageOperands); } break; // Depth-compare operation on mip level zero case DxbcOpcode::SampleClz: { imageOperands.flags |= spv::ImageOperandsLodMask; imageOperands.sLod = m_module.constf32(0.0f); result.id = m_module.opImageSampleDrefExplicitLod( getVectorTypeId(result.type), sampledImageId, coord.id, referenceValue.id, imageOperands); } break; // Sample operation with explicit gradients case DxbcOpcode::SampleD: { imageOperands.flags |= spv::ImageOperandsGradMask; imageOperands.sGradX = explicitGradientX.id; imageOperands.sGradY = explicitGradientY.id; result.id = m_module.opImageSampleExplicitLod( getVectorTypeId(result.type), sampledImageId, coord.id, imageOperands); } break; // Sample operation with explicit LOD case DxbcOpcode::SampleL: { imageOperands.flags |= spv::ImageOperandsLodMask; imageOperands.sLod = lod.id; result.id = m_module.opImageSampleExplicitLod( getVectorTypeId(result.type), sampledImageId, coord.id, imageOperands); } break; // Sample operation with LOD bias case DxbcOpcode::SampleB: { imageOperands.flags |= spv::ImageOperandsBiasMask; imageOperands.sLodBias = lod.id; result.id = m_module.opImageSampleImplicitLod( getVectorTypeId(result.type), sampledImageId, coord.id, imageOperands); } break; default: Logger::warn(str::format( "DxbcCompiler: Unhandled instruction: ", ins.op)); return; } // Swizzle components using the texture swizzle // and the destination operand's write mask if (result.type.ccount != 1) { result = emitRegisterSwizzle(result, textureReg.swizzle, ins.dst[0].mask); } emitRegisterStore(ins.dst[0], result); } void DxbcCompiler::emitTypedUavLoad(const DxbcShaderInstruction& ins) { // load_uav_typed has three operands: // (dst0) The destination register // (src0) The texture or buffer coordinates // (src1) The UAV to load from const uint32_t registerId = ins.src[1].idx[0].offset; const DxbcUav uavInfo = m_uavs.at(registerId); // Load texture coordinates const DxbcRegisterValue texCoord = emitRegisterLoad( ins.src[0], getTexCoordMask(uavInfo.imageInfo)); // Load source value from the UAV DxbcRegisterValue uavValue; uavValue.type.ctype = uavInfo.sampledType; uavValue.type.ccount = 4; uavValue.id = m_module.opImageRead( getVectorTypeId(uavValue.type), m_module.opLoad(uavInfo.imageTypeId, uavInfo.varId), texCoord.id, SpirvImageOperands()); // Apply component swizzle and mask uavValue = emitRegisterSwizzle(uavValue, ins.src[1].swizzle, ins.dst[0].mask); emitRegisterStore(ins.dst[0], uavValue); } void DxbcCompiler::emitTypedUavStore(const DxbcShaderInstruction& ins) { // store_uav_typed has three operands: // (dst0) The destination UAV // (src0) The texture or buffer coordinates // (src1) The value to store const uint32_t registerId = ins.dst[0].idx[0].offset; const DxbcUav uavInfo = m_uavs.at(registerId); // Load texture coordinates const DxbcRegisterValue texCoord = emitRegisterLoad( ins.src[0], getTexCoordMask(uavInfo.imageInfo)); // Load the value that will be written to the image. We'll // have to cast it to the component type of the image. const DxbcRegisterValue texValue = emitRegisterBitcast( emitRegisterLoad(ins.src[1], DxbcRegMask(true, true, true, true)), uavInfo.sampledType); // Write the given value to the image m_module.opImageWrite( m_module.opLoad(uavInfo.imageTypeId, uavInfo.varId), texCoord.id, texValue.id, SpirvImageOperands()); } void DxbcCompiler::emitControlFlowIf(const DxbcShaderInstruction& ins) { // Load the first component of the condition // operand and perform a zero test on it. const DxbcRegisterValue condition = emitRegisterLoad( ins.src[0], DxbcRegMask(true, false, false, false)); const DxbcRegisterValue zeroTest = emitRegisterZeroTest( condition, ins.controls.zeroTest); // Declare the 'if' block. We do not know if there // will be an 'else' block or not, so we'll assume // that there is one and leave it empty otherwise. DxbcCfgBlock block; block.type = DxbcCfgBlockType::If; block.b_if.labelIf = m_module.allocateId(); block.b_if.labelElse = m_module.allocateId(); block.b_if.labelEnd = m_module.allocateId(); block.b_if.hadElse = false; m_controlFlowBlocks.push_back(block); m_module.opSelectionMerge( block.b_if.labelEnd, spv::SelectionControlMaskNone); m_module.opBranchConditional( zeroTest.id, block.b_if.labelIf, block.b_if.labelElse); m_module.opLabel(block.b_if.labelIf); } void DxbcCompiler::emitControlFlowElse(const DxbcShaderInstruction& ins) { if (m_controlFlowBlocks.size() == 0 || m_controlFlowBlocks.back().type != DxbcCfgBlockType::If || m_controlFlowBlocks.back().b_if.hadElse) throw DxvkError("DxbcCompiler: 'Else' without 'If' found"); // Set the 'Else' flag so that we do // not insert a dummy block on 'EndIf' DxbcCfgBlock& block = m_controlFlowBlocks.back(); block.b_if.hadElse = true; // Close the 'If' block by branching to // the merge block we declared earlier m_module.opBranch(block.b_if.labelEnd); m_module.opLabel (block.b_if.labelElse); } void DxbcCompiler::emitControlFlowEndIf(const DxbcShaderInstruction& ins) { if (m_controlFlowBlocks.size() == 0 || m_controlFlowBlocks.back().type != DxbcCfgBlockType::If) throw DxvkError("DxbcCompiler: 'EndIf' without 'If' found"); // Remove the block from the stack, it's closed const DxbcCfgBlock block = m_controlFlowBlocks.back(); m_controlFlowBlocks.pop_back(); // End the active 'if' or 'else' block m_module.opBranch(block.b_if.labelEnd); // If there was no 'else' block in this construct, we still // have to declare it because we used it as a branch target. if (!block.b_if.hadElse) { m_module.opLabel (block.b_if.labelElse); m_module.opBranch(block.b_if.labelEnd); } // Declare the merge block m_module.opLabel(block.b_if.labelEnd); } void DxbcCompiler::emitControlFlowSwitch(const DxbcShaderInstruction& ins) { // Load the selector as a scalar unsigned integer const DxbcRegisterValue selector = emitRegisterLoad( ins.src[0], DxbcRegMask(true, false, false, false)); // Declare switch block. We cannot insert the switch // instruction itself yet because the number of case // statements and blocks is unknown at this point. DxbcCfgBlock block; block.type = DxbcCfgBlockType::Switch; block.b_switch.insertPtr = m_module.getInsertionPtr(); block.b_switch.selectorId = selector.id; block.b_switch.labelBreak = m_module.allocateId(); block.b_switch.labelCase = m_module.allocateId(); block.b_switch.labelDefault = 0; block.b_switch.labelCases = nullptr; m_controlFlowBlocks.push_back(block); // Define the first 'case' label m_module.opLabel(block.b_switch.labelCase); } void DxbcCompiler::emitControlFlowCase(const DxbcShaderInstruction& ins) { if (m_controlFlowBlocks.size() == 0 || m_controlFlowBlocks.back().type != DxbcCfgBlockType::Switch) throw DxvkError("DxbcCompiler: 'Case' without 'Switch' found"); // The source operand must be a 32-bit immediate. if (ins.src[0].type != DxbcOperandType::Imm32) throw DxvkError("DxbcCompiler: Invalid operand type for 'Case'"); // Use the last label allocated for 'case'. The block starting // with that label is guaranteed to be empty unless a previous // 'case' block was not properly closed in the DXBC shader. DxbcCfgBlockSwitch* block = &m_controlFlowBlocks.back().b_switch; DxbcSwitchLabel label; label.desc.literal = ins.src[0].imm.u32_1; label.desc.labelId = block->labelCase; label.next = block->labelCases; block->labelCases = new DxbcSwitchLabel(label); } void DxbcCompiler::emitControlFlowDefault(const DxbcShaderInstruction& ins) { if (m_controlFlowBlocks.size() == 0 || m_controlFlowBlocks.back().type != DxbcCfgBlockType::Switch) throw DxvkError("DxbcCompiler: 'Default' without 'Switch' found"); // Set the last label allocated for 'case' as the default label. m_controlFlowBlocks.back().b_switch.labelDefault = m_controlFlowBlocks.back().b_switch.labelCase; } void DxbcCompiler::emitControlFlowEndSwitch(const DxbcShaderInstruction& ins) { if (m_controlFlowBlocks.size() == 0 || m_controlFlowBlocks.back().type != DxbcCfgBlockType::Switch) throw DxvkError("DxbcCompiler: 'EndSwitch' without 'Switch' found"); // Remove the block from the stack, it's closed DxbcCfgBlock block = m_controlFlowBlocks.back(); m_controlFlowBlocks.pop_back(); // If no 'default' label was specified, use the last allocated // 'case' label. This is guaranteed to be an empty block unless // a previous 'case' block was not closed properly. if (block.b_switch.labelDefault == 0) block.b_switch.labelDefault = block.b_switch.labelCase; // Close the current 'case' block m_module.opBranch(block.b_switch.labelBreak); m_module.opLabel (block.b_switch.labelBreak); // Insert the 'switch' statement. For that, we need to // gather all the literal-label pairs for the construct. m_module.beginInsertion(block.b_switch.insertPtr); m_module.opSelectionMerge( block.b_switch.labelBreak, spv::SelectionControlMaskNone); // We'll restore the original order of the case labels here std::vector jumpTargets; for (auto i = block.b_switch.labelCases; i != nullptr; i = i->next) jumpTargets.insert(jumpTargets.begin(), i->desc); m_module.opSwitch( block.b_switch.selectorId, block.b_switch.labelDefault, jumpTargets.size(), jumpTargets.data()); m_module.endInsertion(); // Destroy the list of case labels // FIXME we're leaking memory if compilation fails. DxbcSwitchLabel* caseLabel = block.b_switch.labelCases; while (caseLabel != nullptr) delete std::exchange(caseLabel, caseLabel->next); } void DxbcCompiler::emitControlFlowLoop(const DxbcShaderInstruction& ins) { // Declare the 'loop' block DxbcCfgBlock block; block.type = DxbcCfgBlockType::Loop; block.b_loop.labelHeader = m_module.allocateId(); block.b_loop.labelBegin = m_module.allocateId(); block.b_loop.labelContinue = m_module.allocateId(); block.b_loop.labelBreak = m_module.allocateId(); m_controlFlowBlocks.push_back(block); m_module.opBranch(block.b_loop.labelHeader); m_module.opLabel (block.b_loop.labelHeader); m_module.opLoopMerge( block.b_loop.labelBreak, block.b_loop.labelContinue, spv::LoopControlMaskNone); m_module.opBranch(block.b_loop.labelBegin); m_module.opLabel (block.b_loop.labelBegin); } void DxbcCompiler::emitControlFlowEndLoop(const DxbcShaderInstruction& ins) { if (m_controlFlowBlocks.size() == 0 || m_controlFlowBlocks.back().type != DxbcCfgBlockType::Loop) throw