#include #include "d3d11_context.h" #include "d3d11_device.h" #include "d3d11_query.h" #include "d3d11_texture.h" #include "../dxbc/dxbc_util.h" namespace dxvk { D3D11DeviceContext::D3D11DeviceContext( D3D11Device* pParent, const Rc& Device, DxvkCsChunkFlags CsFlags) : m_parent (pParent), m_contextExt(this), m_annotation(this), m_multithread(this, false), m_device (Device), m_csFlags (CsFlags), m_csChunk (AllocCsChunk()), m_cmdData (nullptr) { // Create default state objects. We won't ever return them // to the application, but we'll use them to apply state. Com defaultBlendState; Com defaultDepthStencilState; Com defaultRasterizerState; if (FAILED(m_parent->CreateBlendState (nullptr, &defaultBlendState)) || FAILED(m_parent->CreateDepthStencilState(nullptr, &defaultDepthStencilState)) || FAILED(m_parent->CreateRasterizerState (nullptr, &defaultRasterizerState))) throw DxvkError("D3D11DeviceContext: Failed to create default state objects"); // Apply default state to the context. This is required // in order to initialize the DXVK contex properly. m_defaultBlendState = static_cast (defaultBlendState.ptr()); m_defaultDepthStencilState = static_cast(defaultDepthStencilState.ptr()); m_defaultRasterizerState = static_cast (defaultRasterizerState.ptr()); } D3D11DeviceContext::~D3D11DeviceContext() { } HRESULT STDMETHODCALLTYPE D3D11DeviceContext::QueryInterface(REFIID riid, void** ppvObject) { if (ppvObject == nullptr) return E_POINTER; *ppvObject = nullptr; if (riid == __uuidof(IUnknown) || riid == __uuidof(ID3D11DeviceChild) || riid == __uuidof(ID3D11DeviceContext) || riid == __uuidof(ID3D11DeviceContext1) || riid == __uuidof(ID3D11DeviceContext2) || riid == __uuidof(ID3D11DeviceContext3) || riid == __uuidof(ID3D11DeviceContext4)) { *ppvObject = ref(this); return S_OK; } if (riid == __uuidof(ID3D11VkExtContext)) { *ppvObject = ref(&m_contextExt); return S_OK; } if (riid == __uuidof(ID3DUserDefinedAnnotation)) { *ppvObject = ref(&m_annotation); return S_OK; } if (riid == __uuidof(ID3D10Multithread)) { *ppvObject = ref(&m_multithread); return S_OK; } Logger::warn("D3D11DeviceContext::QueryInterface: Unknown interface query"); Logger::warn(str::format(riid)); return E_NOINTERFACE; } void STDMETHODCALLTYPE D3D11DeviceContext::DiscardResource(ID3D11Resource* pResource) { D3D10DeviceLock lock = LockContext(); if (!pResource) return; // We don't support the Discard API for images D3D11_RESOURCE_DIMENSION resType = D3D11_RESOURCE_DIMENSION_UNKNOWN; pResource->GetType(&resType); if (resType == D3D11_RESOURCE_DIMENSION_BUFFER) DiscardBuffer(static_cast(pResource)); else if (resType != D3D11_RESOURCE_DIMENSION_UNKNOWN) DiscardTexture(GetCommonTexture(pResource)); } void STDMETHODCALLTYPE D3D11DeviceContext::DiscardView(ID3D11View* pResourceView) { DiscardView1(pResourceView, nullptr, 0); } void STDMETHODCALLTYPE D3D11DeviceContext::DiscardView1( ID3D11View* pResourceView, const D3D11_RECT* pRects, UINT NumRects) { D3D10DeviceLock lock = LockContext(); // We don't support discarding individual rectangles if (!pResourceView || (NumRects && pRects)) return; // ID3D11View has no methods to query the exact type of // the view, so we'll have to check each possible class auto dsv = dynamic_cast(pResourceView); auto rtv = dynamic_cast(pResourceView); auto uav = dynamic_cast(pResourceView); Rc view; if (dsv) view = dsv->GetImageView(); if (rtv) view = rtv->GetImageView(); if (uav) view = uav->GetImageView(); if (view == nullptr) return; EmitCs([cView = std::move(view)] (DxvkContext* ctx) { ctx->discardImage( cView->image(), cView->subresources()); }); } void STDMETHODCALLTYPE D3D11DeviceContext::GetDevice(ID3D11Device **ppDevice) { *ppDevice = ref(m_parent); } void STDMETHODCALLTYPE D3D11DeviceContext::ClearState() { D3D10DeviceLock lock = LockContext(); // Default shaders m_state.vs.shader = nullptr; m_state.hs.shader = nullptr; m_state.ds.shader = nullptr; m_state.gs.shader = nullptr; m_state.ps.shader = nullptr; m_state.cs.shader = nullptr; // Default constant buffers for (uint32_t i = 0; i < D3D11_COMMONSHADER_CONSTANT_BUFFER_API_SLOT_COUNT; i++) { m_state.vs.constantBuffers[i] = { nullptr, 0, 0 }; m_state.hs.constantBuffers[i] = { nullptr, 0, 0 }; m_state.ds.constantBuffers[i] = { nullptr, 0, 0 }; m_state.gs.constantBuffers[i] = { nullptr, 0, 0 }; m_state.ps.constantBuffers[i] = { nullptr, 0, 0 }; m_state.cs.constantBuffers[i] = { nullptr, 0, 0 }; } // Default samplers for (uint32_t i = 0; i < D3D11_COMMONSHADER_SAMPLER_SLOT_COUNT; i++) { m_state.vs.samplers[i] = nullptr; m_state.hs.samplers[i] = nullptr; m_state.ds.samplers[i] = nullptr; m_state.gs.samplers[i] = nullptr; m_state.ps.samplers[i] = nullptr; m_state.cs.samplers[i] = nullptr; } // Default shader resources for (uint32_t i = 0; i < D3D11_COMMONSHADER_INPUT_RESOURCE_SLOT_COUNT; i++) { m_state.vs.shaderResources.views[i] = nullptr; m_state.hs.shaderResources.views[i] = nullptr; m_state.ds.shaderResources.views[i] = nullptr; m_state.gs.shaderResources.views[i] = nullptr; m_state.ps.shaderResources.views[i] = nullptr; m_state.cs.shaderResources.views[i] = nullptr; } m_state.vs.shaderResources.hazardous.clear(); m_state.hs.shaderResources.hazardous.clear(); m_state.ds.shaderResources.hazardous.clear(); m_state.gs.shaderResources.hazardous.clear(); m_state.ps.shaderResources.hazardous.clear(); m_state.cs.shaderResources.hazardous.clear(); // Default UAVs for (uint32_t i = 0; i < D3D11_1_UAV_SLOT_COUNT; i++) { m_state.ps.unorderedAccessViews[i] = nullptr; m_state.cs.unorderedAccessViews[i] = nullptr; } m_state.cs.uavMask.clear(); // Default ID state m_state.id.argBuffer = nullptr; // Default IA state m_state.ia.inputLayout = nullptr; m_state.ia.primitiveTopology = D3D11_PRIMITIVE_TOPOLOGY_UNDEFINED; for (uint32_t i = 0; i < D3D11_IA_VERTEX_INPUT_RESOURCE_SLOT_COUNT; i++) { m_state.ia.vertexBuffers[i].buffer = nullptr; m_state.ia.vertexBuffers[i].offset = 0; m_state.ia.vertexBuffers[i].stride = 0; } m_state.ia.indexBuffer.buffer = nullptr; m_state.ia.indexBuffer.offset = 0; m_state.ia.indexBuffer.format = DXGI_FORMAT_UNKNOWN; // Default OM State for (uint32_t i = 0; i < D3D11_SIMULTANEOUS_RENDER_TARGET_COUNT; i++) m_state.om.renderTargetViews[i] = nullptr; m_state.om.depthStencilView = nullptr; m_state.om.cbState = nullptr; m_state.om.dsState = nullptr; for (uint32_t i = 0; i < 4; i++) m_state.om.blendFactor[i] = 1.0f; m_state.om.sampleMask = D3D11_DEFAULT_SAMPLE_MASK; m_state.om.stencilRef = D3D11_DEFAULT_STENCIL_REFERENCE; m_state.om.maxRtv = 0; m_state.om.maxUav = 0; // Default RS state m_state.rs.state = nullptr; m_state.rs.numViewports = 0; m_state.rs.numScissors = 0; for (uint32_t i = 0; i < D3D11_VIEWPORT_AND_SCISSORRECT_OBJECT_COUNT_PER_PIPELINE; i++) { m_state.rs.viewports[i] = D3D11_VIEWPORT { }; m_state.rs.scissors [i] = D3D11_RECT { }; } // Default SO state for (uint32_t i = 0; i < D3D11_SO_BUFFER_SLOT_COUNT; i++) { m_state.so.targets[i].buffer = nullptr; m_state.so.targets[i].offset = 0; } // Default predication m_state.pr.predicateObject = nullptr; m_state.pr.predicateValue = FALSE; // Make sure to apply all state RestoreState(); } void STDMETHODCALLTYPE D3D11DeviceContext::Begin(ID3D11Asynchronous *pAsync) { D3D10DeviceLock lock = LockContext(); if (unlikely(!pAsync)) return; Com query(static_cast(pAsync)); EmitCs([cQuery = std::move(query)] (DxvkContext* ctx) { cQuery->Begin(ctx); }); } void STDMETHODCALLTYPE D3D11DeviceContext::End(ID3D11Asynchronous *pAsync) { D3D10DeviceLock lock = LockContext(); if (unlikely(!pAsync)) return; Com query(static_cast(pAsync)); EmitCs([cQuery = std::move(query)] (DxvkContext* ctx) { cQuery->End(ctx); }); } void STDMETHODCALLTYPE D3D11DeviceContext::SetPredication( ID3D11Predicate* pPredicate, BOOL PredicateValue) { D3D10DeviceLock lock = LockContext(); auto predicate = D3D11Query::FromPredicate(pPredicate); m_state.pr.predicateObject = predicate; m_state.pr.predicateValue = PredicateValue; static bool s_errorShown = false; if (pPredicate && !std::exchange(s_errorShown, true)) Logger::err("D3D11DeviceContext::SetPredication: Stub"); // TODO: Figure out why this breaks Watch Dogs and crashes War Thunder // if (!m_device->features().extConditionalRendering.conditionalRendering) // return; // EmitCs([ // cPredicate = Com(predicate), // cValue = PredicateValue // ] (DxvkContext* ctx) { // DxvkBufferSlice predSlice; // if (cPredicate != nullptr) // predSlice = cPredicate->GetPredicate(ctx); // ctx->setPredicate(predSlice, // cValue ? VK_CONDITIONAL_RENDERING_INVERTED_BIT_EXT : 0); // }); } void STDMETHODCALLTYPE D3D11DeviceContext::GetPredication( ID3D11Predicate** ppPredicate, BOOL* pPredicateValue) { D3D10DeviceLock lock = LockContext(); if (ppPredicate) *ppPredicate = D3D11Query::AsPredicate(m_state.pr.predicateObject.ref()); if (pPredicateValue) *pPredicateValue = m_state.pr.predicateValue; } void STDMETHODCALLTYPE D3D11DeviceContext::CopySubresourceRegion( ID3D11Resource* pDstResource, UINT DstSubresource, UINT DstX, UINT DstY, UINT DstZ, ID3D11Resource* pSrcResource, UINT SrcSubresource, const D3D11_BOX* pSrcBox) { CopySubresourceRegion1( pDstResource, DstSubresource, DstX, DstY, DstZ, pSrcResource, SrcSubresource, pSrcBox, 0); } void STDMETHODCALLTYPE D3D11DeviceContext::CopySubresourceRegion1( ID3D11Resource* pDstResource, UINT DstSubresource, UINT DstX, UINT DstY, UINT DstZ, ID3D11Resource* pSrcResource, UINT SrcSubresource, const D3D11_BOX* pSrcBox, UINT CopyFlags) { D3D10DeviceLock lock = LockContext(); D3D11_RESOURCE_DIMENSION dstResourceDim = D3D11_RESOURCE_DIMENSION_UNKNOWN; D3D11_RESOURCE_DIMENSION srcResourceDim = D3D11_RESOURCE_DIMENSION_UNKNOWN; pDstResource->GetType(&dstResourceDim); pSrcResource->GetType(&srcResourceDim); // Copying 2D image slices to 3D images and vice versa is legal const bool copy2Dto3D = dstResourceDim == D3D11_RESOURCE_DIMENSION_TEXTURE3D && srcResourceDim == D3D11_RESOURCE_DIMENSION_TEXTURE2D; const bool copy3Dto2D = dstResourceDim == D3D11_RESOURCE_DIMENSION_TEXTURE2D && srcResourceDim == D3D11_RESOURCE_DIMENSION_TEXTURE3D; if (dstResourceDim != srcResourceDim && !copy2Dto3D && !copy3Dto2D) { Logger::err(str::format( "D3D11: CopySubresourceRegion: Incompatible resources", "\n Dst resource type: ", dstResourceDim, "\n Src resource type: ", srcResourceDim)); return; } if (dstResourceDim == D3D11_RESOURCE_DIMENSION_BUFFER) { auto dstBuffer = static_cast(pDstResource)->GetBufferSlice(); auto srcBuffer = static_cast(pSrcResource)->GetBufferSlice(); if (CopyFlags & D3D11_COPY_DISCARD) DiscardBuffer(static_cast(pDstResource)); VkDeviceSize dstOffset = DstX; VkDeviceSize srcOffset = 0; VkDeviceSize regLength = srcBuffer.length(); if (dstOffset >= dstBuffer.length()) return; if (pSrcBox != nullptr) { if (pSrcBox->left >= pSrcBox->right) return; // no-op, but legal srcOffset = pSrcBox->left; regLength = pSrcBox->right - pSrcBox->left; if (srcOffset >= srcBuffer.length()) return; } // Clamp copy region to prevent out-of-bounds access regLength = std::min(regLength, srcBuffer.length() - srcOffset); regLength = std::min(regLength, dstBuffer.length() - dstOffset); EmitCs([ cDstSlice = dstBuffer.subSlice(dstOffset, regLength), cSrcSlice = srcBuffer.subSlice(srcOffset, regLength) ] (DxvkContext* ctx) { bool sameResource = cDstSlice.buffer() == cSrcSlice.buffer(); if (!sameResource) { ctx->copyBuffer( cDstSlice.buffer(), cDstSlice.offset(), cSrcSlice.buffer(), cSrcSlice.offset(), cSrcSlice.length()); } else { ctx->copyBufferRegion( cDstSlice.buffer(), cDstSlice.offset(), cSrcSlice.offset(), cSrcSlice.length()); } }); } else { const D3D11CommonTexture* dstTextureInfo = GetCommonTexture(pDstResource); const D3D11CommonTexture* srcTextureInfo = GetCommonTexture(pSrcResource); const Rc dstImage = dstTextureInfo->GetImage(); const Rc srcImage = srcTextureInfo->GetImage(); const DxvkFormatInfo* dstFormatInfo = imageFormatInfo(dstImage->info().format); const DxvkFormatInfo* srcFormatInfo = imageFormatInfo(srcImage->info().format); const VkImageSubresource dstSubresource = dstTextureInfo->GetSubresourceFromIndex(dstFormatInfo->aspectMask, DstSubresource); const VkImageSubresource srcSubresource = srcTextureInfo->GetSubresourceFromIndex(srcFormatInfo->aspectMask, SrcSubresource); // Copies are only supported on size-compatible formats if (dstFormatInfo->elementSize != srcFormatInfo->elementSize) { Logger::err(str::format( "D3D11: CopySubresourceRegion: Incompatible texel size" "\n Dst texel size: ", dstFormatInfo->elementSize, "\n Src texel size: ", srcFormatInfo->elementSize)); return; } // Copies are only supported if the sample count matches if (dstImage->info().sampleCount != srcImage->info().sampleCount) { Logger::err(str::format( "D3D11: CopySubresourceRegion: Incompatible sample count", "\n Dst sample count: ", dstImage->info().sampleCount, "\n Src sample count: ", srcImage->info().sampleCount)); return; } VkOffset3D srcOffset = { 0, 0, 0 }; VkOffset3D dstOffset = { int32_t(DstX), int32_t(DstY), int32_t(DstZ) }; VkExtent3D srcExtent = srcImage->mipLevelExtent(srcSubresource.mipLevel); VkExtent3D dstExtent = dstImage->mipLevelExtent(dstSubresource.mipLevel); VkExtent3D regExtent = srcExtent; if (uint32_t(dstOffset.x) >= dstExtent.width || uint32_t(dstOffset.y) >= dstExtent.height || uint32_t(dstOffset.z) >= dstExtent.depth) return; if (pSrcBox != nullptr) { if (pSrcBox->left >= pSrcBox->right || pSrcBox->top >= pSrcBox->bottom || pSrcBox->front >= pSrcBox->back) return; // no-op, but legal srcOffset.x = pSrcBox->left; srcOffset.y = pSrcBox->top; srcOffset.z = pSrcBox->front; regExtent.width = pSrcBox->right - pSrcBox->left; regExtent.height = pSrcBox->bottom - pSrcBox->top; regExtent.depth = pSrcBox->back - pSrcBox->front; if (uint32_t(srcOffset.x) >= srcExtent.width || uint32_t(srcOffset.y) >= srcExtent.height || uint32_t(srcOffset.z) >= srcExtent.depth) return; } VkImageSubresourceLayers dstLayers = { dstSubresource.aspectMask, dstSubresource.mipLevel, dstSubresource.arrayLayer, 1 }; VkImageSubresourceLayers srcLayers = { srcSubresource.aspectMask, srcSubresource.mipLevel, srcSubresource.arrayLayer, 1 }; // Copying multiple slices does not // seem to be supported in D3D11 if (copy2Dto3D || copy3Dto2D) { regExtent.depth = 1; dstLayers.layerCount = 1; srcLayers.layerCount = 1; } // Don't perform the copy if the offsets aren't aligned if (!util::isBlockAligned(srcOffset, srcFormatInfo->blockSize) || !util::isBlockAligned(dstOffset, dstFormatInfo->blockSize)) { Logger::err(str::format( "D3D11: CopySubresourceRegion: Unaligned block offset", "\n Src offset: (", srcOffset.x, ",", srcOffset.y, ",", srcOffset.z, ")", "\n Src block size: (", srcFormatInfo->blockSize.width, "x", srcFormatInfo->blockSize.height, "x", srcFormatInfo->blockSize.depth, ")", "\n Dst offset: (", dstOffset.x, ",", dstOffset.y, ",", dstOffset.z, ")", "\n Dst block size: (", dstFormatInfo->blockSize.width, "x", dstFormatInfo->blockSize.height, "x", dstFormatInfo->blockSize.depth, ")")); return; } // Clamp the image region in order to avoid out-of-bounds access VkExtent3D regBlockCount = util::computeBlockCount(regExtent, srcFormatInfo->blockSize); VkExtent3D dstBlockCount = util::computeMaxBlockCount(dstOffset, dstExtent, dstFormatInfo->blockSize); VkExtent3D srcBlockCount = util::computeMaxBlockCount(srcOffset, srcExtent, srcFormatInfo->blockSize); regBlockCount = util::minExtent3D(regBlockCount, dstBlockCount); regBlockCount = util::minExtent3D(regBlockCount, srcBlockCount); regExtent = util::minExtent3D(regExtent, util::computeBlockExtent(regBlockCount, srcFormatInfo->blockSize)); // Don't perform the copy if the image extent is not aligned and // if it does not touch the image border for unaligned dimensons if (!util::isBlockAligned(srcOffset, regExtent, srcFormatInfo->blockSize, srcExtent)) { Logger::err(str::format( "D3D11: CopySubresourceRegion: Unaligned block size", "\n Src offset: (", srcOffset.x, ",", srcOffset.y, ",", srcOffset.z, ")", "\n Src extent: (", srcExtent.width, "x", srcExtent.height, "x", srcExtent.depth, ")", "\n Src block size: (", srcFormatInfo->blockSize.width, "x", srcFormatInfo->blockSize.height, "x", srcFormatInfo->blockSize.depth, ")", "\n Dst offset: (", dstOffset.x, ",", dstOffset.y, ",", dstOffset.z, ")", "\n Dst extent: (", dstExtent.width, "x", dstExtent.height, "x", dstExtent.depth, ")", "\n Dst block size: (", dstFormatInfo->blockSize.width, "x", dstFormatInfo->blockSize.height, "x", dstFormatInfo->blockSize.depth, ")", "\n Region extent: (", regExtent.width, "x", regExtent.height, "x", regExtent.depth, ")")); return; } EmitCs([ cDstImage = dstImage, cSrcImage = srcImage, cDstLayers = dstLayers, cSrcLayers = srcLayers, cDstOffset = dstOffset, cSrcOffset = srcOffset, cExtent = regExtent ] (DxvkContext* ctx) { bool sameSubresource = cDstImage == cSrcImage && cDstLayers == cSrcLayers; if (!sameSubresource) { ctx->copyImage( cDstImage, cDstLayers, cDstOffset, cSrcImage, cSrcLayers, cSrcOffset, cExtent); } else { ctx->copyImageRegion( cDstImage, cDstLayers, cDstOffset, cSrcOffset, cExtent); } }); if (dstTextureInfo->CanUpdateMappedBufferEarly()) UpdateMappedBuffer(dstTextureInfo, dstSubresource); } } void STDMETHODCALLTYPE D3D11DeviceContext::CopyResource( ID3D11Resource* pDstResource, ID3D11Resource* pSrcResource) { D3D10DeviceLock lock = LockContext(); if (!pDstResource || !pSrcResource || (pDstResource == pSrcResource)) return; D3D11_RESOURCE_DIMENSION dstResourceDim = D3D11_RESOURCE_DIMENSION_UNKNOWN; D3D11_RESOURCE_DIMENSION srcResourceDim = D3D11_RESOURCE_DIMENSION_UNKNOWN; pDstResource->GetType(&dstResourceDim); pSrcResource->GetType(&srcResourceDim); if (dstResourceDim != srcResourceDim) { Logger::err(str::format( "D3D11: CopyResource: Incompatible resources", "\n Dst resource type: ", dstResourceDim, "\n Src resource type: ", srcResourceDim)); return; } if (dstResourceDim == D3D11_RESOURCE_DIMENSION_BUFFER) { auto dstBuffer = static_cast(pDstResource)->GetBufferSlice(); auto srcBuffer = static_cast(pSrcResource)->GetBufferSlice(); if (dstBuffer.length() != srcBuffer.length()) { Logger::err(str::format( "D3D11: CopyResource: Mismatched buffer size", "\n Dst buffer size: ", dstBuffer.length(), "\n Src buffer size: ", srcBuffer.length())); return; } EmitCs([ cDstBuffer = std::move(dstBuffer), cSrcBuffer = std::move(srcBuffer) ] (DxvkContext* ctx) { ctx->copyBuffer( cDstBuffer.buffer(), cDstBuffer.offset(), cSrcBuffer.buffer(), cSrcBuffer.offset(), cSrcBuffer.length()); }); } else { auto dstTexture = GetCommonTexture(pDstResource); auto srcTexture = GetCommonTexture(pSrcResource); const Rc dstImage = dstTexture->GetImage(); const Rc srcImage = srcTexture->GetImage(); const DxvkFormatInfo* dstFormatInfo = imageFormatInfo(dstImage->info().format); const DxvkFormatInfo* srcFormatInfo = imageFormatInfo(srcImage->info().format); // Copies are only supported on size-compatible formats if (dstFormatInfo->elementSize != srcFormatInfo->elementSize) { Logger::err(str::format( "D3D11: CopyResource: Incompatible texel size" "\n Dst texel size: ", dstFormatInfo->elementSize, "\n Src texel size: ", srcFormatInfo->elementSize)); return; } // Layer count, mip level count, and sample count must match if (srcImage->info().numLayers != dstImage->info().numLayers || srcImage->info().mipLevels != dstImage->info().mipLevels || srcImage->info().sampleCount != dstImage->info().sampleCount) { Logger::err(str::format( "D3D11: CopyResource: Incompatible images" "\n Dst: (", dstImage->info().numLayers, ",", dstImage->info().mipLevels, ",", dstImage->info().sampleCount, ")", "\n Src: (", srcImage->info().numLayers, ",", srcImage->info().mipLevels, ",", srcImage->info().sampleCount, ")")); return; } for (uint32_t i = 0; i < srcImage->info().mipLevels; i++) { VkImageSubresourceLayers dstLayers = { dstFormatInfo->aspectMask, i, 0, dstImage->info().numLayers }; VkImageSubresourceLayers srcLayers = { srcFormatInfo->aspectMask, i, 0, srcImage->info().numLayers }; VkExtent3D extent = srcImage->mipLevelExtent(i); EmitCs([ cDstImage = dstImage, cSrcImage = srcImage, cDstLayers = dstLayers, cSrcLayers = srcLayers, cExtent = extent ] (DxvkContext* ctx) { ctx->copyImage( cDstImage, cDstLayers, VkOffset3D { 0, 0, 0 }, cSrcImage, cSrcLayers, VkOffset3D { 0, 0, 0 }, cExtent); }); if (dstTexture->CanUpdateMappedBufferEarly()) { for (uint32_t j = 0; j < dstImage->info().numLayers; j++) UpdateMappedBuffer(dstTexture, { dstLayers.aspectMask, i, j }); } } } } void STDMETHODCALLTYPE D3D11DeviceContext::CopyStructureCount( ID3D11Buffer* pDstBuffer, UINT DstAlignedByteOffset, ID3D11UnorderedAccessView* pSrcView) { D3D10DeviceLock lock = LockContext(); auto buf = static_cast(pDstBuffer); auto uav = static_cast(pSrcView); if (!buf || !uav) return; auto counterSlice = uav->GetCounterSlice(); if (!counterSlice.defined()) return; EmitCs([ cDstSlice = buf->GetBufferSlice(DstAlignedByteOffset), cSrcSlice = std::move(counterSlice) ] (DxvkContext* ctx) { ctx->copyBuffer( cDstSlice.buffer(), cDstSlice.offset(), cSrcSlice.buffer(), cSrcSlice.offset(), sizeof(uint32_t)); }); } void STDMETHODCALLTYPE D3D11DeviceContext::CopyTiles( ID3D11Resource* pTiledResource, const D3D11_TILED_RESOURCE_COORDINATE* pTileRegionStartCoordinate, const D3D11_TILE_REGION_SIZE* pTileRegionSize, ID3D11Buffer* pBuffer, UINT64 BufferStartOffsetInBytes, UINT Flags) { static bool s_errorShown = false; if (!std::exchange(s_errorShown, true)) Logger::err("D3D11DeviceContext::CopyTiles: Not implemented"); } HRESULT STDMETHODCALLTYPE D3D11DeviceContext::CopyTileMappings( ID3D11Resource* pDestTiledResource, const D3D11_TILED_RESOURCE_COORDINATE* pDestRegionStartCoordinate, ID3D11Resource* pSourceTiledResource, const D3D11_TILED_RESOURCE_COORDINATE* pSourceRegionStartCoordinate, const D3D11_TILE_REGION_SIZE* pTileRegionSize, UINT Flags) { static bool s_errorShown = false; if (!std::exchange(s_errorShown, true)) Logger::err("D3D11DeviceContext::CopyTileMappings: Not implemented"); return DXGI_ERROR_INVALID_CALL; } HRESULT STDMETHODCALLTYPE D3D11DeviceContext::ResizeTilePool( ID3D11Buffer* pTilePool, UINT64 NewSizeInBytes) { static bool s_errorShown = false; if (!std::exchange(s_errorShown, true)) Logger::err("D3D11DeviceContext::ResizeTilePool: Not implemented"); return DXGI_ERROR_INVALID_CALL; } void STDMETHODCALLTYPE D3D11DeviceContext::TiledResourceBarrier( ID3D11DeviceChild* pTiledResourceOrViewAccessBeforeBarrier, ID3D11DeviceChild* pTiledResourceOrViewAccessAfterBarrier) { } void STDMETHODCALLTYPE D3D11DeviceContext::ClearRenderTargetView( ID3D11RenderTargetView* pRenderTargetView, const FLOAT ColorRGBA[4]) { D3D10DeviceLock lock = LockContext(); auto rtv = static_cast(pRenderTargetView); if (!rtv) return; auto view = rtv->GetImageView(); auto color = ConvertColorValue(ColorRGBA, view->formatInfo()); EmitCs([ cClearValue = color, cImageView = std::move(view) ] (DxvkContext* ctx) { ctx->clearRenderTarget( cImageView, VK_IMAGE_ASPECT_COLOR_BIT, cClearValue); }); } void STDMETHODCALLTYPE D3D11DeviceContext::ClearUnorderedAccessViewUint( ID3D11UnorderedAccessView* pUnorderedAccessView, const UINT Values[4]) { D3D10DeviceLock lock = LockContext(); auto uav = static_cast(pUnorderedAccessView); if (!uav) return; // Gather UAV format info. We'll use this to determine // whether we need to create a temporary view or not. D3D11_UNORDERED_ACCESS_VIEW_DESC uavDesc; uav->GetDesc(&uavDesc); VkFormat uavFormat = m_parent->LookupFormat(uavDesc.Format, DXGI_VK_FORMAT_MODE_ANY).Format; VkFormat rawFormat = m_parent->LookupFormat(uavDesc.Format, DXGI_VK_FORMAT_MODE_RAW).Format; if (uavFormat != rawFormat && rawFormat == VK_FORMAT_UNDEFINED) { Logger::err(str::format("D3D11: ClearUnorderedAccessViewUint: No raw format found for ", uavFormat)); return; } // Set up clear color struct VkClearValue clearValue; clearValue.color.uint32[0] = Values[0]; clearValue.color.uint32[1] = Values[1]; clearValue.color.uint32[2] = Values[2]; clearValue.color.uint32[3] = Values[3]; // This is the only packed format that has UAV support if (uavFormat == VK_FORMAT_B10G11R11_UFLOAT_PACK32) { clearValue.color.uint32[0] = ((Values[0] & 0x7FF) << 0) | ((Values[1] & 0x7FF) << 11) | ((Values[2] & 0x3FF) << 22); } if (uav->GetResourceType() == D3D11_RESOURCE_DIMENSION_BUFFER) { // In case of raw and structured buffers as well as typed // buffers that can be used for atomic operations, we can // use the fast Vulkan buffer clear function. Rc bufferView = uav->GetBufferView(); if (bufferView->info().format == VK_FORMAT_R32_UINT || bufferView->info().format == VK_FORMAT_R32_SINT || bufferView->info().format == VK_FORMAT_R32_SFLOAT) { EmitCs([ cClearValue = Values[0], cDstSlice = bufferView->slice() ] (DxvkContext* ctx) { ctx->clearBuffer( cDstSlice.buffer(), cDstSlice.offset(), cDstSlice.length(), cClearValue); }); } else { // Create a view with an integer format if necessary if (uavFormat != rawFormat) { DxvkBufferViewCreateInfo info = bufferView->info(); info.format = rawFormat; bufferView = m_device->createBufferView( bufferView->buffer(), info); } EmitCs([ cClearValue = clearValue, cDstView = bufferView ] (DxvkContext* ctx) { ctx->clearBufferView( cDstView, 0, cDstView->elementCount(), cClearValue.color); }); } } else { // Create a view with an integer format if necessary Rc imageView = uav->GetImageView(); if (uavFormat != rawFormat) { DxvkImageViewCreateInfo info = imageView->info(); info.format = rawFormat; imageView = m_device->createImageView( imageView->image(), info); } EmitCs([ cClearValue = clearValue, cDstView = imageView ] (DxvkContext* ctx) { ctx->clearImageView(cDstView, VkOffset3D { 0, 0, 0 }, cDstView->mipLevelExtent(0), VK_IMAGE_ASPECT_COLOR_BIT, cClearValue); }); } } void STDMETHODCALLTYPE D3D11DeviceContext::ClearUnorderedAccessViewFloat( ID3D11UnorderedAccessView* pUnorderedAccessView, const FLOAT Values[4]) { D3D10DeviceLock lock = LockContext(); auto uav = static_cast(pUnorderedAccessView); if (!uav) return; auto imgView = uav->GetImageView(); auto bufView = uav->GetBufferView(); const DxvkFormatInfo* info = nullptr; if (imgView != nullptr) info = imgView->formatInfo(); if (bufView != nullptr) info = bufView->formatInfo(); if (!info || info->flags.any(DxvkFormatFlag::SampledSInt, DxvkFormatFlag::SampledUInt)) return; VkClearValue clearValue; clearValue.color.float32[0] = Values[0]; clearValue.color.float32[1] = Values[1]; clearValue.color.float32[2] = Values[2]; clearValue.color.float32[3] = Values[3]; if (uav->GetResourceType() == D3D11_RESOURCE_DIMENSION_BUFFER) { EmitCs([ cClearValue = clearValue, cDstView = std::move(bufView) ] (DxvkContext* ctx) { ctx->clearBufferView( cDstView, 