#include "dxbc_compiler.h" namespace dxvk { constexpr uint32_t PerVertex_Position = 0; constexpr uint32_t PerVertex_PointSize = 1; constexpr uint32_t PerVertex_CullDist = 2; constexpr uint32_t PerVertex_ClipDist = 3; DxbcCompiler::DxbcCompiler( const DxbcProgramVersion& version, const Rc& isgn, const Rc& osgn) : m_version (version), m_isgn (isgn), m_osgn (osgn) { // Declare an entry point ID. We'll need it during the // initialization phase where the execution mode is set. m_entryPointId = m_module.allocateId(); // Set the memory model. This is the same for all shaders. m_module.setMemoryModel( spv::AddressingModelLogical, spv::MemoryModelGLSL450); // Make sure our interface registers are clear for (uint32_t i = 0; i < DxbcMaxInterfaceRegs; i++) { m_ps.oTypes.at(i).ctype = DxbcScalarType::Float32; m_ps.oTypes.at(i).ccount = 0; m_vRegs.at(i) = 0; m_oRegs.at(i) = 0; } // Initialize the shader module with capabilities // etc. Each shader type has its own peculiarities. switch (m_version.type()) { case DxbcProgramType::VertexShader: this->emitVsInit(); break; case DxbcProgramType::GeometryShader: this->emitGsInit(); break; case DxbcProgramType::PixelShader: this->emitPsInit(); break; default: throw DxvkError("DxbcCompiler: Unsupported program type"); } } DxbcCompiler::~DxbcCompiler() { } void DxbcCompiler::processInstruction(const DxbcShaderInstruction& ins) { switch (ins.opClass) { case DxbcInstClass::Declaration: return this->emitDcl(ins); case DxbcInstClass::ControlFlow: return this->emitControlFlow(ins); case DxbcInstClass::GeometryEmit: return this->emitGeometryEmit(ins); case DxbcInstClass::TextureSample: return this->emitSample(ins); case DxbcInstClass::VectorAlu: return this->emitVectorAlu(ins); case DxbcInstClass::VectorCmov: return this->emitVectorCmov(ins); case DxbcInstClass::VectorCmp: return this->emitVectorCmp(ins); case DxbcInstClass::VectorDot: return this->emitVectorDot(ins); case DxbcInstClass::VectorIdiv: return this->emitVectorIdiv(ins); case DxbcInstClass::VectorImul: return this->emitVectorImul(ins); case DxbcInstClass::VectorSinCos: return this->emitVectorSinCos(ins); default: Logger::warn( str::format("DxbcCompiler: Unhandled opcode class: ", ins.op)); } } Rc DxbcCompiler::finalize() { // Define the actual 'main' function of the shader m_module.functionBegin( m_module.defVoidType(), m_entryPointId, m_module.defFunctionType( m_module.defVoidType(), 0, nullptr), spv::FunctionControlMaskNone); m_module.opLabel(m_module.allocateId()); // Depending on the shader type, this will prepare // input registers, call various shader functions // and write back the output registers. switch (m_version.type()) { case DxbcProgramType::VertexShader: this->emitVsFinalize(); break; case DxbcProgramType::GeometryShader: this->emitGsFinalize(); break; case DxbcProgramType::PixelShader: this->emitPsFinalize(); break; default: throw DxvkError("DxbcCompiler: Unsupported program type"); } // End main function m_module.opReturn(); m_module.functionEnd(); // Declare the entry point, we now have all the // information we need, including the interfaces m_module.addEntryPoint(m_entryPointId, m_version.executionModel(), "main", m_entryPointInterfaces.size(), m_entryPointInterfaces.data()); m_module.setDebugName(m_entryPointId, "main"); // Create the shader module object return new DxvkShader( m_version.shaderStage(), m_resourceSlots.size(), m_resourceSlots.data(), m_module.compile()); } void DxbcCompiler::emitDcl(const DxbcShaderInstruction& ins) { switch (ins.op) { case