DxvkError("DxbcCompiler: 'EndLoop' without 'Loop' found"); // Remove the block from the stack, it's closed const DxbcCfgBlock block = m_controlFlowBlocks.back(); m_controlFlowBlocks.pop_back(); // Declare the continue block m_module.opBranch(block.b_loop.labelContinue); m_module.opLabel (block.b_loop.labelContinue); // Declare the merge block m_module.opBranch(block.b_loop.labelHeader); m_module.opLabel (block.b_loop.labelBreak); } void DxbcCompiler::emitControlFlowBreak(const DxbcShaderInstruction& ins) { const bool isBreak = ins.op == DxbcOpcode::Break; DxbcCfgBlock* cfgBlock = isBreak ? cfgFindBlock({ DxbcCfgBlockType::Loop, DxbcCfgBlockType::Switch }) : cfgFindBlock({ DxbcCfgBlockType::Loop }); if (cfgBlock == nullptr) throw DxvkError("DxbcCompiler: 'Break' or 'Continue' outside 'Loop' or 'Switch' found"); if (cfgBlock->type == DxbcCfgBlockType::Loop) { m_module.opBranch(isBreak ? cfgBlock->b_loop.labelBreak : cfgBlock->b_loop.labelContinue); } else /* if (cfgBlock->type == DxbcCfgBlockType::Switch) */ { m_module.opBranch(cfgBlock->b_switch.labelBreak); } // Subsequent instructions assume that there is an open block const uint32_t labelId = m_module.allocateId(); m_module.opLabel(labelId); // If this is on the same level as a switch-case construct, // rather than being nested inside an 'if' statement, close // the current 'case' block. if (m_controlFlowBlocks.back().type == DxbcCfgBlockType::Switch) cfgBlock->b_switch.labelCase = labelId; } void DxbcCompiler::emitControlFlowBreakc(const DxbcShaderInstruction& ins) { const bool isBreak = ins.op == DxbcOpcode::Breakc; DxbcCfgBlock* cfgBlock = isBreak ? cfgFindBlock({ DxbcCfgBlockType::Loop, DxbcCfgBlockType::Switch }) : cfgFindBlock({ DxbcCfgBlockType::Loop }); if (cfgBlock == nullptr) throw DxvkError("DxbcCompiler: 'Breakc' or 'Continuec' outside 'Loop' or 'Switch' found"); // Perform zero test on the first component of the condition const DxbcRegisterValue condition = emitRegisterLoad( ins.src[0], DxbcRegMask(true, false, false, false)); const DxbcRegisterValue zeroTest = emitRegisterZeroTest( condition, ins.controls.zeroTest); // We basically have to wrap this into an 'if' block const uint32_t breakBlock = m_module.allocateId(); const uint32_t mergeBlock = m_module.allocateId(); m_module.opSelectionMerge(mergeBlock, spv::SelectionControlMaskNone); m_module.opBranchConditional( zeroTest.id, breakBlock, mergeBlock); m_module.opLabel(breakBlock); if (cfgBlock->type == DxbcCfgBlockType::Loop) { m_module.opBranch(isBreak ? cfgBlock->b_loop.labelBreak : cfgBlock->b_loop.labelContinue); } else /* if (cfgBlock->type == DxbcCfgBlockType::Switch) */ { m_module.opBranch(cfgBlock->b_switch.labelBreak); } m_module.opLabel(mergeBlock); } void DxbcCompiler::emitControlFlowRet(const DxbcShaderInstruction& ins) { m_module.opReturn(); if (m_controlFlowBlocks.size() == 0) m_module.functionEnd(); else m_module.opLabel(m_module.allocateId()); } void DxbcCompiler::emitControlFlowDiscard(const DxbcShaderInstruction& ins) { // Discard actually has an operand that determines // whether or not the fragment should be discarded const DxbcRegisterValue condition = emitRegisterLoad( ins.src[0], DxbcRegMask(true, false, false, false)); const DxbcRegisterValue zeroTest = emitRegisterZeroTest( condition, ins.controls.zeroTest); // Insert a Pseudo-'If' block const uint32_t discardBlock = m_module.allocateId(); const uint32_t mergeBlock = m_module.allocateId(); m_module.opSelectionMerge(mergeBlock, spv::SelectionControlMaskNone); m_module.opBranchConditional( zeroTest.id, discardBlock, mergeBlock); // OpKill terminates the block m_module.opLabel(discardBlock); m_module.opKill(); m_module.opLabel(mergeBlock); } void DxbcCompiler::emitControlFlow(const DxbcShaderInstruction& ins) { switch (ins.op) { case DxbcOpcode::If: return this->emitControlFlowIf(ins); case DxbcOpcode::Else: return this->emitControlFlowElse(ins); case DxbcOpcode::EndIf: return this->emitControlFlowEndIf(ins); case DxbcOpcode::Switch: return this->emitControlFlowSwitch(ins); case DxbcOpcode::Case: return this->emitControlFlowCase(ins); case DxbcOpcode::Default: return this->emitControlFlowDefault(ins); case DxbcOpcode::EndSwitch: return this->emitControlFlowEndSwitch(ins); case DxbcOpcode::Loop: return this->emitControlFlowLoop(ins); case DxbcOpcode::EndLoop: return this->emitControlFlowEndLoop(ins); case DxbcOpcode::Break: case DxbcOpcode::Continue: return this->emitControlFlowBreak(ins); case DxbcOpcode::Breakc: case DxbcOpcode::Continuec: return this->emitControlFlowBreakc(ins); case DxbcOpcode::Ret: return this->emitControlFlowRet(ins); case DxbcOpcode::Discard: return this->emitControlFlowDiscard(ins); default: Logger::warn(str::format( "DxbcCompiler: Unhandled instruction: ", ins.op)); } } DxbcRegisterValue DxbcCompiler::emitBuildConstVecf32( float x, float y, float z, float w, const DxbcRegMask& writeMask) { // TODO refactor these functions into one single template std::array ids = { 0, 0, 0, 0 }; uint32_t componentIndex = 0; if (writeMask[0]) ids[componentIndex++] = m_module.constf32(x); if (writeMask[1]) ids[componentIndex++] = m_module.constf32(y); if (writeMask[2]) ids[componentIndex++] = m_module.constf32(z); if (writeMask[3]) ids[componentIndex++] = m_module.constf32(w); DxbcRegisterValue result; result.type.ctype = DxbcScalarType::Float32; result.type.ccount = componentIndex; result.id = componentIndex > 1 ? m_module.constComposite( getVectorTypeId(result.type), componentIndex, ids.data()) : ids[0]; return result; } DxbcRegisterValue DxbcCompiler::emitBuildConstVecu32( uint32_t x, uint32_t y, uint32_t z, uint32_t w, const DxbcRegMask& writeMask) { std::array ids = { 0, 0, 0, 0 }; uint32_t componentIndex = 0; if (writeMask[0]) ids[componentIndex++] = m_module.constu32(x); if (writeMask[1]) ids[componentIndex++] = m_module.constu32(y); if (writeMask[2]) ids[componentIndex++] = m_module.constu32(z); if (writeMask[3]) ids[componentIndex++] = m_module.constu32(w); DxbcRegisterValue result; result.type.ctype = DxbcScalarType::Uint32; result.type.ccount = componentIndex; result.id = componentIndex > 1 ? m_module.constComposite( getVectorTypeId(result.type), componentIndex, ids.data()) : ids[0]; return result; } DxbcRegisterValue DxbcCompiler::emitBuildConstVeci32( int32_t x, int32_t y, int32_t z, int32_t w, const DxbcRegMask& writeMask) { std::array ids = { 0, 0, 0, 0 }; uint32_t componentIndex = 0; if (writeMask[0]) ids[componentIndex++] = m_module.consti32(x); if (writeMask[1]) ids[componentIndex++] = m_module.consti32(y); if (writeMask[2]) ids[componentIndex++] = m_module.consti32(z); if (writeMask[3]) ids[componentIndex++] = m_module.consti32(w); DxbcRegisterValue result; result.type.ctype = DxbcScalarType::Sint32; result.type.ccount = componentIndex; result.id = componentIndex > 1 ? m_module.constComposite( getVectorTypeId(result.type), componentIndex, ids.data()) : ids[0]; return result; } DxbcRegisterValue DxbcCompiler::emitBuildZero( DxbcScalarType type) { DxbcRegisterValue result; result.type.ctype = type; result.type.ccount = 1; switch (type) { case DxbcScalarType::Float32: result.id = m_module.constf32(0.0f); break; case DxbcScalarType::Uint32: result.id = m_module.constu32(0); break; case DxbcScalarType::Sint32: result.id = m_module.consti32(0); break; default: throw DxvkError("DxbcCompiler: Invalid scalar type"); } return result; } DxbcRegisterValue DxbcCompiler::emitBuildZeroVec( DxbcVectorType type) { const DxbcRegisterValue scalar = emitBuildZero(type.ctype); if (type.ccount == 1) return scalar; const std::array zeroIds = {{ scalar.id, scalar.id, scalar.id, scalar.id, }}; DxbcRegisterValue result; result.type = type; result.id = m_module.constComposite( getVectorTypeId(result.type), zeroIds.size(), zeroIds.data()); return result; } DxbcRegisterValue DxbcCompiler::emitRegisterBitcast( DxbcRegisterValue srcValue, DxbcScalarType dstType) { if (srcValue.type.ctype == dstType) return srcValue; // TODO support 64-bit values DxbcRegisterValue result; result.type.ctype = dstType; result.type.ccount = srcValue.type.ccount; result.id = m_module.opBitcast( getVectorTypeId(result.type), srcValue.id); return result; } DxbcRegisterValue DxbcCompiler::emitRegisterSwizzle( DxbcRegisterValue value, DxbcRegSwizzle swizzle, DxbcRegMask writeMask) { if (value.type.ccount == 1) return emitRegisterExtend(value, writeMask.setCount()); std::array indices; uint32_t dstIndex = 0; for (uint32_t i = 0; i < 4; i++) { if (writeMask[i]) indices[dstIndex++] = swizzle[i]; } // If the swizzle combined with the mask can be reduced // to a no-op, we don't need to insert any instructions. bool isIdentitySwizzle = dstIndex == value.type.ccount; for (uint32_t i = 0; i < dstIndex && isIdentitySwizzle; i++) isIdentitySwizzle &= indices[i] == i; if (isIdentitySwizzle) return value; // Use OpCompositeExtract if the resulting vector contains // only one component, and OpVectorShuffle if it is a vector. DxbcRegisterValue result; result.type.ctype = value.type.ctype; result.type.ccount = dstIndex; const uint32_t typeId = getVectorTypeId(result.type); if (dstIndex == 1) { result.id = m_module.opCompositeExtract( typeId, value.id, 1, indices.data()); } else { result.id = m_module.opVectorShuffle( typeId, value.id, value.id, dstIndex, indices.data()); } return result; } DxbcRegisterValue DxbcCompiler::emitRegisterExtract( DxbcRegisterValue value, DxbcRegMask mask) { return emitRegisterSwizzle(value, DxbcRegSwizzle(0, 1, 2, 3), mask); } DxbcRegisterValue DxbcCompiler::emitRegisterInsert( DxbcRegisterValue dstValue, DxbcRegisterValue srcValue, DxbcRegMask srcMask) { DxbcRegisterValue result; result.type = dstValue.type; const uint32_t typeId = getVectorTypeId(result.type); if (srcMask.setCount() == 0) { // Nothing to do if the insertion mask is empty result.id = dstValue.id; } else if (dstValue.type.ccount == 1) { // Both values are scalar, so the first component // of the write mask decides which one to take. result.id = srcMask[0] ? srcValue.id : dstValue.id; } else if (srcValue.type.ccount == 1) { // The source value is scalar. Since OpVectorShuffle // requires both arguments to be vectors, we have to // use OpCompositeInsert to modify the vector