0, cDstView->elementCount(), cClearValue.color); }); } else { EmitCs([ cClearValue = clearValue, cDstView = std::move(imgView) ] (DxvkContext* ctx) { ctx->clearImageView(cDstView, VkOffset3D { 0, 0, 0 }, cDstView->mipLevelExtent(0), VK_IMAGE_ASPECT_COLOR_BIT, cClearValue); }); } } void STDMETHODCALLTYPE D3D11DeviceContext::ClearDepthStencilView( ID3D11DepthStencilView* pDepthStencilView, UINT ClearFlags, FLOAT Depth, UINT8 Stencil) { D3D10DeviceLock lock = LockContext(); auto dsv = static_cast(pDepthStencilView); if (!dsv) return; // Figure out which aspects to clear based on // the image view properties and clear flags. VkImageAspectFlags aspectMask = 0; if (ClearFlags & D3D11_CLEAR_DEPTH) aspectMask |= VK_IMAGE_ASPECT_DEPTH_BIT; if (ClearFlags & D3D11_CLEAR_STENCIL) aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT; aspectMask &= dsv->GetWritableAspectMask(); if (!aspectMask) return; VkClearValue clearValue; clearValue.depthStencil.depth = Depth; clearValue.depthStencil.stencil = Stencil; EmitCs([ cClearValue = clearValue, cAspectMask = aspectMask, cImageView = dsv->GetImageView() ] (DxvkContext* ctx) { ctx->clearRenderTarget( cImageView, cAspectMask, cClearValue); }); } void STDMETHODCALLTYPE D3D11DeviceContext::ClearView( ID3D11View* pView, const FLOAT Color[4], const D3D11_RECT* pRect, UINT NumRects) { D3D10DeviceLock lock = LockContext(); // ID3D11View has no methods to query the exact type of // the view, so we'll have to check each possible class auto dsv = dynamic_cast(pView); auto rtv = dynamic_cast(pView); auto uav = dynamic_cast(pView); // Retrieve underlying resource view Rc bufView; Rc imgView; if (dsv != nullptr) imgView = dsv->GetImageView(); if (rtv != nullptr) imgView = rtv->GetImageView(); if (uav != nullptr) { bufView = uav->GetBufferView(); imgView = uav->GetImageView(); } // 3D views are unsupported if (imgView != nullptr && imgView->info().type == VK_IMAGE_VIEW_TYPE_3D) return; // Query the view format. We'll have to convert // the clear color based on the format's data type. VkFormat format = VK_FORMAT_UNDEFINED; if (bufView != nullptr) format = bufView->info().format; if (imgView != nullptr) format = imgView->info().format; if (format == VK_FORMAT_UNDEFINED) return; // We'll need the format info to determine the buffer // element size, and we also need it for depth images. const DxvkFormatInfo* formatInfo = imageFormatInfo(format); // Convert the clear color format. ClearView takes // the clear value for integer formats as a set of // integral floats, so we'll have to convert. VkClearValue clearValue = ConvertColorValue(Color, formatInfo); VkImageAspectFlags clearAspect = formatInfo->aspectMask & (VK_IMAGE_ASPECT_COLOR_BIT | VK_IMAGE_ASPECT_DEPTH_BIT); // Clear all the rectangles that are specified for (uint32_t i = 0; i < NumRects; i++) { if (pRect[i].left >= pRect[i].right || pRect[i].top >= pRect[i].bottom) continue; if (bufView != nullptr) { VkDeviceSize offset = pRect[i].left; VkDeviceSize length = pRect[i].right - pRect[i].left; EmitCs([ cBufferView = bufView, cRangeOffset = offset, cRangeLength = length, cClearValue = clearValue ] (DxvkContext* ctx) { ctx->clearBufferView( cBufferView, cRangeOffset, cRangeLength, cClearValue.color); }); } if (imgView != nullptr) { VkOffset3D offset = { pRect[i].left, pRect[i].top, 0 }; VkExtent3D extent = { uint32_t(pRect[i].right - pRect[i].left), uint32_t(pRect[i].bottom - pRect[i].top), 1 }; EmitCs([ cImageView = imgView, cAreaOffset = offset, cAreaExtent = extent, cClearAspect = clearAspect, cClearValue = clearValue ] (DxvkContext* ctx) { ctx->clearImageView( cImageView, cAreaOffset, cAreaExtent, cClearAspect, cClearValue); }); } } // The rect array is optional, so if it is not // specified, we'll have to clear the entire view if (pRect == nullptr) { if (bufView != nullptr) { EmitCs([ cBufferView = bufView, cClearValue = clearValue, cElementSize = formatInfo->elementSize ] (DxvkContext* ctx) { ctx->clearBufferView(cBufferView, cBufferView->info().rangeOffset / cElementSize, cBufferView->info().rangeLength / cElementSize, cClearValue.color); }); } if (imgView != nullptr) { EmitCs([ cImageView = imgView, cClearAspect = clearAspect, cClearValue = clearValue ] (DxvkContext* ctx) { VkOffset3D offset = { 0, 0, 0 }; VkExtent3D extent = cImageView->mipLevelExtent(0); ctx->clearImageView( cImageView, offset, extent, cClearAspect, cClearValue); }); } } } void STDMETHODCALLTYPE D3D11DeviceContext::GenerateMips(ID3D11ShaderResourceView* pShaderResourceView) { D3D10DeviceLock lock = LockContext(); auto view = static_cast(pShaderResourceView); if (!view || view->GetResourceType() == D3D11_RESOURCE_DIMENSION_BUFFER) return; D3D11_COMMON_RESOURCE_DESC resourceDesc = view->GetResourceDesc(); if (!(resourceDesc.MiscFlags & D3D11_RESOURCE_MISC_GENERATE_MIPS)) return; EmitCs([cDstImageView = view->GetImageView()] (DxvkContext* ctx) { ctx->generateMipmaps(cDstImageView); }); } void STDMETHODCALLTYPE D3D11DeviceContext::UpdateSubresource( ID3D11Resource* pDstResource, UINT DstSubresource, const D3D11_BOX* pDstBox, const void* pSrcData, UINT SrcRowPitch, UINT SrcDepthPitch) { UpdateSubresource1(pDstResource, DstSubresource, pDstBox, pSrcData, SrcRowPitch, SrcDepthPitch, 0); } void STDMETHODCALLTYPE D3D11DeviceContext::UpdateSubresource1( ID3D11Resource* pDstResource, UINT DstSubresource, const D3D11_BOX* pDstBox, const void* pSrcData, UINT SrcRowPitch, UINT SrcDepthPitch, UINT CopyFlags) { D3D10DeviceLock lock = LockContext(); if (!pDstResource) return; // Filter out invalid copy flags CopyFlags &= D3D11_COPY_NO_OVERWRITE | D3D11_COPY_DISCARD; // We need a different code path for buffers D3D11_RESOURCE_DIMENSION resourceType; pDstResource->GetType(&resourceType); if (resourceType == D3D11_RESOURCE_DIMENSION_BUFFER) { const auto bufferResource = static_cast(pDstResource); const auto bufferSlice = bufferResource->GetBufferSlice(); VkDeviceSize offset = bufferSlice.offset(); VkDeviceSize size = bufferSlice.length(); if (pDstBox != nullptr) { offset = pDstBox->left; size = pDstBox->right - pDstBox->left; } if (!size || offset + size > bufferSlice.length()) return; bool useMap = (bufferSlice.buffer()->memFlags() & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) && (size == bufferSlice.length() || CopyFlags); if (useMap) { D3D11_MAP mapType = (CopyFlags & D3D11_COPY_NO_OVERWRITE) ? D3D11_MAP_WRITE_NO_OVERWRITE : D3D11_MAP_WRITE_DISCARD; D3D11_MAPPED_SUBRESOURCE mappedSr; Map(pDstResource, 0, mapType, 0, &mappedSr); std::memcpy(reinterpret_cast(mappedSr.pData) + offset, pSrcData, size); Unmap(pDstResource, 0); } else { if (CopyFlags & D3D11_COPY_DISCARD) DiscardBuffer(bufferResource); DxvkDataSlice dataSlice = AllocUpdateBufferSlice(size); std::memcpy(dataSlice.ptr(), pSrcData, size); EmitCs([ cDataBuffer = std::move(dataSlice), cBufferSlice = bufferSlice.subSlice(offset, size) ] (DxvkContext* ctx) { ctx->updateBuffer( cBufferSlice.buffer(), cBufferSlice.offset(), cBufferSlice.length(), cDataBuffer.ptr()); }); } } else { const D3D11CommonTexture* textureInfo = GetCommonTexture(pDstResource); VkFormat packedFormat = m_parent->LookupPackedFormat( textureInfo->Desc()->Format, textureInfo->GetFormatMode()).Format; auto formatInfo = imageFormatInfo(packedFormat); auto subresource = textureInfo->GetSubresourceFromIndex( formatInfo->aspectMask, DstSubresource); VkExtent3D mipExtent = textureInfo->GetImage()->mipLevelExtent(subresource.mipLevel); VkOffset3D offset = { 0, 0, 0 }; VkExtent3D extent = mipExtent; if (pDstBox != nullptr) { if (pDstBox->left >= pDstBox->right || pDstBox->top >= pDstBox->bottom || pDstBox->front >= pDstBox->back) return; // no-op, but legal offset.x = pDstBox->left; offset.y = pDstBox->top; offset.z = pDstBox->front; extent.width = pDstBox->right - pDstBox->left; extent.height = pDstBox->bottom - pDstBox->top; extent.depth = pDstBox->back - pDstBox->front; } const VkImageSubresourceLayers layers = { subresource.aspectMask, subresource.mipLevel, subresource.arrayLayer, 1 }; if (!util::isBlockAligned(offset, formatInfo->blockSize) || !util::isBlockAligned(offset, extent, formatInfo->blockSize, mipExtent)) return; const VkExtent3D regionExtent = util::computeBlockCount(extent, formatInfo->blockSize); const VkDeviceSize bytesPerRow = regionExtent.width * formatInfo->elementSize; const VkDeviceSize bytesPerLayer = regionExtent.height * bytesPerRow; const VkDeviceSize bytesTotal = regionExtent.depth * bytesPerLayer; DxvkDataSlice imageDataBuffer = AllocUpdateBufferSlice(bytesTotal); util::packImageData(imageDataBuffer.ptr(), pSrcData, regionExtent, formatInfo->elementSize, SrcRowPitch, SrcDepthPitch); EmitCs([ cDstImage = textureInfo->GetImage(), cDstLayers = layers, cDstOffset = offset, cDstExtent = extent, cSrcData = std::move(imageDataBuffer), cSrcBytesPerRow = bytesPerRow, cSrcBytesPerLayer = bytesPerLayer, cPackedFormat = packedFormat ] (DxvkContext* ctx) { if (cDstLayers.aspectMask != (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) { ctx->updateImage(cDstImage, cDstLayers, cDstOffset, cDstExtent, cSrcData.ptr(), cSrcBytesPerRow, cSrcBytesPerLayer); } else { ctx->updateDepthStencilImage(cDstImage, cDstLayers, VkOffset2D { cDstOffset.x, cDstOffset.y }, VkExtent2D { cDstExtent.width, cDstExtent.height }, cSrcData.ptr(), cSrcBytesPerRow, cSrcBytesPerLayer, cPackedFormat); } }); if (textureInfo->CanUpdateMappedBufferEarly()) UpdateMappedBuffer(textureInfo, subresource); } } HRESULT STDMETHODCALLTYPE D3D11DeviceContext::UpdateTileMappings( ID3D11Resource* pTiledResource, UINT NumTiledResourceRegions, const D3D11_TILED_RESOURCE_COORDINATE* pTiledResourceRegionStartCoordinates, const D3D11_TILE_REGION_SIZE* pTiledResourceRegionSizes, ID3D11Buffer* pTilePool, UINT NumRanges, const UINT* pRangeFlags, const UINT* pTilePoolStartOffsets, const UINT* pRangeTileCounts, UINT Flags) { bool s_errorShown = false; if (std::exchange(s_errorShown, true)) Logger::err("D3D11DeviceContext::UpdateTileMappings: Not implemented"); return DXGI_ERROR_INVALID_CALL; } void STDMETHODCALLTYPE D3D11DeviceContext::UpdateTiles( ID3D11Resource* pDestTiledResource, const D3D11_TILED_RESOURCE_COORDINATE* pDestTileRegionStartCoordinate, const D3D11_TILE_REGION_SIZE* pDestTileRegionSize, const void* pSourceTileData, UINT Flags) { bool s_errorShown = false; if (std::exchange(s_errorShown, true)) Logger::err("D3D11DeviceContext::UpdateTiles: Not implemented"); } void STDMETHODCALLTYPE D3D11DeviceContext::SetResourceMinLOD( ID3D11Resource* pResource, FLOAT MinLOD) { bool s_errorShown = false; if (std::exchange(s_errorShown, true)) Logger::err("D3D11DeviceContext::SetResourceMinLOD: Not implemented"); } FLOAT STDMETHODCALLTYPE D3D11DeviceContext::GetResourceMinLOD(ID3D11Resource* pResource) { bool s_errorShown = false; if (std::exchange(s_errorShown, true)) Logger::err("D3D11DeviceContext::GetResourceMinLOD: Not implemented"); return 0.0f; } void STDMETHODCALLTYPE D3D11DeviceContext::ResolveSubresource( ID3D11Resource* pDstResource, UINT DstSubresource, ID3D11Resource* pSrcResource, UINT SrcSubresource, DXGI_FORMAT Format) { D3D10DeviceLock lock = LockContext(); bool isSameSubresource = pDstResource == pSrcResource && DstSubresource == SrcSubresource; if (!pDstResource || !pSrcResource || isSameSubresource) return; D3D11_RESOURCE_DIMENSION dstResourceType; D3D11_RESOURCE_DIMENSION srcResourceType; pDstResource->GetType(&dstResourceType); pSrcResource->GetType(&srcResourceType); if (dstResourceType != D3D11_RESOURCE_DIMENSION_TEXTURE2D || srcResourceType != D3D11_RESOURCE_DIMENSION_TEXTURE2D) { Logger::err(str::format( "D3D11: ResolveSubresource: Incompatible resources", "\n Dst resource type: ", dstResourceType, "\n Src resource type: ", srcResourceType)); return; } auto dstTexture = static_cast(pDstResource); auto srcTexture = static_cast(pSrcResource); D3D11_TEXTURE2D_DESC dstDesc; D3D11_TEXTURE2D_DESC srcDesc; dstTexture->GetDesc(&dstDesc); srcTexture->GetDesc(&srcDesc); if (dstDesc.SampleDesc.Count != 1) { Logger::err(str::format( "D3D11: ResolveSubresource: Invalid sample counts", "\n Dst sample count: ", dstDesc.SampleDesc.Count, "\n Src sample count: ", srcDesc.SampleDesc.Count)); return; } const D3D11CommonTexture* dstTextureInfo = GetCommonTexture(pDstResource); const D3D11CommonTexture* srcTextureInfo = GetCommonTexture(pSrcResource); const DXGI_VK_FORMAT_INFO dstFormatInfo = m_parent->LookupFormat(dstDesc.Format, DXGI_VK_FORMAT_MODE_ANY); const DXGI_VK_FORMAT_INFO srcFormatInfo = m_parent->LookupFormat(srcDesc.Format, DXGI_VK_FORMAT_MODE_ANY); auto dstVulkanFormatInfo = imageFormatInfo(dstFormatInfo.Format); auto srcVulkanFormatInfo = imageFormatInfo(srcFormatInfo.Format); const VkImageSubresource dstSubresource = dstTextureInfo->GetSubresourceFromIndex( dstVulkanFormatInfo->aspectMask, DstSubresource); const VkImageSubresource srcSubresource = srcTextureInfo->GetSubresourceFromIndex( srcVulkanFormatInfo->aspectMask, SrcSubresource); const VkImageSubresourceLayers dstSubresourceLayers = { dstSubresource.aspectMask, dstSubresource.mipLevel, dstSubresource.arrayLayer, 1 }; const VkImageSubresourceLayers srcSubresourceLayers = { srcSubresource.aspectMask, srcSubresource.mipLevel, srcSubresource.arrayLayer, 1 }; if (srcDesc.SampleDesc.Count == 1) { EmitCs([ cDstImage = dstTextureInfo->GetImage(), cSrcImage = srcTextureInfo->GetImage(), cDstLayers = dstSubresourceLayers, cSrcLayers = srcSubresourceLayers ] (DxvkContext* ctx) { ctx->copyImage( cDstImage, cDstLayers, VkOffset3D { 0, 0, 0 }, cSrcImage, cSrcLayers, VkOffset3D { 0, 0, 0 }, cDstImage->mipLevelExtent(cDstLayers.mipLevel)); }); } else { const VkFormat format = m_parent->LookupFormat( Format, DXGI_VK_FORMAT_MODE_ANY).Format; EmitCs([ cDstImage = dstTextureInfo->GetImage(), cSrcImage = srcTextureInfo->GetImage(), cDstSubres = dstSubresourceLayers, cSrcSubres = srcSubresourceLayers, cFormat = format ] (DxvkContext* ctx) { VkImageResolve region; region.srcSubresource = cSrcSubres; region.srcOffset = VkOffset3D { 0, 0, 0 }; region.dstSubresource = cDstSubres; region.dstOffset = VkOffset3D { 0, 0, 0 }; region.extent = cDstImage->mipLevelExtent(cDstSubres.mipLevel); ctx->resolveImage(cDstImage, cSrcImage, region, cFormat); }); } } void STDMETHODCALLTYPE D3D11DeviceContext::DrawAuto() { D3D10DeviceLock lock = LockContext(); D3D11Buffer* buffer = m_state.ia.vertexBuffers[0].buffer.ptr(); if (buffer == nullptr) return; DxvkBufferSlice vtxBuf = buffer->GetBufferSlice(); DxvkBufferSlice ctrBuf = buffer->GetSOCounter(); if (!ctrBuf.defined()) return; EmitCs([=] (DxvkContext* ctx) { ctx->drawIndirectXfb(ctrBuf, vtxBuf.buffer()->getXfbVertexStride(), vtxBuf.offset()); }); } void STDMETHODCALLTYPE D3D11DeviceContext::Draw( UINT VertexCount, UINT StartVertexLocation) { D3D10DeviceLock lock = LockContext(); EmitCs([=] (DxvkContext* ctx) { ctx->draw( VertexCount, 1, StartVertexLocation, 0); }); } void STDMETHODCALLTYPE D3D11DeviceContext::DrawIndexed( UINT IndexCount, UINT StartIndexLocation, INT BaseVertexLocation) { D3D10DeviceLock lock = LockContext(); EmitCs([=] (DxvkContext* ctx) { ctx->drawIndexed( IndexCount, 1, StartIndexLocation, BaseVertexLocation, 0); }); } void STDMETHODCALLTYPE D3D11DeviceContext::DrawInstanced( UINT VertexCountPerInstance, UINT InstanceCount, UINT StartVertexLocation, UINT StartInstanceLocation) { D3D10DeviceLock lock = LockContext(); EmitCs([=] (DxvkContext* ctx) { ctx->draw( VertexCountPerInstance, InstanceCount, StartVertexLocation, StartInstanceLocation); }); } void STDMETHODCALLTYPE D3D11DeviceContext::DrawIndexedInstanced( UINT IndexCountPerInstance, UINT InstanceCount, UINT StartIndexLocation, INT BaseVertexLocation, UINT StartInstanceLocation) { D3D10DeviceLock lock = LockContext(); EmitCs([=] (DxvkContext* ctx) { ctx->drawIndexed( IndexCountPerInstance, InstanceCount, StartIndexLocation, BaseVertexLocation, StartInstanceLocation); }); } void STDMETHODCALLTYPE D3D11DeviceContext::DrawIndexedInstancedIndirect( ID3D11Buffer* pBufferForArgs, UINT AlignedByteOffsetForArgs) { D3D10DeviceLock lock = LockContext(); SetDrawBuffers(pBufferForArgs, nullptr); // If possible, batch up multiple indirect draw calls of // the same type into one single multiDrawIndirect call constexpr VkDeviceSize stride = sizeof(VkDrawIndexedIndirectCommand); auto cmdData = static_cast(m_cmdData); bool useMultiDraw = cmdData && cmdData->type == D3D11CmdType::DrawIndirectIndexed && cmdData->offset + cmdData->count * stride == AlignedByteOffsetForArgs && m_device->features().core.features.multiDrawIndirect; if (useMultiDraw) { cmdData->count += 1; } else { cmdData = EmitCsCmd( [] (DxvkContext* ctx, const D3D11CmdDrawIndirectData* data) { ctx->drawIndexedIndirect(data->offset, data->count, sizeof(VkDrawIndexedIndirectCommand)); }); cmdData->type = D3D11CmdType::DrawIndirectIndexed; cmdData->offset = AlignedByteOffsetForArgs; cmdData->count = 1; } } void STDMETHODCALLTYPE D3D11DeviceContext::DrawInstancedIndirect( ID3D11Buffer* pBufferForArgs, UINT AlignedByteOffsetForArgs) { D3D10DeviceLock lock = LockContext(); SetDrawBuffers(pBufferForArgs, nullptr); // If possible, batch up multiple indirect draw calls of // the same type into one single multiDrawIndirect call constexpr VkDeviceSize stride = sizeof(VkDrawIndirectCommand); auto cmdData = static_cast(m_cmdData); bool useMultiDraw = cmdData && cmdData->type == D3D11CmdType::DrawIndirect && cmdData->offset + cmdData->count * stride == AlignedByteOffsetForArgs && m_device->features().core.features.multiDrawIndirect; if (useMultiDraw) { cmdData->count += 1; } else { cmdData = EmitCsCmd( [] (DxvkContext* ctx, const D3D11CmdDrawIndirectData* data) { ctx->drawIndirect(data->offset, data->count, sizeof(VkDrawIndirectCommand)); }); cmdData->type = D3D11CmdType::DrawIndirect; cmdData->offset = AlignedByteOffsetForArgs; cmdData->count = 1; } } void STDMETHODCALLTYPE D3D11DeviceContext::Dispatch( UINT ThreadGroupCountX, UINT ThreadGroupCountY, UINT ThreadGroupCountZ) { D3D10DeviceLock lock = LockContext(); EmitCs([=] (DxvkContext* ctx) { ctx->dispatch( ThreadGroupCountX, ThreadGroupCountY, ThreadGroupCountZ); }); } void STDMETHODCALLTYPE D3D11DeviceContext::DispatchIndirect( ID3D11Buffer* pBufferForArgs, UINT AlignedByteOffsetForArgs) { D3D10DeviceLock lock = LockContext(); SetDrawBuffers(pBufferForArgs, nullptr); EmitCs([cOffset = AlignedByteOffsetForArgs] (DxvkContext* ctx) { ctx->dispatchIndirect(cOffset); }); } void STDMETHODCALLTYPE D3D11DeviceContext::IASetInputLayout(ID3D11InputLayout* pInputLayout) { D3D10DeviceLock lock = LockContext(); auto inputLayout = static_cast(pInputLayout); if (m_state.ia.inputLayout != inputLayout) { bool equal = false; // Some games (e.g. Grim Dawn) create lots and lots of // identical input layouts, so we'll only apply the state // if the input layouts has actually changed between calls. if (m_state.ia.inputLayout != nullptr && inputLayout != nullptr) equal = m_state.ia.inputLayout->Compare(inputLayout); m_state.ia.inputLayout = inputLayout; if (!equal) ApplyInputLayout(); } } void STDMETHODCALLTYPE D3D11DeviceContext::IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY Topology) { D3D10DeviceLock lock = LockContext(); if (m_state.ia.primitiveTopology != Topology) { m_state.ia.primitiveTopology = Topology; ApplyPrimitiveTopology(); } } void STDMETHODCALLTYPE D3D11DeviceContext::IASetVertexBuffers( UINT StartSlot, UINT NumBuffers, ID3D11Buffer* const* ppVertexBuffers, const UINT* pStrides, const UINT* pOffsets) { D3D10DeviceLock lock = LockContext(); for (uint32_t i = 0; i < NumBuffers; i++) { auto newBuffer = static_cast(ppVertexBuffers[i]); bool needsUpdate = m_state.ia.vertexBuffers[StartSlot + i].buffer != newBuffer; if (needsUpdate) m_state.ia.vertexBuffers[StartSlot + i].buffer = newBuffer; needsUpdate |= m_state.ia.vertexBuffers[StartSlot + i].offset != pOffsets[i] || m_state.ia.vertexBuffers[StartSlot + i].stride != pStrides[i]; if (needsUpdate) { m_state.ia.vertexBuffers[StartSlot + i].offset = pOffsets[i]; m_state.ia.vertexBuffers[StartSlot + i].stride = pStrides[i]; BindVertexBuffer(StartSlot + i, newBuffer, pOffsets[i], pStrides[i]); } } } void STDMETHODCALLTYPE D3D11DeviceContext::IASetIndexBuffer( ID3D11Buffer* pIndexBuffer, DXGI_FORMAT Format, UINT Offset) { D3D10DeviceLock lock = LockContext(); auto newBuffer = static_cast(pIndexBuffer); bool needsUpdate = m_state.ia.indexBuffer.buffer != newBuffer; if (needsUpdate) m_state.ia.indexBuffer.buffer = newBuffer; needsUpdate |= m_state.ia.indexBuffer.offset != Offset || m_state.ia.indexBuffer.format != Format; if (needsUpdate) { m_state.ia.indexBuffer.offset = Offset; m_state.ia.indexBuffer.format = Format; BindIndexBuffer(newBuffer, Offset, Format); } } void STDMETHODCALLTYPE D3D11DeviceContext::IAGetInputLayout(ID3D11InputLayout** ppInputLayout) { D3D10DeviceLock lock = LockContext(); *ppInputLayout = m_state.ia.inputLayout.ref(); } void STDMETHODCALLTYPE D3D11DeviceContext::IAGetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY* pTopology) { D3D10DeviceLock lock = LockContext(); *pTopology = m_state.ia.primitiveTopology; } void STDMETHODCALLTYPE D3D11DeviceContext::IAGetVertexBuffers( UINT StartSlot, UINT NumBuffers, ID3D11Buffer** ppVertexBuffers, UINT* pStrides, UINT* pOffsets) { D3D10DeviceLock lock = LockContext(); for (uint32_t i = 0; i < NumBuffers; i++) { if (ppVertexBuffers != nullptr) ppVertexBuffers[i] = m_state.ia.vertexBuffers[StartSlot + i].buffer.ref(); if (pStrides != nullptr) pStrides[i] = m_state.ia.vertexBuffers[StartSlot + i].stride; if (pOffsets != nullptr) pOffsets[i] = m_state.ia.vertexBuffers[StartSlot + i].offset; } } void STDMETHODCALLTYPE D3D11DeviceContext::IAGetIndexBuffer( ID3D11Buffer** ppIndexBuffer, DXGI_FORMAT* pFormat, UINT* pOffset) { D3D10DeviceLock lock = LockContext(); if (ppIndexBuffer != nullptr) *ppIndexBuffer = m_state.ia.indexBuffer.buffer.ref(); if (pFormat != nullptr) *pFormat = m_state.ia.indexBuffer.format; if (pOffset != nullptr) *pOffset = m_state.ia.indexBuffer.offset; } void STDMETHODCALLTYPE D3D11DeviceContext::VSSetShader( ID3D11VertexShader* pVertexShader, ID3D11ClassInstance* const* ppClassInstances, UINT NumClassInstances) { D3D10DeviceLock lock = LockContext(); auto shader = static_cast(pVertexShader); if (NumClassInstances != 0) Logger::err("D3D11: Class instances not supported"); if (m_state.vs.shader != shader) { m_state.vs.shader = shader; BindShader(GetCommonShader(shader)); } } void STDMETHODCALLTYPE D3D11DeviceContext::VSSetConstantBuffers( UINT StartSlot, UINT NumBuffers, ID3D11Buffer* const* ppConstantBuffers) { D3D10DeviceLock lock = LockContext(); SetConstantBuffers( m_state.vs.constantBuffers, StartSlot, NumBuffers, ppConstantBuffers); } void STDMETHODCALLTYPE D3D11DeviceContext::VSSetConstantBuffers1( UINT StartSlot, UINT NumBuffers, ID3D11Buffer* const* ppConstantBuffers, const UINT* pFirstConstant, const UINT* pNumConstants) { D3D10DeviceLock lock = LockContext(); SetConstantBuffers1( m_state.vs.constantBuffers, StartSlot, NumBuffers, ppConstantBuffers, pFirstConstant, pNumConstants); } void STDMETHODCALLTYPE D3D11DeviceContext::VSSetShaderResources( UINT StartSlot, UINT NumViews, ID3D11ShaderResourceView* const* ppShaderResourceViews) { D3D10DeviceLock lock = LockContext(); SetShaderResources( m_state.vs.shaderResources, StartSlot, NumViews, ppShaderResourceViews); } void STDMETHODCALLTYPE D3D11DeviceContext::VSSetSamplers( UINT StartSlot, UINT NumSamplers, ID3D11SamplerState* const* ppSamplers) { D3D10DeviceLock lock = LockContext(); SetSamplers( m_state.vs.samplers, StartSlot, NumSamplers, ppSamplers); } void STDMETHODCALLTYPE D3D11DeviceContext::VSGetShader( ID3D11VertexShader** ppVertexShader, ID3D11ClassInstance** ppClassInstances, UINT* pNumClassInstances) { D3D10DeviceLock lock = LockContext(); if (ppVertexShader != nullptr) *ppVertexShader = m_state.vs.shader.ref(); if (pNumClassInstances != nullptr) *pNumClassInstances = 0; } void STDMETHODCALLTYPE D3D11DeviceContext::VSGetConstantBuffers( UINT StartSlot, UINT NumBuffers, ID3D11Buffer** ppConstantBuffers) { D3D10DeviceLock lock = LockContext(); GetConstantBuffers( m_state.vs.constantBuffers, StartSlot, NumBuffers, ppConstantBuffers, nullptr, nullptr); } void STDMETHODCALLTYPE D3D11DeviceContext::VSGetConstantBuffers1( UINT StartSlot, UINT NumBuffers, ID3D11Buffer** ppConstantBuffers, UINT* pFirstConstant, UINT* pNumConstants) { D3D10DeviceLock lock = LockContext(); GetConstantBuffers( m_state.vs.constantBuffers, StartSlot, NumBuffers, ppConstantBuffers, pFirstConstant, pNumConstants); } void STDMETHODCALLTYPE D3D11DeviceContext::VSGetShaderResources( UINT StartSlot, UINT NumViews, ID3D11ShaderResourceView** ppShaderResourceViews) { D3D10DeviceLock lock = LockContext(); for (uint32_t i = 0; i < NumViews; i++) ppShaderResourceViews[i] = m_state.vs.shaderResources.views[StartSlot + i].ref(); } void STDMETHODCALLTYPE D3D11DeviceContext::VSGetSamplers( UINT StartSlot, UINT NumSamplers, ID3D11SamplerState** ppSamplers) { D3D10DeviceLock lock = LockContext(); for (uint32_t i = 0; i < NumSamplers; i++) ppSamplers[i] = m_state.vs.samplers[StartSlot + i].ref(); } void STDMETHODCALLTYPE D3D11DeviceContext::HSSetShader( ID3D11HullShader* pHullShader, ID3D11ClassInstance* const* ppClassInstances, UINT NumClassInstances) { D3D10DeviceLock lock = LockContext(); auto shader = static_cast(pHullShader); if (NumClassInstances != 0) Logger::err("D3D11: Class instances not supported"); if (m_state.hs.shader != shader) { m_state.hs.shader = shader; BindShader(GetCommonShader(shader)); } } void STDMETHODCALLTYPE D3D11DeviceContext::HSSetShaderResources( UINT StartSlot, UINT NumViews, ID3D11ShaderResourceView* const* ppShaderResourceViews) { D3D10DeviceLock lock = LockContext(); SetShaderResources( m_state.hs.shaderResources, StartSlot, NumViews, ppShaderResourceViews); } void STDMETHODCALLTYPE D3D11DeviceContext::HSSetConstantBuffers( UINT StartSlot, UINT NumBuffers, ID3D11Buffer* const* ppConstantBuffers) { D3D10DeviceLock lock = LockContext(); SetConstantBuffers( m_state.hs.constantBuffers, StartSlot, NumBuffers, ppConstantBuffers); } void STDMETHODCALLTYPE D3D11DeviceContext::HSSetConstantBuffers1( UINT StartSlot, UINT NumBuffers, ID3D11Buffer* const* ppConstantBuffers, const UINT* pFirstConstant, const UINT* pNumConstants) { D3D10DeviceLock lock = LockContext(); SetConstantBuffers1( m_state.hs.constantBuffers, StartSlot, NumBuffers, ppConstantBuffers, pFirstConstant, pNumConstants); } void STDMETHODCALLTYPE D3D11DeviceContext::HSSetSamplers( UINT StartSlot, UINT NumSamplers, ID3D11SamplerState* const* ppSamplers) { D3D10DeviceLock