DxbcOpcode::DclGlobalFlags: return this->emitDclGlobalFlags(ins); case DxbcOpcode::DclTemps: return this->emitDclTemps(ins); case DxbcOpcode::DclInput: case DxbcOpcode::DclInputSgv: case DxbcOpcode::DclInputSiv: case DxbcOpcode::DclInputPs: case DxbcOpcode::DclInputPsSgv: case DxbcOpcode::DclInputPsSiv: case DxbcOpcode::DclOutput: case DxbcOpcode::DclOutputSgv: case DxbcOpcode::DclOutputSiv: return this->emitDclInterfaceReg(ins); case DxbcOpcode::DclConstantBuffer: return this->emitDclConstantBuffer(ins); case DxbcOpcode::DclSampler: return this->emitDclSampler(ins); case DxbcOpcode::DclResource: return this->emitDclResource(ins); case DxbcOpcode::DclGsInputPrimitive: return this->emitDclGsInputPrimitive(ins); case DxbcOpcode::DclGsOutputPrimitiveTopology: return this->emitDclGsOutputTopology(ins); case DxbcOpcode::DclMaxOutputVertexCount: return this->emitDclMaxOutputVertexCount(ins); default: Logger::warn( str::format("DxbcCompiler: Unhandled opcode: ", ins.op)); } } void DxbcCompiler::emitDclGlobalFlags(const DxbcShaderInstruction& ins) { // TODO implement properly } void DxbcCompiler::emitDclTemps(const DxbcShaderInstruction& ins) { // dcl_temps has one operand: // (imm0) Number of temp registers const uint32_t oldCount = m_rRegs.size(); const uint32_t newCount = ins.imm[0].u32; if (newCount > oldCount) { m_rRegs.resize(newCount); DxbcRegisterInfo info; info.type.ctype = DxbcScalarType::Float32; info.type.ccount = 4; info.type.alength = 0; info.sclass = spv::StorageClassPrivate; for (uint32_t i = oldCount; i < newCount; i++) { const uint32_t varId = this->emitNewVariable(info); m_module.setDebugName(varId, str::format("r", i).c_str()); m_rRegs.at(i) = varId; } } } void DxbcCompiler::emitDclInterfaceReg(const DxbcShaderInstruction& ins) { // dcl_input and dcl_output instructions // have the following operands: // (dst0) The register to declare // (imm0) The system value (optional) uint32_t regDim = 0; uint32_t regIdx = 0; // In the vertex and fragment shader stage, the // operand indices will have the following format: // (0) Register index // // In other stages, the input and output registers // may be declared as arrays of a fixed size: // (0) Array length // (1) Register index if (ins.dst[0].idxDim == 2) { regDim = ins.dst[0].idx[0].offset; regIdx = ins.dst[0].idx[1].offset; } else if (ins.dst[0].idxDim == 1) { regIdx = ins.dst[0].idx[0].offset; } else { Logger::err(str::format( "DxbcCompiler: ", ins.op, ": Invalid index dimension")); return; } // This declaration may map an output register to a system // value. If that is the case, the system value type will // be stored in the second operand. const bool hasSv = ins.op == DxbcOpcode::DclInputSgv || ins.op == DxbcOpcode::DclInputSiv || ins.op == DxbcOpcode::DclInputPsSgv || ins.op == DxbcOpcode::DclInputPsSiv || ins.op == DxbcOpcode::DclOutputSgv || ins.op == DxbcOpcode::DclOutputSiv; DxbcSystemValue sv = DxbcSystemValue::None; if (hasSv) sv = static_cast(ins.imm[0].u32); // In the pixel shader, inputs are declared with an // interpolation mode that is part of the op token. const bool hasInterpolationMode = ins.op == DxbcOpcode::DclInputPs || ins.op == DxbcOpcode::DclInputPsSiv; DxbcInterpolationMode im = DxbcInterpolationMode::Undefined; if (hasInterpolationMode) im = ins.controls.interpolation; // Declare the actual input/output variable switch (ins.op) { case DxbcOpcode::DclInput: case DxbcOpcode::DclInputSgv: case DxbcOpcode::DclInputSiv: case DxbcOpcode::DclInputPs: case DxbcOpcode::DclInputPsSgv: case