instead. const uint32_t componentId = srcMask.firstSet(); result.id = m_module.opCompositeInsert(typeId, srcValue.id, dstValue.id, 1, &componentId); } else { // Both arguments are vectors. We can determine which // components to take from which vector and use the // OpVectorShuffle instruction. std::array components; uint32_t srcComponentId = dstValue.type.ccount; for (uint32_t i = 0; i < dstValue.type.ccount; i++) components.at(i) = srcMask[i] ? srcComponentId++ : i; result.id = m_module.opVectorShuffle( typeId, dstValue.id, srcValue.id, dstValue.type.ccount, components.data()); } return result; } DxbcRegisterValue DxbcCompiler::emitRegisterConcat( DxbcRegisterValue value1, DxbcRegisterValue value2) { std::array ids = {{ value1.id, value2.id }}; DxbcRegisterValue result; result.type.ctype = value1.type.ctype; result.type.ccount = value1.type.ccount + value2.type.ccount; result.id = m_module.opCompositeConstruct( getVectorTypeId(result.type), ids.size(), ids.data()); return result; } DxbcRegisterValue DxbcCompiler::emitRegisterExtend( DxbcRegisterValue value, uint32_t size) { if (size == 1) return value; std::array ids = {{ value.id, value.id, value.id, value.id, }}; DxbcRegisterValue result; result.type.ctype = value.type.ctype; result.type.ccount = size; result.id = m_module.opCompositeConstruct( getVectorTypeId(result.type), size, ids.data()); return result; } DxbcRegisterValue DxbcCompiler::emitRegisterAbsolute( DxbcRegisterValue value) { const uint32_t typeId = getVectorTypeId(value.type); switch (value.type.ctype) { case DxbcScalarType::Float32: value.id = m_module.opFAbs(typeId, value.id); break; case DxbcScalarType::Sint32: value.id = m_module.opSAbs(typeId, value.id); break; default: Logger::warn("DxbcCompiler: Cannot get absolute value for given type"); } return value; } DxbcRegisterValue DxbcCompiler::emitRegisterNegate( DxbcRegisterValue value) { const uint32_t typeId = getVectorTypeId(value.type); switch (value.type.ctype) { case DxbcScalarType::Float32: value.id = m_module.opFNegate(typeId, value.id); break; case DxbcScalarType::Sint32: value.id = m_module.opSNegate(typeId, value.id); break; default: Logger::warn("DxbcCompiler: Cannot negate given type"); } return value; } DxbcRegisterValue DxbcCompiler::emitRegisterZeroTest( DxbcRegisterValue value, DxbcZeroTest test) { DxbcRegisterValue result; result.type.ctype = DxbcScalarType::Bool; result.type.ccount = 1; const uint32_t zeroId = m_module.constu32(0u); const uint32_t typeId = getVectorTypeId(result.type); result.id = test == DxbcZeroTest::TestZ ? m_module.opIEqual (typeId, value.id, zeroId) : m_module.opINotEqual(typeId, value.id, zeroId); return result; } DxbcRegisterValue DxbcCompiler::emitSrcOperandModifiers( DxbcRegisterValue value, DxbcRegModifiers modifiers) { if (modifiers.test(DxbcRegModifier::Abs)) value = emitRegisterAbsolute(value); if (modifiers.test(DxbcRegModifier::Neg)) value = emitRegisterNegate(value); return value; } DxbcRegisterValue DxbcCompiler::emitDstOperandModifiers( DxbcRegisterValue value, DxbcOpModifiers modifiers) { const uint32_t typeId = getVectorTypeId(value.type); if (value.type.ctype == DxbcScalarType::Float32) { // Saturating only makes sense on floats if (modifiers.saturate) { const DxbcRegMask mask = DxbcRegMask::firstN(value.type.ccount); const DxbcRegisterValue vec0 = emitBuildConstVecf32(0.0f, 0.0f, 0.0f, 0.0f, mask); const DxbcRegisterValue vec1 = emitBuildConstVecf32(1.0f, 1.0f, 1.0f, 1.0f, mask); value.id = m_options.useSimpleMinMaxClamp ? m_module.opFClamp(typeId, value.id, vec0.id, vec1.id) : m_module.opNClamp(typeId, value.id, vec0.id, vec1.id); } } return value; } uint32_t DxbcCompiler::emitLoadSampledImage( const DxbcShaderResource& textureResource, const DxbcSampler& samplerResource, bool isDepthCompare) { const uint32_t sampledImageType = isDepthCompare ? m_module.defSampledImageType(textureResource.depthTypeId) : m_module.defSampledImageType(textureResource.colorTypeId); return m_module.opSampledImage(sampledImageType, m_module.opLoad(textureResource.imageTypeId, textureResource.varId), m_module.opLoad(samplerResource.typeId, samplerResource.varId)); } DxbcRegisterPointer DxbcCompiler::emitGetTempPtr( const DxbcRegister& operand) { // r# regs are indexed as follows: // (0) register index (immediate) DxbcRegisterPointer result; result.type.ctype = DxbcScalarType::Float32; result.type.ccount = 4; result.id = m_rRegs.at(operand.idx[0].offset); return result; } DxbcRegisterPointer DxbcCompiler::emitGetIndexableTempPtr( const DxbcRegister& operand) { // x# regs are indexed as follows: // (0) register index (immediate) // (1) element index (relative) const uint32_t regId = operand.idx[0].offset; const DxbcRegisterValue vectorId = emitIndexLoad(operand.idx[1]); DxbcRegisterInfo info; info.type.ctype = DxbcScalarType::Float32; info.type.ccount = m_xRegs[regId].ccount; info.type.alength = 0; info.sclass = spv::StorageClassPrivate; DxbcRegisterPointer result; result.type.ctype = info.type.ctype; result.type.ccount = info.type.ccount; result.id = m_module.opAccessChain( getPointerTypeId(info), m_xRegs.at(regId).varId, 1, &vectorId.id); return result; } DxbcRegisterPointer DxbcCompiler::emitGetInputPtr( const DxbcRegister& operand) { // In the vertex and pixel stages, // v# regs are indexed as follows: // (0) register index (relative) // // In the tessellation and geometry // stages, the index has two dimensions: // (0) vertex index (relative) // (1) register index (relative) DxbcRegisterPointer result; result.type.ctype = DxbcScalarType::Float32; result.type.ccount = 4; std::array indices = {{ 0, 0 }}; for (uint32_t i = 0; i < operand.idxDim; i++) indices.at(i) = emitIndexLoad(operand.idx[i]).id; // Pick the input array depending on // the program type and operand type struct InputArray { uint32_t id; spv::StorageClass sclass; }; const InputArray array = [&] () -> InputArray { switch (operand.type) { case DxbcOperandType::InputControlPoint: return m_version.type() == DxbcProgramType::HullShader ? InputArray { m_vArray, spv::StorageClassPrivate } : InputArray { m_ds.inputPerVertex, spv::StorageClassInput }; case DxbcOperandType::InputPatchConstant: return m_version.type() == DxbcProgramType::HullShader ? InputArray { m_hs.outputPerPatch, spv::StorageClassOutput } : InputArray { m_ds.inputPerPatch, spv::StorageClassInput }; case DxbcOperandType::OutputControlPoint: return InputArray { m_hs.outputPerVertex, spv::StorageClassOutput }; default: return { m_vArray, spv::StorageClassPrivate }; } }(); DxbcRegisterInfo info; info.type.ctype = result.type.ctype; info.type.ccount = result.type.ccount; info.type.alength = 0; info.sclass = array.sclass; result.id = m_module.opAccessChain( getPointerTypeId(info), array.id, operand.idxDim, indices.data()); return result; } DxbcRegisterPointer DxbcCompiler::emitGetOutputPtr( const DxbcRegister& operand) { DxbcRegisterPointer result; result.type.ctype = DxbcScalarType::Float32; result.type.ccount = 4; switch (m_version.type()) { // Pixel shaders have typed output registers, whereas they // are simple float4 vectors in all other shader stages. case DxbcProgramType::PixelShader: { const uint32_t registerId = operand.idx[0].offset; result.type = m_ps.oTypes.at(registerId); result.id = m_oRegs.at(registerId); } break; // Hull shaders are special in that they have two sets of // output registers, one for per-patch values and one for // per-vertex values. case DxbcProgramType::HullShader: { uint32_t registerId = emitIndexLoad(operand.idx[0]).id; uint32_t ptrTypeId = m_module.defPointerType( getVectorTypeId(result.type), spv::StorageClassOutput); if (m_hs.currPhaseType == DxbcCompilerHsPhase::ControlPoint) { std::array indices = {{ m_module.opLoad(m_module.defIntType(32, 0), m_hs.builtinInvocationId), registerId, }}; result.id = m_module.opAccessChain( ptrTypeId, m_hs.outputPerVertex, indices.size(), indices.data()); } else { result.id = m_module.opAccessChain( ptrTypeId, m_hs.outputPerPatch, 1, ®isterId); } } break; default: result.id = m_oRegs.at(operand.idx[0].offset); } return result; } DxbcRegisterPointer DxbcCompiler::emitGetConstBufPtr( const DxbcRegister& operand) { // Constant buffers take a two-dimensional index: // (0) register index (immediate) // (1) constant offset (relative) DxbcRegisterInfo info; info.type.ctype = DxbcScalarType::Float32; info.type.ccount = 4; info.type.alength = 0; info.sclass = spv::StorageClassUniform; const uint32_t regId = operand.idx[0].offset; const DxbcRegisterValue constId = emitIndexLoad(operand.idx[1]); const uint32_t ptrTypeId = getPointerTypeId(info); const std::array indices = {{ m_module.consti32(0), constId.id }}; DxbcRegisterPointer result; result.type.ctype = info.type.ctype; result.type.ccount = info.type.ccount; result.id = m_module.opAccessChain(ptrTypeId, m_constantBuffers.at(regId).varId, indices.size(), indices.data()); return result; } DxbcRegisterPointer DxbcCompiler::emitGetImmConstBufPtr( const DxbcRegister& operand) { if (m_immConstBuf == 0) throw DxvkError("DxbcCompiler: Immediate constant buffer not defined"); const DxbcRegisterValue constId = emitIndexLoad(operand.idx[0]); DxbcRegisterInfo ptrInfo; ptrInfo.type.ctype = DxbcScalarType::Uint32; ptrInfo.type.ccount = 4; ptrInfo.type.alength = 0; ptrInfo.sclass = spv::StorageClassPrivate; DxbcRegisterPointer result; result.type.ctype = ptrInfo.type.ctype; result.type.ccount = ptrInfo.type.ccount; result.id = m_module.opAccessChain( getPointerTypeId(ptrInfo), m_immConstBuf, 1, &constId.id); return result; } DxbcRegisterPointer DxbcCompiler::emitGetOperandPtr( const DxbcRegister& operand) { switch (operand.type) { case DxbcOperandType::Temp: return emitGetTempPtr(operand); case DxbcOperandType::IndexableTemp: return emitGetIndexableTempPtr(operand); case DxbcOperandType::Input: case DxbcOperandType::InputControlPoint: case DxbcOperandType::InputPatchConstant: case DxbcOperandType::OutputControlPoint: return emitGetInputPtr(operand); case DxbcOperandType::Output: return emitGetOutputPtr(operand); case DxbcOperandType::ConstantBuffer: return emitGetConstBufPtr(operand); case DxbcOperandType::ImmediateConstantBuffer: return emitGetImmConstBufPtr(operand); case