lock = LockContext(); SetSamplers( m_state.hs.samplers, StartSlot, NumSamplers, ppSamplers); } void STDMETHODCALLTYPE D3D11DeviceContext::HSGetShader( ID3D11HullShader** ppHullShader, ID3D11ClassInstance** ppClassInstances, UINT* pNumClassInstances) { D3D10DeviceLock lock = LockContext(); if (ppHullShader != nullptr) *ppHullShader = m_state.hs.shader.ref(); if (pNumClassInstances != nullptr) *pNumClassInstances = 0; } void STDMETHODCALLTYPE D3D11DeviceContext::HSGetConstantBuffers( UINT StartSlot, UINT NumBuffers, ID3D11Buffer** ppConstantBuffers) { D3D10DeviceLock lock = LockContext(); GetConstantBuffers( m_state.hs.constantBuffers, StartSlot, NumBuffers, ppConstantBuffers, nullptr, nullptr); } void D3D11DeviceContext::HSGetConstantBuffers1( UINT StartSlot, UINT NumBuffers, ID3D11Buffer** ppConstantBuffers, UINT* pFirstConstant, UINT* pNumConstants) { D3D10DeviceLock lock = LockContext(); GetConstantBuffers( m_state.hs.constantBuffers, StartSlot, NumBuffers, ppConstantBuffers, pFirstConstant, pNumConstants); } void STDMETHODCALLTYPE D3D11DeviceContext::HSGetShaderResources( UINT StartSlot, UINT NumViews, ID3D11ShaderResourceView** ppShaderResourceViews) { D3D10DeviceLock lock = LockContext(); for (uint32_t i = 0; i < NumViews; i++) ppShaderResourceViews[i] = m_state.hs.shaderResources.views[StartSlot + i].ref(); } void STDMETHODCALLTYPE D3D11DeviceContext::HSGetSamplers( UINT StartSlot, UINT NumSamplers, ID3D11SamplerState** ppSamplers) { D3D10DeviceLock lock = LockContext(); for (uint32_t i = 0; i < NumSamplers; i++) ppSamplers[i] = m_state.hs.samplers[StartSlot + i].ref(); } void STDMETHODCALLTYPE D3D11DeviceContext::DSSetShader( ID3D11DomainShader* pDomainShader, ID3D11ClassInstance* const* ppClassInstances, UINT NumClassInstances) { D3D10DeviceLock lock = LockContext(); auto shader = static_cast(pDomainShader); if (NumClassInstances != 0) Logger::err("D3D11: Class instances not supported"); if (m_state.ds.shader != shader) { m_state.ds.shader = shader; BindShader(GetCommonShader(shader)); } } void STDMETHODCALLTYPE D3D11DeviceContext::DSSetShaderResources( UINT StartSlot, UINT NumViews, ID3D11ShaderResourceView* const* ppShaderResourceViews) { D3D10DeviceLock lock = LockContext(); SetShaderResources( m_state.ds.shaderResources, StartSlot, NumViews, ppShaderResourceViews); } void STDMETHODCALLTYPE D3D11DeviceContext::DSSetConstantBuffers( UINT StartSlot, UINT NumBuffers, ID3D11Buffer* const* ppConstantBuffers) { D3D10DeviceLock lock = LockContext(); SetConstantBuffers( m_state.ds.constantBuffers, StartSlot, NumBuffers, ppConstantBuffers); } void STDMETHODCALLTYPE D3D11DeviceContext::DSSetConstantBuffers1( UINT StartSlot, UINT NumBuffers, ID3D11Buffer* const* ppConstantBuffers, const UINT* pFirstConstant, const UINT* pNumConstants) { D3D10DeviceLock lock = LockContext(); SetConstantBuffers1( m_state.ds.constantBuffers, StartSlot, NumBuffers, ppConstantBuffers, pFirstConstant, pNumConstants); } void STDMETHODCALLTYPE D3D11DeviceContext::DSSetSamplers( UINT StartSlot, UINT NumSamplers, ID3D11SamplerState* const* ppSamplers) { D3D10DeviceLock lock = LockContext(); SetSamplers( m_state.ds.samplers, StartSlot, NumSamplers, ppSamplers); } void STDMETHODCALLTYPE D3D11DeviceContext::DSGetShader( ID3D11DomainShader** ppDomainShader, ID3D11ClassInstance** ppClassInstances, UINT* pNumClassInstances) { D3D10DeviceLock lock = LockContext(); if (ppDomainShader != nullptr) *ppDomainShader = m_state.ds.shader.ref(); if (pNumClassInstances != nullptr) *pNumClassInstances = 0; } void STDMETHODCALLTYPE D3D11DeviceContext::DSGetConstantBuffers( UINT StartSlot, UINT NumBuffers, ID3D11Buffer** ppConstantBuffers) { D3D10DeviceLock lock = LockContext(); GetConstantBuffers( m_state.ds.constantBuffers, StartSlot, NumBuffers, ppConstantBuffers, nullptr, nullptr); } void STDMETHODCALLTYPE D3D11DeviceContext::DSGetConstantBuffers1( UINT StartSlot, UINT NumBuffers, ID3D11Buffer** ppConstantBuffers, UINT* pFirstConstant, UINT* pNumConstants) { D3D10DeviceLock lock = LockContext(); GetConstantBuffers( m_state.ds.constantBuffers, StartSlot, NumBuffers, ppConstantBuffers, pFirstConstant, pNumConstants); } void STDMETHODCALLTYPE D3D11DeviceContext::DSGetShaderResources( UINT StartSlot, UINT NumViews, ID3D11ShaderResourceView** ppShaderResourceViews) { D3D10DeviceLock lock = LockContext(); for (uint32_t i = 0; i < NumViews; i++) ppShaderResourceViews[i] = m_state.ds.shaderResources.views[StartSlot + i].ref(); } void STDMETHODCALLTYPE D3D11DeviceContext::DSGetSamplers( UINT StartSlot, UINT NumSamplers, ID3D11SamplerState** ppSamplers) { D3D10DeviceLock lock = LockContext(); for (uint32_t i = 0; i < NumSamplers; i++) ppSamplers[i] = m_state.ds.samplers[StartSlot + i].ref(); } void STDMETHODCALLTYPE D3D11DeviceContext::GSSetShader( ID3D11GeometryShader* pShader, ID3D11ClassInstance* const* ppClassInstances, UINT NumClassInstances) { D3D10DeviceLock lock = LockContext(); auto shader = static_cast(pShader); if (NumClassInstances != 0) Logger::err("D3D11: Class instances not supported"); if (m_state.gs.shader != shader) { m_state.gs.shader = shader; BindShader(GetCommonShader(shader)); } } void STDMETHODCALLTYPE D3D11DeviceContext::GSSetConstantBuffers( UINT StartSlot, UINT NumBuffers, ID3D11Buffer* const* ppConstantBuffers) { D3D10DeviceLock lock = LockContext(); SetConstantBuffers( m_state.gs.constantBuffers, StartSlot, NumBuffers, ppConstantBuffers); } void D3D11DeviceContext::GSSetConstantBuffers1( UINT StartSlot, UINT NumBuffers, ID3D11Buffer* const* ppConstantBuffers, const UINT* pFirstConstant, const UINT* pNumConstants) { D3D10DeviceLock lock = LockContext(); SetConstantBuffers1( m_state.gs.constantBuffers, StartSlot, NumBuffers, ppConstantBuffers, pFirstConstant, pNumConstants); } void STDMETHODCALLTYPE D3D11DeviceContext::GSSetShaderResources( UINT StartSlot, UINT NumViews, ID3D11ShaderResourceView* const* ppShaderResourceViews) { D3D10DeviceLock lock = LockContext(); SetShaderResources( m_state.gs.shaderResources, StartSlot, NumViews, ppShaderResourceViews); } void STDMETHODCALLTYPE D3D11DeviceContext::GSSetSamplers( UINT StartSlot, UINT NumSamplers, ID3D11SamplerState* const* ppSamplers) { D3D10DeviceLock lock = LockContext(); SetSamplers( m_state.gs.samplers, StartSlot, NumSamplers, ppSamplers); } void STDMETHODCALLTYPE D3D11DeviceContext::GSGetShader( ID3D11GeometryShader** ppGeometryShader, ID3D11ClassInstance** ppClassInstances, UINT* pNumClassInstances) { D3D10DeviceLock lock = LockContext(); if (ppGeometryShader != nullptr) *ppGeometryShader = m_state.gs.shader.ref(); if (pNumClassInstances != nullptr) *pNumClassInstances = 0; } void STDMETHODCALLTYPE D3D11DeviceContext::GSGetConstantBuffers( UINT StartSlot, UINT NumBuffers, ID3D11Buffer** ppConstantBuffers) { D3D10DeviceLock lock = LockContext(); GetConstantBuffers( m_state.gs.constantBuffers, StartSlot, NumBuffers, ppConstantBuffers, nullptr, nullptr); } void D3D11DeviceContext::GSGetConstantBuffers1( UINT StartSlot, UINT NumBuffers, ID3D11Buffer** ppConstantBuffers, UINT* pFirstConstant, UINT* pNumConstants) { D3D10DeviceLock lock = LockContext(); GetConstantBuffers( m_state.gs.constantBuffers, StartSlot, NumBuffers, ppConstantBuffers, pFirstConstant, pNumConstants); } void STDMETHODCALLTYPE D3D11DeviceContext::GSGetShaderResources( UINT StartSlot, UINT NumViews, ID3D11ShaderResourceView** ppShaderResourceViews) { D3D10DeviceLock lock = LockContext(); for (uint32_t i = 0; i < NumViews; i++) ppShaderResourceViews[i] = m_state.gs.shaderResources.views[StartSlot + i].ref(); } void STDMETHODCALLTYPE D3D11DeviceContext::GSGetSamplers( UINT StartSlot, UINT NumSamplers, ID3D11SamplerState** ppSamplers) { D3D10DeviceLock lock = LockContext(); for (uint32_t i = 0; i < NumSamplers; i++) ppSamplers[i] = m_state.gs.samplers[StartSlot + i].ref(); } void STDMETHODCALLTYPE D3D11DeviceContext::PSSetShader( ID3D11PixelShader* pPixelShader, ID3D11ClassInstance* const* ppClassInstances, UINT NumClassInstances) { D3D10DeviceLock lock = LockContext(); auto shader = static_cast(pPixelShader); if (NumClassInstances != 0) Logger::err("D3D11: Class instances not supported"); if (m_state.ps.shader != shader) { m_state.ps.shader = shader; BindShader(GetCommonShader(shader)); } } void STDMETHODCALLTYPE D3D11DeviceContext::PSSetConstantBuffers( UINT StartSlot, UINT NumBuffers, ID3D11Buffer* const* ppConstantBuffers) { D3D10DeviceLock lock = LockContext(); SetConstantBuffers( m_state.ps.constantBuffers, StartSlot, NumBuffers, ppConstantBuffers); } void D3D11DeviceContext::PSSetConstantBuffers1( UINT StartSlot, UINT NumBuffers, ID3D11Buffer* const* ppConstantBuffers, const UINT* pFirstConstant, const UINT* pNumConstants) { D3D10DeviceLock lock = LockContext(); SetConstantBuffers1( m_state.ps.constantBuffers, StartSlot, NumBuffers, ppConstantBuffers, pFirstConstant, pNumConstants); } void STDMETHODCALLTYPE D3D11DeviceContext::PSSetShaderResources( UINT StartSlot, UINT NumViews, ID3D11ShaderResourceView* const* ppShaderResourceViews) { D3D10DeviceLock lock = LockContext(); SetShaderResources( m_state.ps.shaderResources, StartSlot, NumViews, ppShaderResourceViews); } void STDMETHODCALLTYPE D3D11DeviceContext::PSSetSamplers( UINT StartSlot, UINT NumSamplers, ID3D11SamplerState* const* ppSamplers) { D3D10DeviceLock lock = LockContext(); SetSamplers( m_state.ps.samplers, StartSlot, NumSamplers, ppSamplers); } void STDMETHODCALLTYPE D3D11DeviceContext::PSGetShader( ID3D11PixelShader** ppPixelShader, ID3D11ClassInstance** ppClassInstances, UINT* pNumClassInstances) { D3D10DeviceLock lock = LockContext(); if (ppPixelShader != nullptr) *ppPixelShader = m_state.ps.shader.ref(); if (pNumClassInstances != nullptr) *pNumClassInstances = 0; } void STDMETHODCALLTYPE D3D11DeviceContext::PSGetConstantBuffers( UINT StartSlot, UINT NumBuffers, ID3D11Buffer** ppConstantBuffers) { D3D10DeviceLock lock = LockContext(); GetConstantBuffers( m_state.ps.constantBuffers, StartSlot, NumBuffers, ppConstantBuffers, nullptr, nullptr); } void D3D11DeviceContext::PSGetConstantBuffers1( UINT StartSlot, UINT NumBuffers, ID3D11Buffer** ppConstantBuffers, UINT* pFirstConstant, UINT* pNumConstants) { D3D10DeviceLock lock = LockContext(); GetConstantBuffers( m_state.ps.constantBuffers, StartSlot, NumBuffers, ppConstantBuffers, pFirstConstant, pNumConstants); } void STDMETHODCALLTYPE D3D11DeviceContext::PSGetShaderResources( UINT StartSlot, UINT NumViews, ID3D11ShaderResourceView** ppShaderResourceViews) { D3D10DeviceLock lock = LockContext(); for (uint32_t i = 0; i < NumViews; i++) ppShaderResourceViews[i] = m_state.ps.shaderResources.views[StartSlot + i].ref(); } void STDMETHODCALLTYPE D3D11DeviceContext::PSGetSamplers( UINT StartSlot, UINT NumSamplers, ID3D11SamplerState** ppSamplers) { D3D10DeviceLock lock = LockContext(); for (uint32_t i = 0; i < NumSamplers; i++) ppSamplers[i] = m_state.ps.samplers[StartSlot + i].ref(); } void STDMETHODCALLTYPE D3D11DeviceContext::CSSetShader( ID3D11ComputeShader* pComputeShader, ID3D11ClassInstance* const* ppClassInstances, UINT NumClassInstances) { D3D10DeviceLock lock = LockContext(); auto shader = static_cast(pComputeShader); if (NumClassInstances != 0) Logger::err("D3D11: Class instances not supported"); if (m_state.cs.shader != shader) { m_state.cs.shader = shader; BindShader(GetCommonShader(shader)); } } void STDMETHODCALLTYPE D3D11DeviceContext::CSSetConstantBuffers( UINT StartSlot, UINT NumBuffers, ID3D11Buffer* const* ppConstantBuffers) { D3D10DeviceLock lock = LockContext(); SetConstantBuffers( m_state.cs.constantBuffers, StartSlot, NumBuffers, ppConstantBuffers); } void STDMETHODCALLTYPE D3D11DeviceContext::CSSetConstantBuffers1( UINT StartSlot, UINT NumBuffers, ID3D11Buffer* const* ppConstantBuffers, const UINT* pFirstConstant, const UINT* pNumConstants) { D3D10DeviceLock lock = LockContext(); SetConstantBuffers1( m_state.cs.constantBuffers, StartSlot, NumBuffers, ppConstantBuffers, pFirstConstant, pNumConstants); } void STDMETHODCALLTYPE D3D11DeviceContext::CSSetShaderResources( UINT StartSlot, UINT NumViews, ID3D11ShaderResourceView* const* ppShaderResourceViews) { D3D10DeviceLock lock = LockContext(); SetShaderResources( m_state.cs.shaderResources, StartSlot, NumViews, ppShaderResourceViews); } void STDMETHODCALLTYPE D3D11DeviceContext::CSSetSamplers( UINT StartSlot, UINT NumSamplers, ID3D11SamplerState* const* ppSamplers) { D3D10DeviceLock lock = LockContext(); SetSamplers( m_state.cs.samplers, StartSlot, NumSamplers, ppSamplers); } void STDMETHODCALLTYPE D3D11DeviceContext::CSSetUnorderedAccessViews( UINT StartSlot, UINT NumUAVs, ID3D11UnorderedAccessView* const* ppUnorderedAccessViews, const UINT* pUAVInitialCounts) { D3D10DeviceLock lock = LockContext(); if (TestRtvUavHazards(0, nullptr, NumUAVs, ppUnorderedAccessViews)) return; // Unbind previously bound conflicting UAVs uint32_t uavSlotId = computeUavBinding (DxbcProgramType::ComputeShader, 0); uint32_t ctrSlotId = computeUavCounterBinding(DxbcProgramType::ComputeShader, 0); int32_t uavId = m_state.cs.uavMask.findNext(0); while (uavId >= 0) { if (uint32_t(uavId) < StartSlot || uint32_t(uavId) >= StartSlot + NumUAVs) { for (uint32_t i = 0; i < NumUAVs; i++) { auto uav = static_cast(ppUnorderedAccessViews[i]); if (CheckViewOverlap(uav, m_state.cs.unorderedAccessViews[uavId].ptr())) { m_state.cs.unorderedAccessViews[uavId] = nullptr; m_state.cs.uavMask.clr(uavId); BindUnorderedAccessView( uavSlotId + uavId, nullptr, ctrSlotId + uavId, ~0u); } } uavId = m_state.cs.uavMask.findNext(uavId + 1); } else { uavId = m_state.cs.uavMask.findNext(StartSlot + NumUAVs); } } // Actually bind the given UAVs for (uint32_t i = 0; i < NumUAVs; i++) { auto uav = static_cast(ppUnorderedAccessViews[i]); auto ctr = pUAVInitialCounts ? pUAVInitialCounts[i] : ~0u; if (m_state.cs.unorderedAccessViews[StartSlot + i] != uav || ctr != ~0u) { m_state.cs.unorderedAccessViews[StartSlot + i] = uav; m_state.cs.uavMask.set(StartSlot + i, uav != nullptr); BindUnorderedAccessView( uavSlotId + StartSlot + i, uav, ctrSlotId + StartSlot + i, ctr); ResolveCsSrvHazards(uav); } } } void STDMETHODCALLTYPE D3D11DeviceContext::CSGetShader( ID3D11ComputeShader** ppComputeShader, ID3D11ClassInstance** ppClassInstances, UINT* pNumClassInstances) { D3D10DeviceLock lock = LockContext(); if (ppComputeShader != nullptr) *ppComputeShader = m_state.cs.shader.ref(); if (pNumClassInstances != nullptr) *pNumClassInstances = 0; } void STDMETHODCALLTYPE D3D11DeviceContext::CSGetConstantBuffers( UINT StartSlot, UINT NumBuffers, ID3D11Buffer** ppConstantBuffers) { D3D10DeviceLock lock = LockContext(); GetConstantBuffers( m_state.cs.constantBuffers, StartSlot, NumBuffers, ppConstantBuffers, nullptr, nullptr); } void STDMETHODCALLTYPE D3D11DeviceContext::CSGetConstantBuffers1( UINT StartSlot, UINT NumBuffers, ID3D11Buffer** ppConstantBuffers, UINT* pFirstConstant, UINT* pNumConstants) { D3D10DeviceLock lock = LockContext(); GetConstantBuffers( m_state.cs.constantBuffers, StartSlot, NumBuffers, ppConstantBuffers, pFirstConstant, pNumConstants); } void STDMETHODCALLTYPE D3D11DeviceContext::CSGetShaderResources( UINT StartSlot, UINT NumViews, ID3D11ShaderResourceView** ppShaderResourceViews) { D3D10DeviceLock lock = LockContext(); for (uint32_t i = 0; i < NumViews; i++) ppShaderResourceViews[i] = m_state.cs.shaderResources.views[StartSlot + i].ref(); } void STDMETHODCALLTYPE D3D11DeviceContext::CSGetSamplers( UINT StartSlot, UINT NumSamplers, ID3D11SamplerState** ppSamplers) { D3D10DeviceLock lock = LockContext(); for (uint32_t i = 0; i < NumSamplers; i++) ppSamplers[i] = m_state.cs.samplers[StartSlot + i].ref(); } void STDMETHODCALLTYPE D3D11DeviceContext::CSGetUnorderedAccessViews( UINT StartSlot, UINT NumUAVs, ID3D11UnorderedAccessView** ppUnorderedAccessViews) { D3D10DeviceLock lock = LockContext(); for (uint32_t i = 0; i < NumUAVs; i++) ppUnorderedAccessViews[i] = m_state.cs.unorderedAccessViews[StartSlot + i].ref(); } void STDMETHODCALLTYPE D3D11DeviceContext::OMSetRenderTargets( UINT NumViews, ID3D11RenderTargetView* const* ppRenderTargetViews, ID3D11DepthStencilView* pDepthStencilView) { OMSetRenderTargetsAndUnorderedAccessViews( NumViews, ppRenderTargetViews, pDepthStencilView, NumViews, 0, nullptr, nullptr); } void STDMETHODCALLTYPE D3D11DeviceContext::OMSetRenderTargetsAndUnorderedAccessViews( UINT NumRTVs, ID3D11RenderTargetView* const* ppRenderTargetViews, ID3D11DepthStencilView* pDepthStencilView, UINT UAVStartSlot, UINT NumUAVs, ID3D11UnorderedAccessView* const* ppUnorderedAccessViews, const UINT* pUAVInitialCounts) { D3D10DeviceLock lock = LockContext(); if (TestRtvUavHazards(NumRTVs, ppRenderTargetViews, NumUAVs, ppUnorderedAccessViews)) return; bool needsUpdate = false; if (likely(NumRTVs != D3D11_KEEP_RENDER_TARGETS_AND_DEPTH_STENCIL)) { // Native D3D11 does not change the render targets if // the parameters passed to this method are invalid. if (!ValidateRenderTargets(NumRTVs, ppRenderTargetViews, pDepthStencilView)) return; for (uint32_t i = 0; i < m_state.om.renderTargetViews.size(); i++) { auto rtv = i < NumRTVs ? static_cast(ppRenderTargetViews[i]) : nullptr; if (m_state.om.renderTargetViews[i] != rtv) { m_state.om.renderTargetViews[i] = rtv; needsUpdate = true; ResolveOmSrvHazards(rtv); if (NumUAVs == D3D11_KEEP_UNORDERED_ACCESS_VIEWS) ResolveOmUavHazards(rtv); } } auto dsv = static_cast(pDepthStencilView); if (m_state.om.depthStencilView != dsv) { m_state.om.depthStencilView = dsv; needsUpdate = true; ResolveOmSrvHazards(dsv); } m_state.om.maxRtv = NumRTVs; } if (unlikely(NumUAVs || m_state.om.maxUav)) { uint32_t uavSlotId = computeUavBinding (DxbcProgramType::PixelShader, 0); uint32_t ctrSlotId = computeUavCounterBinding(DxbcProgramType::PixelShader, 0); if (likely(NumUAVs != D3D11_KEEP_UNORDERED_ACCESS_VIEWS)) { uint32_t newMaxUav = NumUAVs ? UAVStartSlot + NumUAVs : 0; uint32_t oldMaxUav = std::exchange(m_state.om.maxUav, newMaxUav); for (uint32_t i = 0; i < std::max(oldMaxUav, newMaxUav); i++) { D3D11UnorderedAccessView* uav = nullptr; uint32_t ctr = ~0u; if (i >= UAVStartSlot && i < UAVStartSlot + NumUAVs) { uav = static_cast(ppUnorderedAccessViews[i - UAVStartSlot]); ctr = pUAVInitialCounts ? pUAVInitialCounts[i - UAVStartSlot] : ~0u; } if (m_state.ps.unorderedAccessViews[i] != uav || ctr != ~0u) { m_state.ps.unorderedAccessViews[i] = uav; BindUnorderedAccessView( uavSlotId + i, uav, ctrSlotId + i, ctr); ResolveOmSrvHazards(uav); if (NumRTVs == D3D11_KEEP_RENDER_TARGETS_AND_DEPTH_STENCIL) needsUpdate |= ResolveOmRtvHazards(uav); } } } } if (needsUpdate) BindFramebuffer(); } void STDMETHODCALLTYPE D3D11DeviceContext::OMSetBlendState( ID3D11BlendState* pBlendState, const FLOAT BlendFactor[4], UINT SampleMask) { D3D10DeviceLock lock = LockContext(); auto blendState = static_cast(pBlendState); if (m_state.om.cbState != blendState || m_state.om.sampleMask != SampleMask) { m_state.om.cbState = blendState; m_state.om.sampleMask = SampleMask; ApplyBlendState(); } if (BlendFactor != nullptr) { for (uint32_t i = 0; i < 4; i++) m_state.om.blendFactor[i] = BlendFactor[i]; ApplyBlendFactor(); } } void STDMETHODCALLTYPE D3D11DeviceContext::OMSetDepthStencilState( ID3D11DepthStencilState* pDepthStencilState, UINT StencilRef) { D3D10DeviceLock lock = LockContext(); auto depthStencilState = static_cast(pDepthStencilState); if (m_state.om.dsState != depthStencilState) { m_state.om.dsState = depthStencilState; ApplyDepthStencilState(); } if (m_state.om.stencilRef != StencilRef) { m_state.om.stencilRef = StencilRef; ApplyStencilRef(); } } void STDMETHODCALLTYPE D3D11DeviceContext::OMGetRenderTargets( UINT NumViews, ID3D11RenderTargetView** ppRenderTargetViews, ID3D11DepthStencilView** ppDepthStencilView) { D3D10DeviceLock lock = LockContext(); if (ppRenderTargetViews != nullptr) { for (UINT i = 0; i < NumViews; i++) ppRenderTargetViews[i] = m_state.om.renderTargetViews[i].ref(); } if (ppDepthStencilView != nullptr) *ppDepthStencilView = m_state.om.depthStencilView.ref(); } void STDMETHODCALLTYPE D3D11DeviceContext::OMGetRenderTargetsAndUnorderedAccessViews( UINT NumRTVs, ID3D11RenderTargetView** ppRenderTargetViews, ID3D11DepthStencilView** ppDepthStencilView, UINT UAVStartSlot, UINT NumUAVs, ID3D11UnorderedAccessView** ppUnorderedAccessViews) { OMGetRenderTargets(NumRTVs, ppRenderTargetViews, ppDepthStencilView); D3D10DeviceLock lock = LockContext(); if (ppUnorderedAccessViews != nullptr) { for (UINT i = 0; i < NumUAVs; i++) ppUnorderedAccessViews[i] = m_state.ps.unorderedAccessViews[UAVStartSlot + i].ref(); } } void STDMETHODCALLTYPE D3D11DeviceContext::OMGetBlendState( ID3D11BlendState** ppBlendState, FLOAT BlendFactor[4], UINT* pSampleMask) { D3D10DeviceLock lock = LockContext(); if (ppBlendState != nullptr) *ppBlendState = m_state.om.cbState.ref(); if (BlendFactor != nullptr) std::memcpy(BlendFactor, m_state.om.blendFactor, sizeof(FLOAT) * 4); if (pSampleMask != nullptr) *pSampleMask = m_state.om.sampleMask; } void STDMETHODCALLTYPE D3D11DeviceContext::OMGetDepthStencilState( ID3D11DepthStencilState** ppDepthStencilState, UINT* pStencilRef) { D3D10DeviceLock lock = LockContext(); if (ppDepthStencilState != nullptr) *ppDepthStencilState = m_state.om.dsState.ref(); if (pStencilRef != nullptr) *pStencilRef = m_state.om.stencilRef; } void STDMETHODCALLTYPE D3D11DeviceContext::RSSetState(ID3D11RasterizerState* pRasterizerState) { D3D10DeviceLock lock = LockContext(); auto rasterizerState = static_cast(pRasterizerState); bool currScissorEnable = m_state.rs.state != nullptr ? m_state.rs.state->Desc()->ScissorEnable : false; bool nextScissorEnable = rasterizerState != nullptr ? rasterizerState->Desc()->ScissorEnable : false; if (m_state.rs.state != rasterizerState) { m_state.rs.state = rasterizerState; // In D3D11, the rasterizer state defines whether the // scissor test is enabled, so we have to update the // scissor rectangles as well. ApplyRasterizerState(); if (currScissorEnable != nextScissorEnable) ApplyViewportState(); } } void STDMETHODCALLTYPE D3D11DeviceContext::RSSetViewports( UINT NumViewports, const D3D11_VIEWPORT* pViewports) { D3D10DeviceLock lock = LockContext(); if (unlikely(NumViewports > m_state.rs.viewports.size())) return; bool dirty = m_state.rs.numViewports != NumViewports; m_state.rs.numViewports = NumViewports; for (uint32_t i = 0; i < NumViewports; i++) { const D3D11_VIEWPORT& vp = m_state.rs.viewports[i]; dirty |= vp.TopLeftX != pViewports[i].TopLeftX || vp.TopLeftY != pViewports[i].TopLeftY || vp.Width != pViewports[i].Width || vp.Height != pViewports[i].Height || vp.MinDepth != pViewports[i].MinDepth || vp.MaxDepth != pViewports[i].MaxDepth; m_state.rs.viewports[i] = pViewports[i]; } if (dirty) ApplyViewportState(); } void STDMETHODCALLTYPE D3D11DeviceContext::RSSetScissorRects( UINT NumRects, const D3D11_RECT* pRects) { D3D10DeviceLock lock = LockContext(); if (unlikely(NumRects > m_state.rs.scissors.size())) return; bool dirty = m_state.rs.numScissors != NumRects; m_state.rs.numScissors = NumRects; for (uint32_t i = 0; i < NumRects; i++) { if (pRects[i].bottom >= pRects[i].top && pRects[i].right >= pRects[i].left) { const D3D11_RECT& sr = m_state.rs.scissors[i]; dirty |= sr.top != pRects[i].top || sr.left != pRects[i].left || sr.bottom != pRects[i].bottom || sr.right != pRects[i].right; m_state.rs.scissors[i] = pRects[i]; } } if (m_state.rs.state != nullptr && dirty) { D3D11_RASTERIZER_DESC rsDesc; m_state.rs.state->GetDesc(&rsDesc); if (rsDesc.ScissorEnable) ApplyViewportState(); } } void STDMETHODCALLTYPE D3D11DeviceContext::RSGetState(ID3D11RasterizerState** ppRasterizerState) { D3D10DeviceLock lock = LockContext(); if (ppRasterizerState != nullptr) *ppRasterizerState = m_state.rs.state.ref(); } void STDMETHODCALLTYPE D3D11DeviceContext::RSGetViewports( UINT* pNumViewports, D3D11_VIEWPORT* pViewports) { D3D10DeviceLock lock = LockContext(); if (pViewports != nullptr) { for (uint32_t i = 0; i < *pNumViewports; i++) { if (i < m_state.rs.numViewports) { pViewports[i] = m_state.rs.viewports[i]; } else { pViewports[i].TopLeftX = 0.0f; pViewports[i].TopLeftY = 0.0f; pViewports[i].Width = 0.0f; pViewports[i].Height = 0.0f; pViewports[i].MinDepth = 0.0f; pViewports[i].MaxDepth = 0.0f; } } } else { *pNumViewports = m_state.rs.numViewports; } } void STDMETHODCALLTYPE D3D11DeviceContext::RSGetScissorRects( UINT* pNumRects, D3D11_RECT* pRects) { D3D10DeviceLock lock = LockContext(); if (pRects != nullptr) { for (uint32_t i = 0; i < *pNumRects; i++) { if (i < m_state.rs.numScissors) { pRects[i] = m_state.rs.scissors[i]; } else { pRects[i].left = 0; pRects[i].top = 0; pRects[i].right = 0; pRects[i].bottom = 0; } } } else { *pNumRects = m_state.rs.numScissors; } } void STDMETHODCALLTYPE D3D11DeviceContext::SOSetTargets( UINT NumBuffers, ID3D11Buffer* const* ppSOTargets, const UINT* pOffsets) { D3D10DeviceLock lock = LockContext(); for (uint32_t i = 0; i < NumBuffers; i++) { D3D11Buffer* buffer = static_cast(ppSOTargets[i]); UINT offset = pOffsets != nullptr ? pOffsets[i] : 0; m_state.so.targets[i].buffer = buffer; m_state.so.targets[i].offset = offset; } for (uint32_t i = NumBuffers; i < D3D11_SO_BUFFER_SLOT_COUNT; i++) { m_state.so.targets[i].buffer = nullptr; m_state.so.targets[i].offset = 0; } for (uint32_t i = 0; i < D3D11_SO_BUFFER_SLOT_COUNT; i++) { BindXfbBuffer(i, m_state.so.targets[i].buffer.ptr(), m_state.so.targets[i].offset); } } void STDMETHODCALLTYPE D3D11DeviceContext::SOGetTargets( UINT NumBuffers, ID3D11Buffer** ppSOTargets) { D3D10DeviceLock lock = LockContext(); for (uint32_t i = 0; i < NumBuffers; i++) ppSOTargets[i] = m_state.so.targets[i].buffer.ref(); } void STDMETHODCALLTYPE D3D11DeviceContext::SOGetTargetsWithOffsets( UINT NumBuffers, ID3D11Buffer** ppSOTargets, UINT* pOffsets) { D3D10DeviceLock lock = LockContext(); for (uint32_t i = 0; i < NumBuffers; i++) { if (ppSOTargets != nullptr) ppSOTargets[i] = m_state.so.targets[i].buffer.ref(); if (pOffsets != nullptr) pOffsets[i] = m_state.so.targets[i].offset; } } BOOL STDMETHODCALLTYPE D3D11DeviceContext::IsAnnotationEnabled() { // Not implemented in the backend return FALSE; } void STDMETHODCALLTYPE D3D11DeviceContext::SetMarkerInt( LPCWSTR pLabel, INT Data) { // Not implemented in the backend, ignore } void STDMETHODCALLTYPE D3D11DeviceContext::BeginEventInt( LPCWSTR pLabel, INT Data) { // Not implemented in the backend, ignore } void STDMETHODCALLTYPE D3D11DeviceContext::EndEvent() { // Not implemented in the backend, ignore } void STDMETHODCALLTYPE D3D11DeviceContext::GetHardwareProtectionState( BOOL* pHwProtectionEnable) { static