DxbcOpcode::DclInputPsSiv: this->emitDclInput(regIdx, regDim, ins.dst[0].mask, sv, im); break; case DxbcOpcode::DclOutput: case DxbcOpcode::DclOutputSgv: case DxbcOpcode::DclOutputSiv: this->emitDclOutput(regIdx, regDim, ins.dst[0].mask, sv, im); break; default: Logger::err(str::format( "DxbcCompiler: Unexpected opcode: ", ins.op)); } } void DxbcCompiler::emitDclInput( uint32_t regIdx, uint32_t regDim, DxbcRegMask regMask, DxbcSystemValue sv, DxbcInterpolationMode im) { // Avoid declaring the same variable multiple times. // This may happen when multiple system values are // mapped to different parts of the same register. if (m_vRegs.at(regIdx) == 0) { DxbcRegisterInfo info; info.type.ctype = DxbcScalarType::Float32; info.type.ccount = 4; info.type.alength = regDim; info.sclass = spv::StorageClassInput; uint32_t varId = this->emitNewVariable(info); m_module.decorateLocation(varId, regIdx); m_module.setDebugName(varId, str::format("v", regIdx).c_str()); m_entryPointInterfaces.push_back(varId); m_vRegs.at(regIdx) = varId; // Interpolation mode, used in pixel shaders if (im == DxbcInterpolationMode::Constant) m_module.decorate(varId, spv::DecorationFlat); if (im == DxbcInterpolationMode::LinearCentroid || im == DxbcInterpolationMode::LinearNoPerspectiveCentroid) m_module.decorate(varId, spv::DecorationCentroid); if (im == DxbcInterpolationMode::LinearNoPerspective || im == DxbcInterpolationMode::LinearNoPerspectiveCentroid || im == DxbcInterpolationMode::LinearNoPerspectiveSample) m_module.decorate(varId, spv::DecorationNoPerspective); if (im == DxbcInterpolationMode::LinearSample || im == DxbcInterpolationMode::LinearNoPerspectiveSample) m_module.decorate(varId, spv::DecorationSample); } // Add a new system value mapping if needed // TODO declare SV if necessary if (sv != DxbcSystemValue::None) m_vMappings.push_back({ regIdx, regMask, sv }); } void DxbcCompiler::emitDclOutput( uint32_t regIdx, uint32_t regDim, DxbcRegMask regMask, DxbcSystemValue sv, DxbcInterpolationMode im) { // Avoid declaring the same variable multiple times. // This may happen when multiple system values are // mapped to different parts of the same register. if (m_oRegs.at(regIdx) == 0) { DxbcRegisterInfo info; info.type.ctype = DxbcScalarType::Float32; info.type.ccount = 4; info.type.alength = regDim; info.sclass = spv::StorageClassOutput; const uint32_t varId = this->emitNewVariable(info); m_module.decorateLocation(varId, regIdx); m_module.setDebugName(varId, str::format("o", regIdx).c_str()); m_entryPointInterfaces.push_back(varId); m_oRegs.at(regIdx) = varId; } // Add a new system value mapping if needed // TODO declare SV if necessary if (sv != DxbcSystemValue::None) m_oMappings.push_back({ regIdx, regMask, sv }); } void DxbcCompiler::emitDclConstantBuffer(const DxbcShaderInstruction& ins) { // dcl_constant_buffer has one operand with two indices: // (0) Constant buffer register ID (cb#) // (1) Number of constants in the buffer const uint32_t bufferId = ins.dst[0].idx[0].offset; const uint32_t elementCount = ins.dst[0].idx[1].offset; // Uniform buffer data is stored as a fixed-size array // of 4x32-bit vectors. SPIR-V requires explicit strides. const uint32_t arrayType = m_module.defArrayTypeUnique( getVectorTypeId({ DxbcScalarType::Float32, 4 }), m_module.constu32(elementCount)); m_module.decorateArrayStride(arrayType, 16); // SPIR-V requires us to put that array into a // struct and decorate that struct as a block. const uint32_t structType = m_module.defStructTypeUnique(1, &arrayType); m_module.memberDecorateOffset(structType, 