DxbcOperandType::InputThreadId: return DxbcRegisterPointer { { DxbcScalarType::Uint32, 3 }, m_cs.builtinGlobalInvocationId }; case DxbcOperandType::InputThreadGroupId: return DxbcRegisterPointer { { DxbcScalarType::Uint32, 3 }, m_cs.builtinWorkgroupId }; case DxbcOperandType::InputThreadIdInGroup: return DxbcRegisterPointer { { DxbcScalarType::Uint32, 3 }, m_cs.builtinLocalInvocationId }; case DxbcOperandType::InputThreadIndexInGroup: return DxbcRegisterPointer { { DxbcScalarType::Uint32, 1 }, m_cs.builtinLocalInvocationIndex }; case DxbcOperandType::InputCoverageMask: { const std::array indices = {{ m_module.constu32(0) }}; DxbcRegisterPointer result; result.type.ctype = DxbcScalarType::Uint32; result.type.ccount = 1; result.id = m_module.opAccessChain( m_module.defPointerType( getVectorTypeId(result.type), spv::StorageClassInput), m_ps.builtinSampleMaskIn, indices.size(), indices.data()); return result; } case DxbcOperandType::OutputCoverageMask: { const std::array indices = {{ m_module.constu32(0) }}; DxbcRegisterPointer result; result.type.ctype = DxbcScalarType::Uint32; result.type.ccount = 1; result.id = m_module.opAccessChain( m_module.defPointerType( getVectorTypeId(result.type), spv::StorageClassOutput), m_ps.builtinSampleMaskOut, indices.size(), indices.data()); return result; } case DxbcOperandType::OutputDepth: case DxbcOperandType::OutputDepthGe: case DxbcOperandType::OutputDepthLe: return DxbcRegisterPointer { { DxbcScalarType::Float32, 1 }, m_ps.builtinDepth }; case DxbcOperandType::InputDomainPoint: return DxbcRegisterPointer { { DxbcScalarType::Float32, 3 }, m_ds.builtinTessCoord }; case DxbcOperandType::OutputControlPointId: return DxbcRegisterPointer { { DxbcScalarType::Uint32, 1 }, m_hs.builtinInvocationId }; case DxbcOperandType::InputForkInstanceId: case DxbcOperandType::InputJoinInstanceId: return DxbcRegisterPointer { { DxbcScalarType::Uint32, 1 }, getCurrentHsForkJoinPhase()->instanceIdPtr }; default: throw DxvkError(str::format( "DxbcCompiler: Unhandled operand type: ", operand.type)); } } DxbcRegisterPointer DxbcCompiler::emitGetAtomicPointer( const DxbcRegister& operand, const DxbcRegister& address) { // Query information about the resource itself const uint32_t registerId = operand.idx[0].offset; const DxbcBufferInfo resourceInfo = getBufferInfo(operand); // For UAVs and shared memory, different methods // of obtaining the final pointer are used. const bool isUav = operand.type == DxbcOperandType::UnorderedAccessView; // Compute the actual address into the resource const DxbcRegisterValue addressValue = [&] { switch (resourceInfo.type) { case DxbcResourceType::Raw: return emitCalcBufferIndexRaw(emitRegisterLoad( address, DxbcRegMask(true, false, false, false))); case DxbcResourceType::Structured: { const DxbcRegisterValue addressComponents = emitRegisterLoad( address, DxbcRegMask(true, true, false, false)); return emitCalcBufferIndexStructured( emitRegisterExtract(addressComponents, DxbcRegMask(true, false, false, false)), emitRegisterExtract(addressComponents, DxbcRegMask(false, true, false, false)), resourceInfo.stride); }; case DxbcResourceType::Typed: { if (!isUav) throw DxvkError("DxbcCompiler: TGSM cannot be typed"); return emitRegisterLoad(address, getTexCoordMask( m_uavs.at(registerId).imageInfo)); } default: throw DxvkError("DxbcCompiler: Unhandled resource type"); } }(); // Compute the actual pointer DxbcRegisterPointer result; result.type.ctype = operand.dataType; result.type.ccount = 1; result.id = isUav ? m_module.opImageTexelPointer( m_module.defPointerType(getVectorTypeId(result.type), spv::StorageClassImage), m_uavs.at(registerId).varId, addressValue.id, m_module.constu32(0)) : m_module.opAccessChain( m_module.defPointerType(getVectorTypeId(result.type), spv::StorageClassWorkgroup), m_gRegs.at(registerId).varId, 1, &addressValue.id); return result; } DxbcRegisterValue DxbcCompiler::emitRawBufferLoad( const DxbcRegister& operand, DxbcRegisterValue elementIndex, DxbcRegMask writeMask) { const DxbcBufferInfo bufferInfo = getBufferInfo(operand); // Shared memory is the only type of buffer that // is not accessed through a texel buffer view const bool isTgsm = operand.type == DxbcOperandType::ThreadGroupSharedMemory; const uint32_t bufferId = isTgsm ? 0 : m_module.opLoad(bufferInfo.typeId, bufferInfo.varId); // Since all data is represented as a sequence of 32-bit // integers, we have to load each component individually. std::array componentIds = { 0, 0, 0, 0 }; std::array swizzleIds = { 0, 0, 0, 0 }; uint32_t componentIndex = 0; const uint32_t vectorTypeId = getVectorTypeId({ DxbcScalarType::Uint32, 4 }); const uint32_t scalarTypeId = getVectorTypeId({ DxbcScalarType::Uint32, 1 }); for (uint32_t i = 0; i < 4; i++) { // We'll apply both the write mask and the source operand swizzle // immediately. Unused components are not loaded, and the scalar // IDs are written to the array in the order they are requested. if (writeMask[i]) { const uint32_t swizzleIndex = operand.swizzle[i]; if (componentIds[swizzleIndex] == 0) { // Add the component offset to the element index const uint32_t elementIndexAdjusted = m_module.opIAdd( getVectorTypeId(elementIndex.type), elementIndex.id, m_module.consti32(swizzleIndex)); // Load requested component from the buffer componentIds[swizzleIndex] = [&] { const uint32_t zero = 0; switch (operand.type) { case DxbcOperandType::Resource: return m_module.opCompositeExtract(scalarTypeId, m_module.opImageFetch(vectorTypeId, bufferId, elementIndexAdjusted, SpirvImageOperands()), 1, &zero); case DxbcOperandType::UnorderedAccessView: return m_module.opCompositeExtract(scalarTypeId, m_module.opImageRead(vectorTypeId, bufferId, elementIndexAdjusted, SpirvImageOperands()), 1, &zero); case DxbcOperandType::ThreadGroupSharedMemory: return m_module.opLoad(scalarTypeId, m_module.opAccessChain(bufferInfo.typeId, bufferInfo.varId, 1, &elementIndexAdjusted)); default: throw DxvkError("DxbcCompiler: Invalid operand type for strucured/raw load"); } }(); } // Append current component to the list of scalar IDs. // These will be used to construct the resulting vector. swizzleIds[componentIndex++] = componentIds[swizzleIndex]; } } // Create result vector DxbcRegisterValue result; result.type.ctype = DxbcScalarType::Uint32; result.type.ccount = writeMask.setCount(); result.id = result.type.ccount > 1 ? m_module.opCompositeConstruct(getVectorTypeId(result.type), result.type.ccount, swizzleIds.data()) : swizzleIds[0]; return result; } void DxbcCompiler::emitRawBufferStore( const DxbcRegister& operand, DxbcRegisterValue elementIndex, DxbcRegisterValue value) { const DxbcBufferInfo bufferInfo = getBufferInfo(operand); // Cast source value to the expected data type value = emitRegisterBitcast(value, DxbcScalarType::Uint32); // Shared memory is not accessed through a texel buffer view const bool isTgsm = operand.type == DxbcOperandType::ThreadGroupSharedMemory; const uint32_t bufferId = isTgsm ? 0 : m_module.opLoad(bufferInfo.typeId, bufferInfo.varId); const uint32_t scalarTypeId = getVectorTypeId({ DxbcScalarType::Uint32, 1 }); const uint32_t vectorTypeId = getVectorTypeId({ DxbcScalarType::Uint32, 4 }); uint32_t srcComponentIndex = 0; for (uint32_t i = 0; i < 4; i++) { if (operand.mask[i]) { const uint32_t srcComponentId = value.type.ccount > 1 ? m_module.opCompositeExtract(scalarTypeId, value.id, 1, &srcComponentIndex) : value.id; // Add the component offset to the element index const uint32_t elementIndexAdjusted = i != 0 ? m_module.opIAdd(getVectorTypeId(elementIndex.type), elementIndex.id, m_module.consti32(i)) : elementIndex.id; switch (operand.type) { case DxbcOperandType::UnorderedAccessView: { const std::array srcVectorIds = { srcComponentId, srcComponentId, srcComponentId, srcComponentId, }; m_module.opImageWrite( bufferId, elementIndexAdjusted, m_module.opCompositeConstruct(vectorTypeId, 4, srcVectorIds.data()), SpirvImageOperands()); } break; case DxbcOperandType::ThreadGroupSharedMemory: m_module.opStore( m_module.opAccessChain(bufferInfo.typeId, bufferInfo.varId, 1, &elementIndexAdjusted), srcComponentId); break; default: throw DxvkError("DxbcCompiler: Invalid operand type for strucured/raw store"); } // Write next component srcComponentIndex += 1; } } } DxbcRegisterValue DxbcCompiler::emitQueryTexelBufferSize( const DxbcRegister& resource) { // Load the texel buffer object. This cannot be used with // constant buffers or any other type of resource. const DxbcBufferInfo bufferInfo = getBufferInfo(resource); const uint32_t bufferId = m_module.opLoad( bufferInfo.typeId, bufferInfo.varId); // We'll store this as a scalar unsigned integer DxbcRegisterValue result; result.type.ctype = DxbcScalarType::Uint32; result.type.ccount = 1; result.id = m_module.opImageQuerySize( getVectorTypeId(result.type), bufferId); return result; } DxbcRegisterValue DxbcCompiler::emitQueryTextureLods( const DxbcRegister& resource) { const DxbcBufferInfo info = getBufferInfo(resource); DxbcRegisterValue result; result.type.ctype = DxbcScalarType::Uint32; result.type.ccount = 1; if (info.image.sampled == 1) { result.id = m_module.opImageQueryLevels( getVectorTypeId(result.type), m_module.opLoad(info.typeId, info.varId)); } else { // Report one LOD in case of UAVs result.id = m_module.constu32(1); } return result; } DxbcRegisterValue DxbcCompiler::emitQueryTextureSamples( const DxbcRegister& resource) { const DxbcBufferInfo info = getBufferInfo(resource); DxbcRegisterValue result; result.type.ctype = DxbcScalarType::Uint32; result.type.ccount = 1; result.id = m_module.opImageQuerySamples( getVectorTypeId(result.type), m_module.opLoad(info.typeId, info.varId)); return result; } DxbcRegisterValue DxbcCompiler::emitQueryTextureSize( const DxbcRegister& resource, DxbcRegisterValue lod) { const DxbcBufferInfo info = getBufferInfo(resource); DxbcRegisterValue result; result.type.ctype = DxbcScalarType::Uint32; result.type.ccount = getTexCoordDim(info.image); if (info.image.ms == 0 && info.image.sampled == 1) { result.id = m_module.opImageQuerySizeLod( getVectorTypeId(result.type), m_module.opLoad(info.typeId, info.varId), lod.id); } else { result.id = m_module.opImageQuerySize( getVectorTypeId(result.type), m_module.opLoad(info.typeId, info.varId)); } return result; } DxbcRegisterValue DxbcCompiler::emitCalcBufferIndexStructured( DxbcRegisterValue structId, DxbcRegisterValue structOffset, uint32_t structStride) { DxbcRegisterValue result; result.type.ctype = DxbcScalarType::Sint32; result.type.ccount = 1; const uint32_t typeId = getVectorTypeId(result.type); result.id = m_module.opIAdd(typeId, m_module.opIMul(typeId, structId.id, m_module.consti32(structStride / 4)), m_module.opSDiv(typeId, structOffset.id, m_module.consti32(4))); return result; } DxbcRegisterValue DxbcCompiler::emitCalcBufferIndexRaw( DxbcRegisterValue byteOffset) { DxbcRegisterValue result; result.type.ctype = DxbcScalarType::Sint32; result.type.ccount = 1; result.id = m_module.opSDiv( getVectorTypeId(result.type), byteOffset.id, m_module.consti32(4)); return result; } DxbcRegisterValue DxbcCompiler::emitIndexLoad( DxbcRegIndex index) { if (index.relReg != nullptr) { DxbcRegisterValue result = emitRegisterLoad( *index.relReg, DxbcRegMask(true, false, false, false)); if (index.offset != 0) { result.id = m_module.opIAdd( getVectorTypeId(result.type), result.id, m_module.consti32(index.offset)); } return result; } else { DxbcRegisterValue result; result.type.ctype = DxbcScalarType::Sint32; result.type.ccount = 1; result.id = m_module.consti32(index.offset); return result; } } DxbcRegisterValue DxbcCompiler::emitValueLoad( DxbcRegisterPointer ptr) { DxbcRegisterValue result; result.type = ptr.type; result.id = m_module.opLoad( getVectorTypeId(result.type), ptr.id); return result; } void DxbcCompiler::emitValueStore( DxbcRegisterPointer ptr, DxbcRegisterValue value, DxbcRegMask writeMask) { // If the component types are not compatible, // we need to bit-cast the source variable. if (value.type.ctype != ptr.type.ctype) value = emitRegisterBitcast(value, ptr.type.ctype); // If the source value consists of only one component, // it is stored in all components of the destination. if (value.type.ccount == 1) value = emitRegisterExtend(value, writeMask.setCount()); if (ptr.type.ccount == writeMask.setCount()) { // Simple case: We write to the entire register m_module.opStore(ptr.id, value.id); } else { // We only write to part of the destination // register, so we need to load and modify it DxbcRegisterValue tmp = emitValueLoad(ptr); tmp = emitRegisterInsert(tmp, value, writeMask); m_module.opStore(ptr.id, tmp.id); } } DxbcRegisterValue DxbcCompiler::emitRegisterLoadRaw( const DxbcRegister& reg) { if (reg.type == DxbcOperandType::ConstantBuffer) { // Constant buffer require special care if they are not bound const uint32_t registerId = reg.idx[0].offset; const uint32_t labelMerge = m_module.allocateId(); const uint32_t labelBound = m_module.allocateId(); const uint32_t labelUnbound = m_module.allocateId(); m_module.opSelectionMerge(labelMerge, spv::SelectionControlMaskNone); m_module.opBranchConditional( m_constantBuffers.at(registerId).specId, labelBound, labelUnbound); // Case 1: Constant buffer is bound. // Load the register value normally. m_module.opLabel(labelBound); DxbcRegisterValue ifBound = emitValueLoad(emitGetOperandPtr(reg)); m_module.opBranch(labelMerge); // Case 2: Constant buffer is not bound. // Return zeroes unconditionally. m_module.opLabel(labelUnbound); DxbcRegisterValue ifUnbound = emitBuildConstVecf32( 0.0f, 0.0f, 0.0f, 0.0f, DxbcRegMask(true, true, true, true)); m_module.opBranch(labelMerge); // Merge the results with a phi function m_module.opLabel(labelMerge); const std::array phiLabels = {{ { ifBound.id, labelBound }, { ifUnbound.id, labelUnbound }, }}; DxbcRegisterValue result; result.type.ctype = DxbcScalarType::Float32; result.type.ccount = 4; result.id = m_module.opPhi( getVectorTypeId(result.type), phiLabels.size(), phiLabels.data()); return result; } else { // All other operand types can be accessed directly return emitValueLoad(emitGetOperandPtr(reg)); } } DxbcRegisterValue DxbcCompiler::emitRegisterLoad( const DxbcRegister& reg, DxbcRegMask writeMask) { if (reg.type == DxbcOperandType::Imm32) { DxbcRegisterValue result; if (reg.componentCount == DxbcComponentCount::Component1) { // Create one single u32 constant result.type.ctype = DxbcScalarType::Uint32; result.type.ccount = 1; result.id = m_module.constu32(reg.imm.u32_1); } else if (reg.componentCount == DxbcComponentCount::Component4) { // Create a u32 vector with as many components as needed std::array indices; uint32_t indexId = 0; for (uint32_t i = 0; i < indices.size(); i++) { if (writeMask[i]) { indices.at(indexId++) = m_module.constu32(reg.imm.u32_4[i]); } } result.type.ctype = DxbcScalarType::Uint32; result.type.ccount = writeMask.setCount(); result.id = indices.at(0); if (indexId > 1) { result.id = m_module.constComposite( getVectorTypeId(result.type), result.type.ccount, indices.data()); } } else { // Something went horribly wrong in the decoder or the shader is broken throw DxvkError("DxbcCompiler: Invalid component count for immediate operand"); } // Cast constants to the requested type return emitRegisterBitcast(result, reg.dataType); } else { // Load operand from the operand pointer DxbcRegisterValue result = emitRegisterLoadRaw(reg); // Apply operand swizzle to the operand value result = emitRegisterSwizzle(result, reg.swizzle, writeMask); // Cast it to the requested type. We need to do // this after the swizzling for 64-bit types. result = emitRegisterBitcast(result, reg.dataType); // Apply operand modifiers result = emitSrcOperandModifiers(result, reg.modifiers); return result; } } void DxbcCompiler::emitRegisterStore( const DxbcRegister& reg, DxbcRegisterValue value) { emitValueStore(emitGetOperandPtr(reg), value, reg.mask); } void DxbcCompiler::emitInputSetup() { // Copy all defined v# registers into the input array const uint32_t vecTypeId = m_module.defVectorType(m_module.defFloatType(32), 4); const uint32_t ptrTypeId = m_module.defPointerType(vecTypeId, spv::StorageClassPrivate); for (uint32_t i = 0; i < m_vRegs.size(); i++) { if (m_vRegs.at(i) != 0) { const uint32_t registerId = m_module.consti32(i); const uint32_t srcTypeId = getVectorTypeId(getInputRegType(i)); const uint32_t srcValue = m_module.opLoad(srcTypeId, m_vRegs.at(i)); m_module.opStore(m_module.opAccessChain(ptrTypeId, m_vArray, 1, ®isterId), vecTypeId != srcTypeId ? m_module.opBitcast(vecTypeId, srcValue) : srcValue); } } // Copy all system value registers into the array, // preserving any previously written contents. for (const DxbcSvMapping& map : m_vMappings) { const uint32_t registerId = m_module.consti32(map.regId); const DxbcRegisterValue value = [&] { switch (m_version.type()) { case DxbcProgramType::VertexShader: return emitVsSystemValueLoad(map.sv, map.regMask); case DxbcProgramType::PixelShader: return emitPsSystemValueLoad(map.sv, map.regMask); case DxbcProgramType::ComputeShader: return emitCsSystemValueLoad(map.sv, map.regMask); default: throw DxvkError(str::format("DxbcCompiler: Unexpected stage: ", m_version.type())); } }(); DxbcRegisterPointer inputReg; inputReg.type.ctype = DxbcScalarType::Float32; inputReg.type.ccount = 4; inputReg.id = m_module.opAccessChain( ptrTypeId, m_vArray, 1, ®isterId); emitValueStore(inputReg, value, map.regMask); } } void DxbcCompiler::emitInputSetup(uint32_t vertexCount) { // Copy all defined v# registers into the input array. Note // that the outer index of the array is the vertex index. const uint32_t vecTypeId = m_module.defVectorType(m_module.defFloatType(32), 4); const uint32_t dstPtrTypeId = m_module.defPointerType(vecTypeId, spv::StorageClassPrivate); const uint32_t srcPtrTypeId = m_module.defPointerType(vecTypeId, spv::StorageClassInput); for (uint32_t i = 0; i < m_vRegs.size(); i++) { if (m_vRegs.at(i) != 0) { const uint32_t registerId = m_module.consti32(i); for (uint32_t v = 0; v < vertexCount; v++) { std::array indices = {{ m_module.consti32(v), registerId }}; const uint32_t srcTypeId = getVectorTypeId(getInputRegType(i)); const uint32_t srcValue = m_module.opLoad(srcTypeId, m_module.opAccessChain(srcPtrTypeId, m_vRegs.at(i), 1, indices.data())); m_module.opStore( m_module.opAccessChain(dstPtrTypeId, m_vArray, indices.size(), indices.data()), vecTypeId != srcTypeId ? m_module.opBitcast(vecTypeId, srcValue) : srcValue); } } } // Copy all system value registers into the array, // preserving any previously written contents. for (const DxbcSvMapping& map : m_vMappings) { const uint32_t registerId = m_module.consti32(map.regId); for (uint32_t v = 0; v < vertexCount; v++) { const DxbcRegisterValue value = [&] { switch (m_version.type()) { case DxbcProgramType::GeometryShader: return emitGsSystemValueLoad(map.sv, map.regMask, v); default: throw DxvkError(str::format("DxbcCompiler: Unexpected stage: ", m_version.type())); } }(); std::array indices = { m_module.consti32(v), registerId, }; DxbcRegisterPointer inputReg; inputReg.type.ctype = DxbcScalarType::Float32; inputReg.type.ccount = 4; inputReg.id = m_module.opAccessChain(dstPtrTypeId, m_vArray, indices.size(), indices.data()); emitValueStore(inputReg, value, map.regMask); } } } void DxbcCompiler::emitOutputSetup() { for (const DxbcSvMapping& svMapping : m_oMappings) { DxbcRegisterPointer outputReg; outputReg.type.ctype = DxbcScalarType::Float32; outputReg.type.ccount = 4; outputReg.id = m_oRegs.at(svMapping.regId); if (m_version.type() == DxbcProgramType::HullShader) { uint32_t registerIndex = m_module.constu32(svMapping.regId); outputReg.id = m_module.opAccessChain( m_module.defPointerType( getVectorTypeId(outputReg.type), spv::StorageClassOutput), m_hs.outputPerPatch, 1, ®isterIndex); } auto sv = svMapping.sv; auto mask = svMapping.regMask; auto value = emitValueLoad(outputReg); switch (m_version.type()) { case DxbcProgramType::VertexShader: emitVsSystemValueStore(sv, mask, value); break; case DxbcProgramType::GeometryShader: emitGsSystemValueStore(sv, mask, value); break; case DxbcProgramType::HullShader: emitHsSystemValueStore(sv, mask, value); break; case DxbcProgramType::DomainShader: emitDsSystemValueStore(sv, mask, value); break; case DxbcProgramType::PixelShader: break; case DxbcProgramType::ComputeShader: break; } } } DxbcRegisterValue