bool s_errorShown = false; if (!std::exchange(s_errorShown, true)) Logger::err("D3D11DeviceContext::GetHardwareProtectionState: Not implemented"); if (pHwProtectionEnable) *pHwProtectionEnable = FALSE; } void STDMETHODCALLTYPE D3D11DeviceContext::SetHardwareProtectionState( BOOL HwProtectionEnable) { static bool s_errorShown = false; if (!std::exchange(s_errorShown, true)) Logger::err("D3D11DeviceContext::SetHardwareProtectionState: Not implemented"); } void STDMETHODCALLTYPE D3D11DeviceContext::TransitionSurfaceLayout( IDXGIVkInteropSurface* pSurface, const VkImageSubresourceRange* pSubresources, VkImageLayout OldLayout, VkImageLayout NewLayout) { D3D10DeviceLock lock = LockContext(); // Get the underlying D3D11 resource Com resource; pSurface->QueryInterface(__uuidof(ID3D11Resource), reinterpret_cast(&resource)); // Get the texture from that resource D3D11CommonTexture* texture = GetCommonTexture(resource.ptr()); EmitCs([ cImage = texture->GetImage(), cSubresources = *pSubresources, cOldLayout = OldLayout, cNewLayout = NewLayout ] (DxvkContext* ctx) { ctx->transformImage( cImage, cSubresources, cOldLayout, cNewLayout); }); } void D3D11DeviceContext::ApplyInputLayout() { auto inputLayout = m_state.ia.inputLayout.prvRef(); if (likely(inputLayout != nullptr)) { EmitCs([ cInputLayout = std::move(inputLayout) ] (DxvkContext* ctx) { cInputLayout->BindToContext(ctx); }); } else { EmitCs([] (DxvkContext* ctx) { ctx->setInputLayout(0, nullptr, 0, nullptr); }); } } void D3D11DeviceContext::ApplyPrimitiveTopology() { D3D11_PRIMITIVE_TOPOLOGY topology = m_state.ia.primitiveTopology; DxvkInputAssemblyState iaState = { }; if (topology <= D3D_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP_ADJ) { static const std::array s_iaStates = {{ { VK_PRIMITIVE_TOPOLOGY_MAX_ENUM, VK_FALSE, 0 }, { VK_PRIMITIVE_TOPOLOGY_POINT_LIST, VK_FALSE, 0 }, { VK_PRIMITIVE_TOPOLOGY_LINE_LIST, VK_FALSE, 0 }, { VK_PRIMITIVE_TOPOLOGY_LINE_STRIP, VK_TRUE, 0 }, { VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, VK_FALSE, 0 }, { VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, VK_TRUE, 0 }, { }, { }, { }, { }, // Random gap that exists for no reason { VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY, VK_FALSE, 0 }, { VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY, VK_TRUE, 0 }, { VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY, VK_FALSE, 0 }, { VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY, VK_TRUE, 0 }, }}; iaState = s_iaStates[uint32_t(topology)]; } else if (topology >= D3D11_PRIMITIVE_TOPOLOGY_1_CONTROL_POINT_PATCHLIST && topology <= D3D11_PRIMITIVE_TOPOLOGY_32_CONTROL_POINT_PATCHLIST) { // The number of control points per patch can be inferred from the enum value in D3D11 uint32_t vertexCount = uint32_t(topology - D3D11_PRIMITIVE_TOPOLOGY_1_CONTROL_POINT_PATCHLIST + 1); iaState = { VK_PRIMITIVE_TOPOLOGY_PATCH_LIST, VK_FALSE, vertexCount }; } EmitCs([iaState] (DxvkContext* ctx) { ctx->setInputAssemblyState(iaState); }); } void D3D11DeviceContext::ApplyBlendState() { auto cbState = m_state.om.cbState.prvRef(); if (unlikely(cbState == nullptr)) cbState = m_defaultBlendState.prvRef(); EmitCs([ cBlendState = std::move(cbState), cSampleMask = m_state.om.sampleMask ] (DxvkContext* ctx) { cBlendState->BindToContext(ctx, cSampleMask); }); } void D3D11DeviceContext::ApplyBlendFactor() { EmitCs([ cBlendConstants = DxvkBlendConstants { m_state.om.blendFactor[0], m_state.om.blendFactor[1], m_state.om.blendFactor[2], m_state.om.blendFactor[3] } ] (DxvkContext* ctx) { ctx->setBlendConstants(cBlendConstants); }); } void D3D11DeviceContext::ApplyDepthStencilState() { auto dsState = m_state.om.dsState.prvRef(); if (unlikely(dsState == nullptr)) dsState = m_defaultDepthStencilState.prvRef(); EmitCs([ cDepthStencilState = std::move(dsState) ] (DxvkContext* ctx) { cDepthStencilState->BindToContext(ctx); }); } void D3D11DeviceContext::ApplyStencilRef() { EmitCs([ cStencilRef = m_state.om.stencilRef ] (DxvkContext* ctx) { ctx->setStencilReference(cStencilRef); }); } void D3D11DeviceContext::ApplyRasterizerState() { auto rsState = m_state.rs.state.prvRef(); if (unlikely(rsState == nullptr)) rsState = m_defaultRasterizerState.prvRef(); EmitCs([ cRasterizerState = std::move(rsState) ] (DxvkContext* ctx) { cRasterizerState->BindToContext(ctx); }); } void D3D11DeviceContext::ApplyViewportState() { std::array viewports; std::array scissors; // The backend can't handle a viewport count of zero, // so we should at least specify one empty viewport uint32_t viewportCount = m_state.rs.numViewports; if (unlikely(!viewportCount)) { viewportCount = 1; viewports[0] = VkViewport(); scissors [0] = VkRect2D(); } // D3D11's coordinate system has its origin in the bottom left, // but the viewport coordinates are aligned to the top-left // corner so we can get away with flipping the viewport. for (uint32_t i = 0; i < m_state.rs.numViewports; i++) { const D3D11_VIEWPORT& vp = m_state.rs.viewports[i]; viewports[i] = VkViewport { vp.TopLeftX, vp.Height + vp.TopLeftY, vp.Width, -vp.Height, vp.MinDepth, vp.MaxDepth, }; } // Scissor rectangles. Vulkan does not provide an easy way // to disable the scissor test, so we'll have to set scissor // rects that are at least as large as the framebuffer. bool enableScissorTest = false; if (m_state.rs.state != nullptr) { D3D11_RASTERIZER_DESC rsDesc; m_state.rs.state->GetDesc(&rsDesc); enableScissorTest = rsDesc.ScissorEnable; } for (uint32_t i = 0; i < m_state.rs.numViewports; i++) { if (!enableScissorTest) { scissors[i] = VkRect2D { VkOffset2D { 0, 0 }, VkExtent2D { D3D11_VIEWPORT_BOUNDS_MAX, D3D11_VIEWPORT_BOUNDS_MAX } }; } else if (i >= m_state.rs.numScissors) { scissors[i] = VkRect2D { VkOffset2D { 0, 0 }, VkExtent2D { 0, 0 } }; } else { D3D11_RECT sr = m_state.rs.scissors[i]; VkOffset2D srPosA; srPosA.x = std::max(0, sr.left); srPosA.y = std::max(0, sr.top); VkOffset2D srPosB; srPosB.x = std::max(srPosA.x, sr.right); srPosB.y = std::max(srPosA.y, sr.bottom); VkExtent2D srSize; srSize.width = uint32_t(srPosB.x - srPosA.x); srSize.height = uint32_t(srPosB.y - srPosA.y); scissors[i] = VkRect2D { srPosA, srSize }; } } if (likely(viewportCount == 1)) { EmitCs([ cViewport = viewports[0], cScissor = scissors[0] ] (DxvkContext* ctx) { ctx->setViewports(1, &cViewport, &cScissor); }); } else { EmitCs([ cViewportCount = viewportCount, cViewports = viewports, cScissors = scissors ] (DxvkContext* ctx) { ctx->setViewports( cViewportCount, cViewports.data(), cScissors.data()); }); } } template void D3D11DeviceContext::BindShader( const D3D11CommonShader* pShaderModule) { // Bind the shader and the ICB at once uint32_t slotId = computeConstantBufferBinding(ShaderStage, D3D11_COMMONSHADER_CONSTANT_BUFFER_API_SLOT_COUNT); EmitCs([ cSlotId = slotId, cStage = GetShaderStage(ShaderStage), cSlice = pShaderModule != nullptr && pShaderModule->GetIcb() != nullptr ? DxvkBufferSlice(pShaderModule->GetIcb()) : DxvkBufferSlice(), cShader = pShaderModule != nullptr ? pShaderModule->GetShader() : nullptr ] (DxvkContext* ctx) { ctx->bindShader (cStage, cShader); ctx->bindResourceBuffer(cSlotId, cSlice); }); } void D3D11DeviceContext::BindFramebuffer() { DxvkRenderTargets attachments; // D3D11 doesn't have the concept of a framebuffer object, // so we'll just create a new one every time the render // target bindings are updated. Set up the attachments. for (UINT i = 0; i < m_state.om.renderTargetViews.size(); i++) { if (m_state.om.renderTargetViews[i] != nullptr) { attachments.color[i] = { m_state.om.renderTargetViews[i]->GetImageView(), m_state.om.renderTargetViews[i]->GetRenderLayout() }; } } if (m_state.om.depthStencilView != nullptr) { attachments.depth = { m_state.om.depthStencilView->GetImageView(), m_state.om.depthStencilView->GetRenderLayout() }; } // Create and bind the framebuffer object to the context EmitCs([ cAttachments = std::move(attachments) ] (DxvkContext* ctx) { ctx->bindRenderTargets(cAttachments); }); } void D3D11DeviceContext::BindDrawBuffers( D3D11Buffer* pBufferForArgs, D3D11Buffer* pBufferForCount) { EmitCs([ cArgBuffer = pBufferForArgs ? pBufferForArgs->GetBufferSlice() : DxvkBufferSlice(), cCntBuffer = pBufferForCount ? pBufferForCount->GetBufferSlice() : DxvkBufferSlice() ] (DxvkContext* ctx) { ctx->bindDrawBuffers(cArgBuffer, cCntBuffer); }); } void D3D11DeviceContext::BindVertexBuffer( UINT Slot, D3D11Buffer* pBuffer, UINT Offset, UINT Stride) { EmitCs([ cSlotId = Slot, cBufferSlice = pBuffer != nullptr ? pBuffer->GetBufferSlice(Offset) : DxvkBufferSlice(), cStride = Stride ] (DxvkContext* ctx) { ctx->bindVertexBuffer(cSlotId, cBufferSlice, cStride); }); } void D3D11DeviceContext::BindIndexBuffer( D3D11Buffer* pBuffer, UINT Offset, DXGI_FORMAT Format) { VkIndexType indexType = Format == DXGI_FORMAT_R16_UINT ? VK_INDEX_TYPE_UINT16 : VK_INDEX_TYPE_UINT32; EmitCs([ cBufferSlice = pBuffer != nullptr ? pBuffer->GetBufferSlice(Offset) : DxvkBufferSlice(), cIndexType = indexType ] (DxvkContext* ctx) { ctx->bindIndexBuffer(cBufferSlice, cIndexType); }); } void D3D11DeviceContext::BindXfbBuffer( UINT Slot, D3D11Buffer* pBuffer, UINT Offset) { DxvkBufferSlice bufferSlice; DxvkBufferSlice counterSlice; if (pBuffer != nullptr) { bufferSlice = pBuffer->GetBufferSlice(); counterSlice = pBuffer->GetSOCounter(); } EmitCs([ cSlotId = Slot, cOffset = Offset, cBufferSlice = bufferSlice, cCounterSlice = counterSlice ] (DxvkContext* ctx) { if (cCounterSlice.defined() && cOffset != ~0u) { ctx->updateBuffer( cCounterSlice.buffer(), cCounterSlice.offset(), sizeof(cOffset), &cOffset); } ctx->bindXfbBuffer(cSlotId, cBufferSlice, cCounterSlice); }); } void D3D11DeviceContext::BindConstantBuffer( UINT Slot, D3D11Buffer* pBuffer) { EmitCs([ cSlotId = Slot, cBufferSlice = pBuffer ? pBuffer->GetBufferSlice() : DxvkBufferSlice() ] (DxvkContext* ctx) { ctx->bindResourceBuffer(cSlotId, cBufferSlice); }); } void D3D11DeviceContext::BindConstantBuffer1( UINT Slot, D3D11Buffer* pBuffer, UINT Offset, UINT Length) { EmitCs([ cSlotId = Slot, cBufferSlice = Length ? pBuffer->GetBufferSlice(16 * Offset, 16 * Length) : DxvkBufferSlice() ] (DxvkContext* ctx) { ctx->bindResourceBuffer(cSlotId, cBufferSlice); }); } void D3D11DeviceContext::BindSampler( UINT Slot, D3D11SamplerState* pSampler) { EmitCs([ cSlotId = Slot, cSampler = pSampler != nullptr ? pSampler->GetDXVKSampler() : nullptr ] (DxvkContext* ctx) { ctx->bindResourceSampler(cSlotId, cSampler); }); } void D3D11DeviceContext::BindShaderResource( UINT Slot, D3D11ShaderResourceView* pResource) { EmitCs([ cSlotId = Slot, cImageView = pResource != nullptr ? pResource->GetImageView() : nullptr, cBufferView = pResource != nullptr ? pResource->GetBufferView() : nullptr ] (DxvkContext* ctx) { ctx->bindResourceView(cSlotId, cImageView, cBufferView); }); } void D3D11DeviceContext::BindUnorderedAccessView( UINT UavSlot, D3D11UnorderedAccessView* pUav, UINT CtrSlot, UINT Counter) { EmitCs([ cUavSlotId = UavSlot, cCtrSlotId = CtrSlot, cImageView = pUav != nullptr ? pUav->GetImageView() : nullptr, cBufferView = pUav != nullptr ? pUav->GetBufferView() : nullptr, cCounterSlice = pUav != nullptr ? pUav->GetCounterSlice() : DxvkBufferSlice(), cCounterValue = Counter ] (DxvkContext* ctx) { if (cCounterSlice.defined() && cCounterValue != ~0u) { ctx->updateBuffer( cCounterSlice.buffer(), cCounterSlice.offset(), sizeof(uint32_t), &cCounterValue); } ctx->bindResourceView (cUavSlotId, cImageView, cBufferView); ctx->bindResourceBuffer (cCtrSlotId, cCounterSlice); }); } void D3D11DeviceContext::DiscardBuffer( D3D11Buffer* pBuffer) { EmitCs([cBuffer = pBuffer->GetBuffer()] (DxvkContext* ctx) { ctx->discardBuffer(cBuffer); }); } void D3D11DeviceContext::DiscardTexture( D3D11CommonTexture* pTexture) { EmitCs([cImage = pTexture->GetImage()] (DxvkContext* ctx) { VkImageSubresourceRange subresources = { cImage->formatInfo()->aspectMask, 0, cImage->info().mipLevels, 0, cImage->info().numLayers }; ctx->discardImage(cImage, subresources); }); } void D3D11DeviceContext::SetDrawBuffers( ID3D11Buffer* pBufferForArgs, ID3D11Buffer* pBufferForCount) { auto argBuffer = static_cast(pBufferForArgs); auto cntBuffer = static_cast(pBufferForCount); if (m_state.id.argBuffer != argBuffer || m_state.id.cntBuffer != cntBuffer) { m_state.id.argBuffer = argBuffer; m_state.id.cntBuffer = cntBuffer; BindDrawBuffers(argBuffer, cntBuffer); } } template void D3D11DeviceContext::SetConstantBuffers( D3D11ConstantBufferBindings& Bindings, UINT StartSlot, UINT NumBuffers, ID3D11Buffer* const* ppConstantBuffers) { uint32_t slotId = computeConstantBufferBinding(ShaderStage, StartSlot); for (uint32_t i = 0; i < NumBuffers; i++) { auto newBuffer = static_cast(ppConstantBuffers[i]); UINT constantBound = 0; if (likely(newBuffer != nullptr)) constantBound = newBuffer->Desc()->ByteWidth / 16; if (Bindings[StartSlot + i].buffer != newBuffer || Bindings[StartSlot + i].constantBound != constantBound) { Bindings[StartSlot + i].buffer = newBuffer; Bindings[StartSlot + i].constantOffset = 0; Bindings[StartSlot + i].constantCount = constantBound; Bindings[StartSlot + i].constantBound = constantBound; BindConstantBuffer(slotId + i, newBuffer); } } } template void D3D11DeviceContext::SetConstantBuffers1( D3D11ConstantBufferBindings& Bindings, UINT StartSlot, UINT