0, 0); m_module.decorateBlock(structType); // Variable that we'll use to access the buffer const uint32_t varId = m_module.newVar( m_module.defPointerType(structType, spv::StorageClassUniform), spv::StorageClassUniform); m_module.setDebugName(varId, str::format("cb", bufferId).c_str()); m_constantBuffers.at(bufferId).varId = varId; m_constantBuffers.at(bufferId).size = elementCount; // Compute the DXVK binding slot index for the buffer. // D3D11 needs to bind the actual buffers to this slot. const uint32_t bindingId = computeResourceSlotId( m_version.type(), DxbcBindingType::ConstantBuffer, bufferId); m_module.decorateDescriptorSet(varId, 0); m_module.decorateBinding(varId, bindingId); // Store descriptor info for the shader interface DxvkResourceSlot resource; resource.slot = bindingId; resource.type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; m_resourceSlots.push_back(resource); } void DxbcCompiler::emitDclSampler(const DxbcShaderInstruction& ins) { // dclSampler takes one operand: // (dst0) The sampler register to declare // TODO implement sampler mode (default / comparison / mono) const uint32_t samplerId = ins.dst[0].idx[0].offset; // The sampler type is opaque, but we still have to // define a pointer and a variable in oder to use it const uint32_t samplerType = m_module.defSamplerType(); const uint32_t samplerPtrType = m_module.defPointerType( samplerType, spv::StorageClassUniformConstant); // Define the sampler variable const uint32_t varId = m_module.newVar(samplerPtrType, spv::StorageClassUniformConstant); m_module.setDebugName(varId, str::format("s", samplerId).c_str()); m_samplers.at(samplerId).varId = varId; m_samplers.at(samplerId).typeId = samplerType; // Compute binding slot index for the sampler const uint32_t bindingId = computeResourceSlotId( m_version.type(), DxbcBindingType::ImageSampler, samplerId); m_module.decorateDescriptorSet(varId, 0); m_module.decorateBinding(varId, bindingId); // Store descriptor info for the shader interface DxvkResourceSlot resource; resource.slot = bindingId; resource.type = VK_DESCRIPTOR_TYPE_SAMPLER; m_resourceSlots.push_back(resource); } void DxbcCompiler::emitDclResource(const DxbcShaderInstruction& ins) { // dclResource takes two operands: // (dst0) The resource register ID // (imm0) The resource return type const uint32_t registerId = ins.dst[0].idx[0].offset; // Defines the type of the resource (texture2D, ...) const DxbcResourceDim resourceType = ins.controls.resourceDim; // Defines the type of a read operation. DXBC has the ability // to define four different types whereas SPIR-V only allows // one, but in practice this should not be much of a problem. auto xType = static_cast( bit::extract(ins.imm[0].u32, 0, 3)); auto yType = static_cast( bit::extract(ins.imm[0].u32, 4, 7)); auto zType = static_cast( bit::extract(ins.imm[0].u32, 8, 11)); auto wType = static_cast( bit::extract(ins.imm[0].u32, 12, 15)); if ((xType != yType) || (xType != zType) || (xType != wType)) Logger::warn("DxbcCompiler: dcl_resource: Ignoring resource return types"); // Declare the actual sampled type uint32_t sampledTypeId = 0; switch (xType) { case DxbcResourceReturnType::Float: sampledTypeId = m_module.defFloatType(32); break; case DxbcResourceReturnType::Sint: sampledTypeId = m_module.defIntType (32, 1); break; case DxbcResourceReturnType::Uint: sampledTypeId = m_module.defIntType (32, 0); break; default: throw DxvkError(str::format("DxbcCompiler: Invalid sampled type: ", xType)); } // Declare