DxbcCompiler::emitVsSystemValueLoad( DxbcSystemValue sv, DxbcRegMask mask) { switch (sv) { case DxbcSystemValue::VertexId: { const uint32_t typeId = getScalarTypeId(DxbcScalarType::Uint32); if (m_vs.builtinVertexId == 0) { m_vs.builtinVertexId = emitNewBuiltinVariable({ { DxbcScalarType::Uint32, 1, 0 }, spv::StorageClassInput }, spv::BuiltInVertexIndex, "vs_vertex_index"); } if (m_vs.builtinBaseVertex == 0) { m_vs.builtinBaseVertex = emitNewBuiltinVariable({ { DxbcScalarType::Uint32, 1, 0 }, spv::StorageClassInput }, spv::BuiltInBaseVertex, "vs_base_vertex"); } DxbcRegisterValue result; result.type.ctype = DxbcScalarType::Uint32; result.type.ccount = 1; result.id = m_module.opISub(typeId, m_module.opLoad(typeId, m_vs.builtinVertexId), m_module.opLoad(typeId, m_vs.builtinBaseVertex)); return result; } break; case DxbcSystemValue::InstanceId: { const uint32_t typeId = getScalarTypeId(DxbcScalarType::Uint32); if (m_vs.builtinInstanceId == 0) { m_vs.builtinInstanceId = emitNewBuiltinVariable({ { DxbcScalarType::Uint32, 1, 0 }, spv::StorageClassInput }, spv::BuiltInInstanceIndex, "vs_instance_index"); } if (m_vs.builtinBaseInstance == 0) { m_vs.builtinBaseInstance = emitNewBuiltinVariable({ { DxbcScalarType::Uint32, 1, 0 }, spv::StorageClassInput }, spv::BuiltInBaseInstance, "vs_base_instance"); } DxbcRegisterValue result; result.type.ctype = DxbcScalarType::Uint32; result.type.ccount = 1; result.id = m_module.opISub(typeId, m_module.opLoad(typeId, m_vs.builtinInstanceId), m_module.opLoad(typeId, m_vs.builtinBaseInstance)); return result; } break; default: throw DxvkError(str::format( "DxbcCompiler: Unhandled VS SV input: ", sv)); } } DxbcRegisterValue DxbcCompiler::emitGsSystemValueLoad( DxbcSystemValue sv, DxbcRegMask mask, uint32_t vertexId) { switch (sv) { case DxbcSystemValue::Position: { const std::array indices = { m_module.consti32(vertexId), m_module.consti32(PerVertex_Position), }; DxbcRegisterPointer ptrIn; ptrIn.type.ctype = DxbcScalarType::Float32; ptrIn.type.ccount = 4; ptrIn.id = m_module.opAccessChain( m_module.defPointerType( getVectorTypeId(ptrIn.type), spv::StorageClassInput), m_perVertexIn, indices.size(), indices.data()); return emitRegisterExtract( emitValueLoad(ptrIn), mask); } break; default: throw DxvkError(str::format( "DxbcCompiler: Unhandled GS SV input: ", sv)); } } DxbcRegisterValue DxbcCompiler::emitPsSystemValueLoad( DxbcSystemValue sv, DxbcRegMask mask) { switch (sv) { case DxbcSystemValue::Position: { if (m_ps.builtinFragCoord == 0) { m_ps.builtinFragCoord = emitNewBuiltinVariable({ { DxbcScalarType::Float32, 4, 0 }, spv::StorageClassInput }, spv::BuiltInFragCoord, "ps_frag_coord"); } DxbcRegisterPointer ptrIn; ptrIn.type.ctype = DxbcScalarType::Float32; ptrIn.type.ccount = 4; ptrIn.id = m_ps.builtinFragCoord; return emitRegisterExtract( emitValueLoad(ptrIn), mask); } break; case DxbcSystemValue::IsFrontFace: { if (m_ps.builtinIsFrontFace == 0) { m_ps.builtinIsFrontFace = emitNewBuiltinVariable({ { DxbcScalarType::Bool, 1, 0 }, spv::StorageClassInput }, spv::BuiltInFrontFacing, "ps_is_front_face"); } DxbcRegisterValue result; result.type.ctype = DxbcScalarType::Uint32; result.type.ccount = 1; result.id = m_module.opSelect( getVectorTypeId(result.type), m_module.opLoad( m_module.defBoolType(), m_ps.builtinIsFrontFace), m_module.constu32(0xFFFFFFFF), m_module.constu32(0x00000000)); return result; } break; case DxbcSystemValue::SampleIndex: { if (m_ps.builtinSampleId == 0) { m_module.enableCapability(spv::CapabilitySampleRateShading); m_ps.builtinSampleId = emitNewBuiltinVariable({ { DxbcScalarType::Uint32, 1, 0 }, spv::StorageClassInput }, spv::BuiltInSampleId, "ps_sample_id"); } DxbcRegisterPointer ptrIn; ptrIn.type.ctype = DxbcScalarType::Uint32; ptrIn.type.ccount = 1; ptrIn.id = m_ps.builtinSampleId; return emitValueLoad(ptrIn); } break; case DxbcSystemValue::RenderTargetId: { if (m_ps.builtinLayer == 0) { m_module.enableCapability(spv::CapabilityGeometry); m_ps.builtinLayer = emitNewBuiltinVariable({ { DxbcScalarType::Uint32, 1, 0 }, spv::StorageClassInput }, spv::BuiltInLayer, "ps_layer"); } DxbcRegisterPointer ptr; ptr.type.ctype = DxbcScalarType::Uint32; ptr.type.ccount = 1; ptr.id = m_ps.builtinLayer; return emitValueLoad(ptr); } break; default: throw DxvkError(str::format( "DxbcCompiler: Unhandled PS SV input: ", sv)); } } DxbcRegisterValue DxbcCompiler::emitCsSystemValueLoad( DxbcSystemValue sv, DxbcRegMask mask) { switch (sv) { default: throw DxvkError(str::format( "DxbcCompiler: Unhandled CS SV input: ", sv)); } } void DxbcCompiler::emitVsSystemValueStore( DxbcSystemValue sv, DxbcRegMask mask, const DxbcRegisterValue& value) { switch (sv) { case DxbcSystemValue::Position: { const uint32_t memberId = m_module.consti32(PerVertex_Position); DxbcRegisterPointer ptr; ptr.type.ctype = DxbcScalarType::Float32; ptr.type.ccount = 4; ptr.id = m_module.opAccessChain( m_module.defPointerType( getVectorTypeId(ptr.type), spv::StorageClassOutput), m_perVertexOut, 1, &memberId); emitValueStore(ptr, value, mask); } break; default: Logger::warn(str::format( "DxbcCompiler: Unhandled VS SV output: ", sv)); } } void DxbcCompiler::emitHsSystemValueStore( DxbcSystemValue sv, DxbcRegMask mask, const DxbcRegisterValue& value) { if (sv >= DxbcSystemValue::FinalQuadUeq0EdgeTessFactor && sv <= DxbcSystemValue::FinalLineDensityTessFactor) { struct TessFactor { uint32_t array = 0; uint32_t index = 0; }; static const std::array s_tessFactors = {{ { m_hs.builtinTessLevelOuter, 0 }, // FinalQuadUeq0EdgeTessFactor { m_hs.builtinTessLevelOuter, 1 }, // FinalQuadVeq0EdgeTessFactor { m_hs.builtinTessLevelOuter, 2 }, // FinalQuadUeq1EdgeTessFactor { m_hs.builtinTessLevelOuter, 3 }, // FinalQuadVeq1EdgeTessFactor { m_hs.builtinTessLevelInner, 0 }, // FinalQuadUInsideTessFactor { m_hs.builtinTessLevelInner, 1 }, // FinalQuadVInsideTessFactor { m_hs.builtinTessLevelOuter, 0 }, // FinalTriUeq0EdgeTessFactor { m_hs.builtinTessLevelOuter, 1 }, // FinalTriVeq0EdgeTessFactor { m_hs.builtinTessLevelOuter, 2 }, // FinalTriWeq0EdgeTessFactor { m_hs.builtinTessLevelInner, 0 }, // FinalTriInsideTessFactor { m_hs.builtinTessLevelOuter, 0 }, // FinalLineDetailTessFactor { m_hs.builtinTessLevelOuter, 1 }, // FinalLineDensityTessFactor }}; const TessFactor tessFactor = s_tessFactors.at(static_cast(sv) - static_cast(DxbcSystemValue::FinalQuadUeq0EdgeTessFactor)); const uint32_t tessFactorArrayIndex = m_module.constu32(tessFactor.index); DxbcRegisterPointer ptr; ptr.type.ctype = DxbcScalarType::Float32; ptr.type.ccount = 1; ptr.id = m_module.opAccessChain( m_module.defPointerType( getVectorTypeId(ptr.type), spv::StorageClassOutput), tessFactor.array, 1, &tessFactorArrayIndex); emitValueStore(ptr, emitRegisterExtract(value, mask), DxbcRegMask(true, false, false, false)); } else { Logger::warn(str::format( "DxbcCompiler: Unhandled HS SV output: ", sv)); } } void DxbcCompiler::emitGsSystemValueStore( DxbcSystemValue sv, DxbcRegMask mask, const DxbcRegisterValue& value) { switch (sv) { case DxbcSystemValue::Position: case DxbcSystemValue::CullDistance: case DxbcSystemValue::ClipDistance: emitVsSystemValueStore(sv, mask, value); break; case DxbcSystemValue::RenderTargetId: { if (m_gs.builtinLayer == 0) { m_gs.builtinLayer = emitNewBuiltinVariable({ { DxbcScalarType::Uint32, 1, 0 }, spv::StorageClassOutput }, spv::BuiltInLayer, "gs_layer"); } DxbcRegisterPointer ptr; ptr.type.ctype = DxbcScalarType::Uint32; ptr.type.ccount = 1; ptr.id = m_gs.builtinLayer; emitValueStore( ptr, emitRegisterExtract(value, mask), DxbcRegMask(true, false, false, false)); } break; default: Logger::warn(str::format( "DxbcCompiler: Unhandled GS SV output: ", sv)); } } void DxbcCompiler::emitDsSystemValueStore( DxbcSystemValue sv, DxbcRegMask mask, const DxbcRegisterValue& value) { switch (sv) { case DxbcSystemValue::Position: case DxbcSystemValue::CullDistance: case DxbcSystemValue::ClipDistance: emitVsSystemValueStore(sv, mask, value); break; default: Logger::warn(str::format( "DxbcCompiler: Unhandled DS SV output: ", sv)); } } void DxbcCompiler::emitInit() { // Set up common capabilities for all shaders m_module.enableCapability(spv::CapabilityShader); m_module.enableCapability(spv::CapabilityImageQuery); // Initialize the shader module with capabilities // etc. Each shader type has its own peculiarities. switch (m_version.type()) { case DxbcProgramType::VertexShader: emitVsInit(); break; case DxbcProgramType::HullShader: emitHsInit(); break; case DxbcProgramType::DomainShader: emitDsInit(); break; case DxbcProgramType::GeometryShader: emitGsInit(); break; case DxbcProgramType::PixelShader: emitPsInit(); break; case DxbcProgramType::ComputeShader: emitCsInit(); break; } } void DxbcCompiler::emitMainFunctionBegin() { m_module.functionBegin( m_module.defVoidType(), m_entryPointId, m_module.defFunctionType( m_module.defVoidType(), 0, nullptr), spv::FunctionControlMaskNone); m_module.opLabel(m_module.allocateId()); } void DxbcCompiler::emitMainFunctionEnd() { m_module.opReturn(); m_module.functionEnd(); } void DxbcCompiler::emitVsInit() { m_module.enableCapability(spv::CapabilityClipDistance); m_module.enableCapability(spv::CapabilityCullDistance); m_module.enableCapability(spv::CapabilityDrawParameters); m_module.enableExtension("SPV_KHR_shader_draw_parameters"); // Declare the per-vertex output block. This is where // the vertex shader will write the vertex position. const uint32_t perVertexStruct = this->getPerVertexBlockId(); const uint32_t perVertexPointer = m_module.defPointerType( perVertexStruct, spv::StorageClassOutput); m_perVertexOut = m_module.newVar( perVertexPointer, spv::StorageClassOutput); m_entryPointInterfaces.push_back(m_perVertexOut); m_module.setDebugName(m_perVertexOut, "vs_vertex_out"); // Standard input array emitDclInputArray(0); // Main function of the vertex shader m_vs.functionId = m_module.allocateId(); m_module.setDebugName(m_vs.functionId, "vs_main"); m_module.functionBegin( m_module.defVoidType(), m_vs.functionId, m_module.defFunctionType( m_module.defVoidType(), 0, nullptr), spv::FunctionControlMaskNone); m_module.opLabel(m_module.allocateId()); } void