NumBuffers, ID3D11Buffer* const* ppConstantBuffers, const UINT* pFirstConstant, const UINT* pNumConstants) { uint32_t slotId = computeConstantBufferBinding(ShaderStage, StartSlot); for (uint32_t i = 0; i < NumBuffers; i++) { auto newBuffer = static_cast(ppConstantBuffers[i]); UINT constantOffset; UINT constantCount; UINT constantBound; if (likely(newBuffer != nullptr)) { constantBound = newBuffer->Desc()->ByteWidth / 16; if (likely(pFirstConstant && pNumConstants)) { constantOffset = pFirstConstant[i]; constantCount = pNumConstants [i]; constantBound = (constantOffset + constantCount > constantBound) ? constantBound - std::min(constantOffset, constantBound) : constantCount; } else { constantOffset = 0; constantCount = constantBound; } } else { constantOffset = 0; constantCount = 0; constantBound = 0; } bool needsUpdate = Bindings[StartSlot + i].buffer != newBuffer; if (needsUpdate) Bindings[StartSlot + i].buffer = newBuffer; needsUpdate |= Bindings[StartSlot + i].constantOffset != constantOffset || Bindings[StartSlot + i].constantCount != constantCount; if (needsUpdate) { Bindings[StartSlot + i].constantOffset = constantOffset; Bindings[StartSlot + i].constantCount = constantCount; Bindings[StartSlot + i].constantBound = constantBound; BindConstantBuffer1(slotId + i, newBuffer, constantOffset, constantBound); } } } template void D3D11DeviceContext::SetSamplers( D3D11SamplerBindings& Bindings, UINT StartSlot, UINT NumSamplers, ID3D11SamplerState* const* ppSamplers) { uint32_t slotId = computeSamplerBinding(ShaderStage, StartSlot); for (uint32_t i = 0; i < NumSamplers; i++) { auto sampler = static_cast(ppSamplers[i]); if (Bindings[StartSlot + i] != sampler) { Bindings[StartSlot + i] = sampler; BindSampler(slotId + i, sampler); } } } template void D3D11DeviceContext::SetShaderResources( D3D11ShaderResourceBindings& Bindings, UINT StartSlot, UINT NumResources, ID3D11ShaderResourceView* const* ppResources) { uint32_t slotId = computeSrvBinding(ShaderStage, StartSlot); for (uint32_t i = 0; i < NumResources; i++) { auto resView = static_cast(ppResources[i]); if (Bindings.views[StartSlot + i] != resView) { if (unlikely(resView && resView->TestHazards())) { if (TestSrvHazards(resView)) resView = nullptr; // Only set if necessary, but don't reset it on every // bind as this would be more expensive than a few // redundant checks in OMSetRenderTargets and friends. Bindings.hazardous.set(StartSlot + i, resView); } Bindings.views[StartSlot + i] = resView; BindShaderResource(slotId + i, resView); } } } void D3D11DeviceContext::GetConstantBuffers( const D3D11ConstantBufferBindings& Bindings, UINT StartSlot, UINT NumBuffers, ID3D11Buffer** ppConstantBuffers, UINT* pFirstConstant, UINT* pNumConstants) { for (uint32_t i = 0; i < NumBuffers; i++) { if (ppConstantBuffers != nullptr) ppConstantBuffers[i] = Bindings[StartSlot + i].buffer.ref(); if (pFirstConstant != nullptr) pFirstConstant[i] = Bindings[StartSlot + i].constantOffset; if (pNumConstants != nullptr) pNumConstants[i] = Bindings[StartSlot + i].constantCount; } } void D3D11DeviceContext::RestoreState() { BindFramebuffer(); BindShader (GetCommonShader(m_state.vs.shader.ptr())); BindShader (GetCommonShader(m_state.hs.shader.ptr())); BindShader (GetCommonShader(m_state.ds.shader.ptr())); BindShader (GetCommonShader(m_state.gs.shader.ptr())); BindShader (GetCommonShader(m_state.ps.shader.ptr())); BindShader (GetCommonShader(m_state.cs.shader.ptr())); ApplyInputLayout(); ApplyPrimitiveTopology(); ApplyBlendState(); ApplyBlendFactor(); ApplyDepthStencilState(); ApplyStencilRef(); ApplyRasterizerState(); ApplyViewportState(); BindDrawBuffers( m_state.id.argBuffer.ptr(), m_state.id.cntBuffer.ptr()); BindIndexBuffer( m_state.ia.indexBuffer.buffer.ptr(), m_state.ia.indexBuffer.offset, m_state.ia.indexBuffer.format); for (uint32_t i = 0; i < m_state.ia.vertexBuffers.size(); i++) { BindVertexBuffer(i, m_state.ia.vertexBuffers[i].buffer.ptr(), m_state.ia.vertexBuffers[i].offset, m_state.ia.vertexBuffers[i].stride); } for (uint32_t i = 0; i < m_state.so.targets.size(); i++) BindXfbBuffer(i, m_state.so.targets[i].buffer.ptr(), ~0u); RestoreConstantBuffers (m_state.vs.constantBuffers); RestoreConstantBuffers (m_state.hs.constantBuffers); RestoreConstantBuffers (m_state.ds.constantBuffers); RestoreConstantBuffers (m_state.gs.constantBuffers); RestoreConstantBuffers (m_state.ps.constantBuffers); RestoreConstantBuffers (m_state.cs.constantBuffers); RestoreSamplers (m_state.vs.samplers); RestoreSamplers (m_state.hs.samplers); RestoreSamplers (m_state.ds.samplers); RestoreSamplers(m_state.gs.samplers); RestoreSamplers (m_state.ps.samplers); RestoreSamplers (m_state.cs.samplers); RestoreShaderResources (m_state.vs.shaderResources); RestoreShaderResources (m_state.hs.shaderResources); RestoreShaderResources (m_state.ds.shaderResources); RestoreShaderResources (m_state.gs.shaderResources); RestoreShaderResources (m_state.ps.shaderResources); RestoreShaderResources (m_state.cs.shaderResources); RestoreUnorderedAccessViews (m_state.ps.unorderedAccessViews); RestoreUnorderedAccessViews (m_state.cs.unorderedAccessViews); } template void D3D11DeviceContext::RestoreConstantBuffers( D3D11ConstantBufferBindings& Bindings) { uint32_t slotId = computeConstantBufferBinding(Stage, 0); for (uint32_t i = 0; i < Bindings.size(); i++) { BindConstantBuffer1(slotId + i, Bindings[i].buffer.ptr(), Bindings[i].constantOffset, Bindings[i].constantBound); } } template void D3D11DeviceContext::RestoreSamplers( D3D11SamplerBindings& Bindings) { uint32_t slotId = computeSamplerBinding(Stage, 0); for (uint32_t i = 0; i < Bindings.size(); i++) BindSampler(slotId + i, Bindings[i].ptr()); } template void D3D11DeviceContext::RestoreShaderResources( D3D11ShaderResourceBindings& Bindings) { uint32_t slotId = computeSrvBinding(Stage, 0); for (uint32_t i = 0; i < Bindings.views.size(); i++) BindShaderResource(slotId + i, Bindings.views[i].ptr()); } template void D3D11DeviceContext::RestoreUnorderedAccessViews( D3D11UnorderedAccessBindings& Bindings) { uint32_t uavSlotId = computeUavBinding (Stage, 0); uint32_t ctrSlotId = computeUavCounterBinding(Stage, 0); for (uint32_t i = 0; i < Bindings.size(); i++) { BindUnorderedAccessView( uavSlotId + i, Bindings[i].ptr(), ctrSlotId + i, ~0u); } } void D3D11DeviceContext::UpdateMappedBuffer( const D3D11CommonTexture* pTexture, VkImageSubresource Subresource) { UINT SubresourceIndex = D3D11CalcSubresource( Subresource.mipLevel, Subresource.arrayLayer, pTexture->Desc()->MipLevels); Rc mappedImage = pTexture->GetImage(); Rc mappedBuffer = pTexture->GetMappedBuffer(SubresourceIndex); VkFormat packedFormat = m_parent->LookupPackedFormat( pTexture->Desc()->Format, pTexture->GetFormatMode()).Format; VkExtent3D levelExtent = mappedImage->mipLevelExtent(Subresource.mipLevel); EmitCs([ cImageBuffer = std::move(mappedBuffer), cImage = std::move(mappedImage), cSubresources = vk::makeSubresourceLayers(Subresource), cLevelExtent = levelExtent, cPackedFormat = packedFormat ] (DxvkContext* ctx) { if (cSubresources.aspectMask != (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) { ctx->copyImageToBuffer( cImageBuffer, 0, VkExtent2D { 0u, 0u }, cImage, cSubresources, VkOffset3D { 0, 0, 0 }, cLevelExtent); } else { ctx->copyDepthStencilImageToPackedBuffer( cImageBuffer, 0, cImage, cSubresources, VkOffset2D { 0, 0 }, VkExtent2D { cLevelExtent.width, cLevelExtent.height }, cPackedFormat); } }); } bool D3D11DeviceContext::TestRtvUavHazards( UINT NumRTVs, ID3D11RenderTargetView* const* ppRTVs, UINT NumUAVs, ID3D11UnorderedAccessView* const* ppUAVs) { if (NumRTVs == D3D11_KEEP_RENDER_TARGETS_AND_DEPTH_STENCIL) NumRTVs = 0; if (NumUAVs == D3D11_KEEP_UNORDERED_ACCESS_VIEWS) NumUAVs = 0; for (uint32_t i = 0; i < NumRTVs; i++) { auto rtv = static_cast(ppRTVs[i]); if (!rtv) continue; for (uint32_t j = 0; j < i; j++) { if (CheckViewOverlap(rtv, static_cast(ppRTVs[j]))) return true; } if (rtv->HasBindFlag(D3D11_BIND_UNORDERED_ACCESS)) { for (uint32_t j = 0; j < NumUAVs; j++) { if (CheckViewOverlap(rtv, static_cast(ppUAVs[j]))) return true; } } } for (uint32_t i = 0; i < NumUAVs; i++) { auto uav = static_cast(ppUAVs[i]); if (!uav) continue; for (uint32_t j = 0; j < i; j++) { if (CheckViewOverlap(uav, static_cast(ppUAVs[j]))) return true; } } return false; } template bool D3D11DeviceContext::TestSrvHazards( D3D11ShaderResourceView* pView) { bool hazard = false; if (ShaderStage == DxbcProgramType::ComputeShader) { int32_t uav = m_state.cs.uavMask.findNext(0); while (uav >= 0 && !hazard) { hazard = CheckViewOverlap(pView, m_state.cs.unorderedAccessViews[uav].ptr()); uav = m_state.cs.uavMask.findNext(uav + 1); } } else { hazard = CheckViewOverlap(pView, m_state.om.depthStencilView.ptr()); for (uint32_t i = 0; !hazard && i < m_state.om.maxRtv; i++) hazard = CheckViewOverlap(pView, m_state.om.renderTargetViews[i].ptr()); for (uint32_t i = 0; !hazard && i < m_state.om.maxUav; i++) hazard = CheckViewOverlap(pView, m_state.ps.unorderedAccessViews[i].ptr()); } return hazard; } template void D3D11DeviceContext::ResolveSrvHazards( T* pView, D3D11ShaderResourceBindings& Bindings) { uint32_t slotId = computeSrvBinding(ShaderStage, 0); int32_t srvId = Bindings.hazardous.findNext(0); while (srvId >= 0) { auto srv = Bindings.views[srvId].ptr(); if (likely(srv && srv->TestHazards())) { bool hazard = CheckViewOverlap(pView, srv); if (unlikely(hazard)) { Bindings.views[srvId] = nullptr; Bindings.hazardous.clr(srvId); BindShaderResource(slotId + srvId, nullptr); } } else { // Avoid further redundant iterations Bindings.hazardous.clr(srvId); } srvId = Bindings.hazardous.findNext(srvId + 1); } } template void D3D11DeviceContext::ResolveCsSrvHazards( T* pView) { if (!pView) return; ResolveSrvHazards (pView, m_state.cs.shaderResources); } template void D3D11DeviceContext::ResolveOmSrvHazards( T* pView) { if (!pView) return; ResolveSrvHazards (pView, m_state.vs.shaderResources); ResolveSrvHazards (pView, m_state.hs.shaderResources); ResolveSrvHazards (pView, m_state.ds.shaderResources); ResolveSrvHazards (pView, m_state.gs.shaderResources); ResolveSrvHazards (pView, m_state.ps.shaderResources); } bool D3D11DeviceContext::ResolveOmRtvHazards( D3D11UnorderedAccessView* pView) { if (!pView || !pView->HasBindFlag(D3D11_BIND_RENDER_TARGET)) return false; bool hazard = false; if (CheckViewOverlap(pView, m_state.om.depthStencilView.ptr())) { m_state.om.depthStencilView = nullptr; hazard = true; } for (uint32_t i = 0; i < m_state.om.maxRtv; i++) { if (CheckViewOverlap(pView, m_state.om.renderTargetViews[i].ptr())) { m_state.om.renderTargetViews[i] = nullptr; hazard = true; } } return hazard; } void D3D11DeviceContext::ResolveOmUavHazards( D3D11RenderTargetView* pView) { if (!pView || !pView->HasBindFlag(D3D11_BIND_UNORDERED_ACCESS)) return; uint32_t uavSlotId = computeUavBinding (DxbcProgramType::PixelShader, 0); uint32_t ctrSlotId = computeUavCounterBinding(DxbcProgramType::PixelShader, 0); for (uint32_t i = 0; i < m_state.om.maxUav; i++) { if (CheckViewOverlap(pView, m_state.ps.unorderedAccessViews[i].ptr())) { m_state.ps.unorderedAccessViews[i] = nullptr; BindUnorderedAccessView( uavSlotId + i, nullptr, ctrSlotId + i, ~0u); } } } bool D3D11DeviceContext::ValidateRenderTargets( UINT NumViews, ID3D11RenderTargetView* const* ppRenderTargetViews, ID3D11DepthStencilView* pDepthStencilView) { Rc refView; if (pDepthStencilView != nullptr) { refView = static_cast( pDepthStencilView)->GetImageView(); } for (uint32_t i = 0; i < NumViews; i++) { if (ppRenderTargetViews[i] != nullptr) { auto curView = static_cast( ppRenderTargetViews[i])->GetImageView(); if (refView != nullptr) { // Render target views must all have the same // size, sample count, layer count, and type if (curView->info().type != refView->info().type || curView->info().numLayers != refView->info().numLayers) return false; if (curView->imageInfo().sampleCount != refView->imageInfo().sampleCount) return false; } else { // Set reference view. All remaining views // must be compatible to the reference view. refView = curView; } } } return true; } VkClearValue D3D11DeviceContext::ConvertColorValue( const FLOAT Color[4], const DxvkFormatInfo* pFormatInfo) { VkClearValue result; if (pFormatInfo->aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) { for (uint32_t i = 0; i < 4; i++) { if (pFormatInfo->flags.test(DxvkFormatFlag::SampledUInt)) result.color.uint32[i] = uint32_t(std::max(0.0f, Color[i])); else if (pFormatInfo->flags.test(DxvkFormatFlag::SampledSInt)) result.color.int32[i] = int32_t(Color[i]); else result.color.float32[i] = Color[i]; } } else { result.depthStencil.depth = Color[0]; result.depthStencil.stencil = 0; } return result; } DxvkDataSlice D3D11DeviceContext::AllocUpdateBufferSlice(size_t Size) { constexpr size_t UpdateBufferSize = 16 * 1024 * 1024; if (Size >= UpdateBufferSize) { Rc buffer = new DxvkDataBuffer(Size); return buffer->alloc(Size); } else { if (m_updateBuffer == nullptr) m_updateBuffer = new DxvkDataBuffer(UpdateBufferSize); DxvkDataSlice slice = m_updateBuffer->alloc(Size); if (slice.ptr() == nullptr) { m_updateBuffer = new DxvkDataBuffer(UpdateBufferSize); slice = m_updateBuffer->alloc(Size); } return slice; } } DxvkCsChunkRef D3D11DeviceContext::AllocCsChunk() { return m_parent->AllocCsChunk(m_csFlags); } }