DxbcCompiler::emitHsInit() { m_module.enableCapability(spv::CapabilityTessellation); m_module.enableCapability(spv::CapabilityClipDistance); m_module.enableCapability(spv::CapabilityCullDistance); m_hs.builtinInvocationId = emitNewBuiltinVariable( DxbcRegisterInfo { { DxbcScalarType::Uint32, 1, 0 }, spv::StorageClassInput }, spv::BuiltInInvocationId, "vOutputControlPointId"); m_hs.builtinTessLevelOuter = emitBuiltinTessLevelOuter(spv::StorageClassOutput); m_hs.builtinTessLevelInner = emitBuiltinTessLevelInner(spv::StorageClassOutput); } void DxbcCompiler::emitDsInit() { m_module.enableCapability(spv::CapabilityTessellation); m_module.enableCapability(spv::CapabilityClipDistance); m_module.enableCapability(spv::CapabilityCullDistance); m_ds.builtinTessLevelOuter = emitBuiltinTessLevelOuter(spv::StorageClassInput); m_ds.builtinTessLevelInner = emitBuiltinTessLevelInner(spv::StorageClassInput); // Declare the per-vertex output block const uint32_t perVertexStruct = this->getPerVertexBlockId(); const uint32_t perVertexPointer = m_module.defPointerType( perVertexStruct, spv::StorageClassOutput); m_perVertexOut = m_module.newVar( perVertexPointer, spv::StorageClassOutput); m_entryPointInterfaces.push_back(m_perVertexOut); m_module.setDebugName(m_perVertexOut, "ds_vertex_out"); // Main function of the domain shader m_ds.functionId = m_module.allocateId(); m_module.setDebugName(m_ds.functionId, "ds_main"); m_module.functionBegin( m_module.defVoidType(), m_ds.functionId, m_module.defFunctionType( m_module.defVoidType(), 0, nullptr), spv::FunctionControlMaskNone); m_module.opLabel(m_module.allocateId()); } void DxbcCompiler::emitGsInit() { m_module.enableCapability(spv::CapabilityGeometry); m_module.enableCapability(spv::CapabilityClipDistance); m_module.enableCapability(spv::CapabilityCullDistance); // Declare the per-vertex output block. Outputs are not // declared as arrays, instead they will be flushed when // calling EmitVertex. const uint32_t perVertexStruct = this->getPerVertexBlockId(); const uint32_t perVertexPointer = m_module.defPointerType( perVertexStruct, spv::StorageClassOutput); m_perVertexOut = m_module.newVar( perVertexPointer, spv::StorageClassOutput); m_entryPointInterfaces.push_back(m_perVertexOut); m_module.setDebugName(m_perVertexOut, "gs_vertex_out"); // Main function of the vertex shader m_gs.functionId = m_module.allocateId(); m_module.setDebugName(m_gs.functionId, "gs_main"); m_module.functionBegin( m_module.defVoidType(), m_gs.functionId, m_module.defFunctionType( m_module.defVoidType(), 0, nullptr), spv::FunctionControlMaskNone); m_module.opLabel(m_module.allocateId()); } void DxbcCompiler::emitPsInit() { m_module.enableCapability(spv::CapabilityDerivativeControl); m_module.enableCapability(spv::CapabilityInterpolationFunction); m_module.setExecutionMode(m_entryPointId, spv::ExecutionModeOriginUpperLeft); // Declare pixel shader outputs. According to the Vulkan // documentation, they are required to match the type of // the render target. for (auto e = m_osgn->begin(); e != m_osgn->end(); e++) { if (e->systemValue == DxbcSystemValue::None && e->registerId != 0xFFFFFFFF /* depth */) { DxbcRegisterInfo info; info.type.ctype = e->componentType; info.type.ccount = e->componentMask.setCount(); info.type.alength = 0; info.sclass = spv::StorageClassOutput; const uint32_t varId = emitNewVariable(info); m_module.decorateLocation(varId, e->registerId); m_module.setDebugName(varId, str::format("o", e->registerId).c_str()); m_entryPointInterfaces.push_back(varId); m_oRegs.at(e->registerId) = varId; m_ps.oTypes.at(e->registerId).ctype = info.type.ctype; m_ps.oTypes.at(e->registerId).ccount = info.type.ccount; } } // Standard input array emitDclInputArray(0); // Main function of the pixel shader m_ps.functionId = m_module.allocateId(); m_module.setDebugName(m_ps.functionId, "ps_main"); m_module.functionBegin( m_module.defVoidType(), m_ps.functionId, m_module.defFunctionType( m_module.defVoidType(), 0, nullptr), spv::FunctionControlMaskNone); m_module.opLabel(m_module.allocateId()); } void DxbcCompiler::emitCsInit() { // Main function of the compute shader m_cs.functionId = m_module.allocateId(); m_module.setDebugName(m_cs.functionId, "cs_main"); m_module.functionBegin( m_module.defVoidType(), m_cs.functionId, m_module.defFunctionType( m_module.defVoidType(), 0, nullptr), spv::FunctionControlMaskNone); m_module.opLabel(m_module.allocateId()); } void DxbcCompiler::emitVsFinalize() { this->emitMainFunctionBegin(); this->emitInputSetup(); m_module.opFunctionCall( m_module.defVoidType(), m_vs.functionId, 0, nullptr); this->emitOutputSetup(); this->emitMainFunctionEnd(); } void DxbcCompiler::emitHsFinalize() { if (m_hs.cpPhase.functionId == 0) m_hs.cpPhase = this->emitNewHullShaderPassthroughPhase(); // Control point phase this->emitMainFunctionBegin(); this->emitInputSetup(m_hs.vertexCountIn); this->emitHsControlPointPhase(m_hs.cpPhase); this->emitHsPhaseBarrier(); // Fork/join phases. We cannot run this in parallel // because synchronizing per-patch outputs does not // work. We don't need to synchronize after this. this->emitHsInvocationBlockBegin(1); for (const auto& phase : m_hs.forkPhases) this->emitHsForkJoinPhase(phase); for (const auto& phase : m_hs.joinPhases) this->emitHsForkJoinPhase(phase); this->emitHsInvocationBlockEnd(); this->emitHsPhaseBarrier(); // Output setup phase this->emitHsInvocationBlockBegin(1); this->emitOutputSetup(); this->emitHsInvocationBlockEnd(); this->emitMainFunctionEnd(); } void DxbcCompiler::emitDsFinalize() { this->emitMainFunctionBegin(); m_module.opFunctionCall( m_module.defVoidType(), m_ds.functionId, 0, nullptr); this->emitOutputSetup(); this->emitMainFunctionEnd(); } void DxbcCompiler::emitGsFinalize() { this->emitMainFunctionBegin(); this->emitInputSetup( primitiveVertexCount(m_gs.inputPrimitive)); m_module.opFunctionCall( m_module.defVoidType(), m_gs.functionId, 0, nullptr); // No output setup at this point as that was // already done during the EmitVertex step this->emitMainFunctionEnd(); } void DxbcCompiler::emitPsFinalize() { this->emitMainFunctionBegin(); this->emitInputSetup(); m_module.opFunctionCall( m_module.defVoidType(), m_ps.functionId, 0, nullptr); this->emitOutputSetup(); this->emitMainFunctionEnd(); } void DxbcCompiler::emitCsFinalize() { this->emitMainFunctionBegin(); m_module.opFunctionCall( m_module.defVoidType(), m_cs.functionId, 0, nullptr); this->emitMainFunctionEnd(); } void DxbcCompiler::emitHsControlPointPhase( const DxbcCompilerHsControlPointPhase& phase) { m_module.opFunctionCall( m_module.defVoidType(), phase.functionId, 0, nullptr); } void DxbcCompiler::emitHsForkJoinPhase( const DxbcCompilerHsForkJoinPhase& phase) { for (uint32_t i = 0; i < phase.instanceCount; i++) { const uint32_t instanceId = m_module.constu32(i); m_module.opFunctionCall( m_module.defVoidType(), phase.functionId, 1, &instanceId); } } void DxbcCompiler::emitDclInputArray(uint32_t vertexCount) { DxbcArrayType info; info.ctype = DxbcScalarType::Float32; info.ccount = 4; info.alength = DxbcMaxInterfaceRegs; // Define the array type. This will be two-dimensional // in some shaders, with the outer index representing // the vertex ID within an invocation. uint32_t arrayTypeId = getArrayTypeId(info); if (vertexCount != 0) { arrayTypeId = m_module.defArrayType( arrayTypeId, m_module.constu32(vertexCount)); } // Define the actual variable. Note that this is private // because we will copy input registers and some system // variables to the array during the setup phase. const uint32_t ptrTypeId = m_module.defPointerType( arrayTypeId, spv::StorageClassPrivate); const uint32_t varId = m_module.newVar( ptrTypeId, spv::StorageClassPrivate); m_module.setDebugName(varId, "shader_in"); m_vArray = varId; } void DxbcCompiler::emitDclInputPerVertex( uint32_t vertexCount, const char* varName) { uint32_t typeId = getPerVertexBlockId(); if (vertexCount != 0) { typeId = m_module.defArrayType(typeId, m_module.constu32(vertexCount)); } const uint32_t ptrTypeId = m_module.defPointerType( typeId, spv::StorageClassInput); m_perVertexIn = m_module.newVar( ptrTypeId, spv::StorageClassInput); m_module.setDebugName(m_perVertexIn, varName); } DxbcCompilerHsControlPointPhase DxbcCompiler::emitNewHullShaderControlPointPhase() { uint32_t funTypeId = m_module.defFunctionType( m_module.defVoidType(), 0, nullptr); uint32_t funId = m_module.allocateId(); m_module.functionBegin(m_module.defVoidType(), funId, funTypeId, spv::FunctionControlMaskNone); m_module.opLabel(m_module.allocateId()); DxbcCompilerHsControlPointPhase result; result.functionId = funId; return result; } DxbcCompilerHsControlPointPhase DxbcCompiler::emitNewHullShaderPassthroughPhase() { uint32_t funTypeId = m_module.defFunctionType( m_module.defVoidType(), 0, nullptr); // Begin passthrough function uint32_t funId = m_module.allocateId(); m_module.setDebugName(funId, "hs_passthrough"); m_module.functionBegin(m_module.defVoidType(), funId, funTypeId, spv::FunctionControlMaskNone); m_module.opLabel(m_module.allocateId()); // We'll basically copy each input variable to the corresponding // output, using the shader's invocation ID as the array index. const uint32_t invocationId = m_module.opLoad( getScalarTypeId(DxbcScalarType::Uint32), m_hs.builtinInvocationId); for (auto i = m_isgn->begin(); i != m_isgn->end(); i++) { this->emitDclInput( i->registerId, m_hs.vertexCountIn, i->componentMask, DxbcSystemValue::None, DxbcInterpolationMode::Undefined); // Vector type index uint32_t vecTypeId = getVectorTypeId({ DxbcScalarType::Float32, 4 }); uint32_t dstPtrTypeId = m_module.defPointerType(vecTypeId, spv::StorageClassOutput); uint32_t srcPtrTypeId = m_module.defPointerType(vecTypeId, spv::StorageClassInput); const std::array dstIndices = {{ invocationId, m_module.constu32(i->registerId) }}; uint32_t dstPtr = m_module.opAccessChain( dstPtrTypeId, m_hs.outputPerVertex, dstIndices.size(), dstIndices.data()); uint32_t srcPtr = m_module.opAccessChain( srcPtrTypeId, m_vRegs.at(i->registerId), 1, &invocationId); m_module.opStore(dstPtr, m_module.opLoad(vecTypeId, srcPtr)); } // End function m_module.opReturn(); m_module.functionEnd(); DxbcCompilerHsControlPointPhase result; result.functionId = funId; return result; } DxbcCompilerHsForkJoinPhase DxbcCompiler::emitNewHullShaderForkJoinPhase() { uint32_t argTypeId = m_module.defIntType(32, 0); uint32_t funTypeId = m_module.defFunctionType( m_module.defVoidType(), 1, &argTypeId); uint32_t funId = m_module.allocateId(); m_module.functionBegin(m_module.defVoidType(), funId, funTypeId, spv::FunctionControlMaskNone); uint32_t argId = m_module.functionParameter(argTypeId); m_module.opLabel(m_module.allocateId()); DxbcCompilerHsForkJoinPhase result; result.functionId = funId; result.instanceId = argId; return result; } void DxbcCompiler::emitHsPhaseBarrier() { uint32_t exeScopeId = m_module.constu32(spv::ScopeWorkgroup); uint32_t memScopeId = m_module.constu32(spv::ScopeInvocation); uint32_t semanticId = m_module.constu32(spv::MemorySemanticsMaskNone); m_module.opControlBarrier(exeScopeId, memScopeId, semanticId); } void DxbcCompiler::emitHsInvocationBlockBegin(uint32_t count) { uint32_t invocationId = m_module.opLoad( getScalarTypeId(DxbcScalarType::Uint32), m_hs.builtinInvocationId); uint32_t condition = m_module.opULessThan( m_module.defBoolType(), invocationId, m_module.constu32(count)); m_hs.invocationBlockBegin = m_module.allocateId(); m_hs.invocationBlockEnd = m_module.allocateId(); m_module.opSelectionMerge( m_hs.invocationBlockEnd, spv::SelectionControlMaskNone); m_module.opBranchConditional( condition, m_hs.invocationBlockBegin, m_hs.invocationBlockEnd); m_module.opLabel( m_hs.invocationBlockBegin); } void DxbcCompiler::emitHsInvocationBlockEnd() { m_module.opBranch (m_hs.invocationBlockEnd); m_module.opLabel (m_hs.invocationBlockEnd); m_hs.invocationBlockBegin = 0; m_hs.invocationBlockEnd = 0; } uint32_t DxbcCompiler::emitTessInterfacePerPatch(spv::StorageClass storageClass) { const bool isInput = storageClass == spv::StorageClassInput; uint32_t vecType = m_module.defVectorType (m_module.defFloatType(32), 4); uint32_t arrType = m_module.defArrayType (vecType, m_module.constu32(32)); uint32_t ptrType = m_module.defPointerType(arrType, storageClass); uint32_t varId = m_module.newVar (ptrType, storageClass); m_module.setDebugName (varId, isInput ? "vPatch" : "oPatch"); m_module.decorate (varId, spv::DecorationPatch); m_module.decorateLocation (varId, 0); m_entryPointInterfaces.push_back(varId); return varId; } uint32_t DxbcCompiler::emitTessInterfacePerVertex(spv::StorageClass storageClass, uint32_t vertexCount) { const bool isInput = storageClass == spv::StorageClassInput; uint32_t vecType = m_module.defVectorType (m_module.defFloatType(32), 4); uint32_t arrTypeInner = m_module.defArrayType (vecType, m_module.constu32(32)); uint32_t arrTypeOuter = m_module.defArrayType (arrTypeInner, m_module.constu32(vertexCount)); uint32_t ptrType = m_module.defPointerType(arrTypeOuter, storageClass); uint32_t varId = m_module.newVar (ptrType, storageClass); m_module.setDebugName (varId, isInput ? "vVertex" : "oVertex"); m_module.decorateLocation (varId, 32); m_entryPointInterfaces.push_back(varId); return varId; } uint32_t DxbcCompiler::emitNewVariable(const DxbcRegisterInfo& info) { const uint32_t ptrTypeId = this->getPointerTypeId(info); return m_module.newVar(ptrTypeId, info.sclass); } uint32_t DxbcCompiler::emitNewBuiltinVariable( const DxbcRegisterInfo& info, spv::BuiltIn builtIn, const char* name) { const uint32_t varId = emitNewVariable(info); m_module.decorateBuiltIn(varId, builtIn); m_module.setDebugName(varId, name); m_entryPointInterfaces.push_back(varId); return varId; } uint32_t DxbcCompiler::emitBuiltinTessLevelOuter(spv::StorageClass storageClass) { uint32_t id = emitNewBuiltinVariable( DxbcRegisterInfo { { DxbcScalarType::Float32, 0, 4 }, storageClass }, spv::BuiltInTessLevelOuter, "bTessLevelOuter"); m_module.decorate(id, spv::DecorationPatch); return id; } uint32_t DxbcCompiler::emitBuiltinTessLevelInner(spv::StorageClass storageClass) { uint32_t id = emitNewBuiltinVariable( DxbcRegisterInfo { { DxbcScalarType::Float32, 0, 2 }, storageClass }, spv::BuiltInTessLevelInner, "bTessLevelInner"); m_module.decorate(id, spv::DecorationPatch); return id; } DxbcCfgBlock* DxbcCompiler::cfgFindBlock( const std::initializer_list& types) { for (auto cur = m_controlFlowBlocks.rbegin(); cur != m_controlFlowBlocks.rend(); cur++) { for (auto type : types) { if (cur->type == type) return &(*cur); } } return nullptr; } DxbcBufferInfo DxbcCompiler::getBufferInfo(const DxbcRegister& reg) { const uint32_t registerId = reg.idx[0].offset; switch (reg.type) { case DxbcOperandType::Resource: { DxbcBufferInfo result; result.image = m_textures.at(registerId).imageInfo; result.type = m_textures.at(registerId).type; result.typeId = m_textures.at(registerId).imageTypeId; result.varId = m_textures.at(registerId).varId; result.specId = m_textures.at(registerId).specId; result.stride = m_textures.at(registerId).structStride; return result; } break; case DxbcOperandType::UnorderedAccessView: { DxbcBufferInfo result; result.image = m_uavs.at(registerId).imageInfo; result.type = m_uavs.at(registerId).type; result.typeId = m_uavs.at(registerId).imageTypeId; result.varId = m_uavs.at(registerId).varId; result.specId = m_uavs.at(registerId).specId; result.stride = m_uavs.at(registerId).structStride; return result; } break; case DxbcOperandType::ThreadGroupSharedMemory: { DxbcBufferInfo result; result.image = { spv::DimBuffer, 0, 0, 0 }; result.type = m_gRegs.at(registerId).type; result.typeId = m_module.defPointerType( getScalarTypeId(DxbcScalarType::Uint32), spv::StorageClassWorkgroup); result.varId = m_gRegs.at(registerId).varId; result.specId = 0; result.stride = m_gRegs.at(registerId).elementStride; return result; } break; default: throw DxvkError(str::format("DxbcCompiler: Invalid operand type for buffer: ", reg.type)); } } uint32_t DxbcCompiler::getTexLayerDim(const DxbcImageInfo& imageType) const { switch (imageType.dim) { case spv::DimBuffer: return 1; case spv::Dim1D: return 1; case spv::Dim2D: return 2; case spv::Dim3D: return 3; case spv::DimCube: return 3; default: throw DxvkError("DxbcCompiler: getTexLayerDim: Unsupported image dimension"); } } uint32_t DxbcCompiler::getTexCoordDim(const DxbcImageInfo& imageType) const { return getTexLayerDim(imageType) + imageType.array; } DxbcRegMask DxbcCompiler::getTexCoordMask(const DxbcImageInfo& imageType) const { return DxbcRegMask::firstN(getTexCoordDim(imageType)); } DxbcVectorType DxbcCompiler::getInputRegType(uint32_t regIdx) const { DxbcVectorType result; result.ctype = DxbcScalarType::Float32; result.ccount = 4; // Vertex shader inputs must match the type of the input layout if (m_version.type() == DxbcProgramType::VertexShader) { const DxbcSgnEntry* entry = m_isgn->findByRegister(regIdx); if (entry != nullptr) result.ctype = entry->componentType; } return result; } VkImageViewType DxbcCompiler::getViewType(DxbcResourceDim dim) const { switch (dim) { default: case DxbcResourceDim::Unknown: case DxbcResourceDim::Buffer: case DxbcResourceDim::RawBuffer: case DxbcResourceDim::StructuredBuffer: return VK_IMAGE_VIEW_TYPE_MAX_ENUM; case DxbcResourceDim::Texture1D: return VK_IMAGE_VIEW_TYPE_1D; case DxbcResourceDim::Texture1DArr: return VK_IMAGE_VIEW_TYPE_1D_ARRAY; case DxbcResourceDim::Texture2D: return VK_IMAGE_VIEW_TYPE_2D; case DxbcResourceDim::Texture2DMs: return VK_IMAGE_VIEW_TYPE_2D; case DxbcResourceDim::Texture2DArr: return VK_IMAGE_VIEW_TYPE_2D_ARRAY; case DxbcResourceDim::Texture2DMsArr: return VK_IMAGE_VIEW_TYPE_2D_ARRAY; case DxbcResourceDim::TextureCube: return VK_IMAGE_VIEW_TYPE_CUBE_ARRAY; case DxbcResourceDim::TextureCubeArr: return VK_IMAGE_VIEW_TYPE_CUBE_ARRAY; case DxbcResourceDim::Texture3D: return VK_IMAGE_VIEW_TYPE_3D; } } uint32_t DxbcCompiler::getScalarTypeId(DxbcScalarType type) { switch (type) { case DxbcScalarType::Uint32: return m_module.defIntType(32, 0); case DxbcScalarType::Uint64: return m_module.defIntType(64, 0); case DxbcScalarType::Sint32: return m_module.defIntType(32, 1); case DxbcScalarType::Sint64: return m_module.defIntType(64, 1); case DxbcScalarType::Float32: return m_module.defFloatType(32); case DxbcScalarType::Float64: return m_module.defFloatType(64); case DxbcScalarType::Bool: return m_module.defBoolType(); } throw DxvkError("DxbcCompiler: Invalid scalar type"); } uint32_t DxbcCompiler::getVectorTypeId(const DxbcVectorType& type) { uint32_t typeId = this->getScalarTypeId(type.ctype); if (type.ccount > 1) typeId = m_module.defVectorType(typeId, type.ccount); return typeId; } uint32_t DxbcCompiler::getArrayTypeId(const DxbcArrayType& type) { DxbcVectorType vtype; vtype.ctype = type.ctype; vtype.ccount = type.ccount; uint32_t typeId = this->getVectorTypeId(vtype); if (type.alength != 0) { typeId = m_module.defArrayType(typeId, m_module.constu32(type.alength)); } return typeId; } uint32_t DxbcCompiler::getPointerTypeId(const DxbcRegisterInfo& type) { return m_module.defPointerType( this->getArrayTypeId(type.type), type.sclass); } uint32_t DxbcCompiler::getPerVertexBlockId() { uint32_t t_f32 = m_module.defFloatType(32); uint32_t t_f32_v4 = m_module.defVectorType(t_f32, 4); // uint32_t t_f32_a4 = m_module.defArrayType(t_f32, m_module.constu32(4)); std::array members; members[PerVertex_Position] = t_f32_v4; // members[PerVertex_CullDist] = t_f32_a4; // members[PerVertex_ClipDist] = t_f32_a4; uint32_t typeId = m_module.defStructTypeUnique( members.size(), members.data()); m_module.memberDecorateBuiltIn(typeId, PerVertex_Position, spv::BuiltInPosition); // m_module.memberDecorateBuiltIn(typeId, PerVertex_CullDist, spv::BuiltInCullDistance); // m_module.memberDecorateBuiltIn(typeId, PerVertex_ClipDist, spv::BuiltInClipDistance); m_module.decorateBlock(typeId); m_module.setDebugName(typeId, "s_per_vertex"); m_module.setDebugMemberName(typeId, PerVertex_Position, "position"); // m_module.setDebugMemberName(typeId, PerVertex_CullDist, "cull_dist"); // m_module.setDebugMemberName(typeId, PerVertex_ClipDist, "clip_dist"); return typeId; } DxbcCompilerHsForkJoinPhase* DxbcCompiler::getCurrentHsForkJoinPhase() { switch (m_hs.currPhaseType) { case DxbcCompilerHsPhase::Fork: return &m_hs.forkPhases.at(m_hs.currPhaseId); case DxbcCompilerHsPhase::Join: return &m_hs.joinPhases.at(m_hs.currPhaseId); default: return nullptr; } } }