the resource type uint32_t textureTypeId = 0; switch (resourceType) { case DxbcResourceDim::Texture1D: textureTypeId = m_module.defImageType( sampledTypeId, spv::Dim1D, 0, 0, 0, 1, spv::ImageFormatUnknown); break; case DxbcResourceDim::Texture1DArr: textureTypeId = m_module.defImageType( sampledTypeId, spv::Dim1D, 0, 1, 0, 1, spv::ImageFormatUnknown); break; case DxbcResourceDim::Texture2D: textureTypeId = m_module.defImageType( sampledTypeId, spv::Dim2D, 0, 0, 0, 1, spv::ImageFormatUnknown); break; case DxbcResourceDim::Texture2DArr: textureTypeId = m_module.defImageType( sampledTypeId, spv::Dim2D, 0, 1, 0, 1, spv::ImageFormatUnknown); break; case DxbcResourceDim::Texture3D: textureTypeId = m_module.defImageType( sampledTypeId, spv::Dim3D, 0, 0, 0, 1, spv::ImageFormatUnknown); break; case DxbcResourceDim::TextureCube: textureTypeId = m_module.defImageType( sampledTypeId, spv::DimCube, 0, 0, 0, 1, spv::ImageFormatUnknown); break; case DxbcResourceDim::TextureCubeArr: textureTypeId = m_module.defImageType( sampledTypeId, spv::DimCube, 0, 1, 0, 1, spv::ImageFormatUnknown); break; default: throw DxvkError(str::format("DxbcCompiler: Unsupported resource type: ", resourceType)); } const uint32_t resourcePtrType = m_module.defPointerType( textureTypeId, spv::StorageClassUniformConstant); const uint32_t varId = m_module.newVar(resourcePtrType, spv::StorageClassUniformConstant); m_module.setDebugName(varId, str::format("t", registerId).c_str()); m_textures.at(registerId).varId = varId; m_textures.at(registerId).sampledTypeId = sampledTypeId; m_textures.at(registerId).textureTypeId = textureTypeId; // Compute the DXVK binding slot index for the resource. // D3D11 needs to bind the actual resource to this slot. const uint32_t bindingId = computeResourceSlotId( m_version.type(), DxbcBindingType::ShaderResource, registerId); m_module.decorateDescriptorSet(varId, 0); m_module.decorateBinding(varId, bindingId); // Store descriptor info for the shader interface DxvkResourceSlot resource; resource.slot = bindingId; resource.type = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE; m_resourceSlots.push_back(resource); } void DxbcCompiler::emitDclGsInputPrimitive(const DxbcShaderInstruction& ins) { // The input primitive type is stored within in the // control bits of the opcode token. In SPIR-V, we // have to define an execution mode. const spv::ExecutionMode mode = [&] { switch (ins.controls.primitive) { case DxbcPrimitive::Point: return spv::ExecutionModeInputPoints; case DxbcPrimitive::Line: return spv::ExecutionModeInputLines; case DxbcPrimitive::Triangle: return spv::ExecutionModeTriangles; case DxbcPrimitive::LineAdj: return spv::ExecutionModeInputLinesAdjacency; case DxbcPrimitive::TriangleAdj: return spv::ExecutionModeInputTrianglesAdjacency; default: throw DxvkError("DxbcCompiler: Unsupported primitive type"); } }(); m_module.setExecutionMode(m_entryPointId, mode); } void DxbcCompiler::emitDclGsOutputTopology(const DxbcShaderInstruction& ins) { // The input primitive topology is stored within in the // control bits of the opcode token. In SPIR-V, we have // to define an execution mode. const spv::ExecutionMode mode = [&] { switch (ins.controls.primitiveTopology) { case DxbcPrimitiveTopology::PointList: return spv::ExecutionModeOutputPoints; case DxbcPrimitiveTopology::LineStrip: return spv::ExecutionModeOutputLineStrip; case DxbcPrimitiveTopology::TriangleStrip: return spv::ExecutionModeOutputTriangleStrip; default: throw DxvkError("DxbcCompiler: Unsupported primitive topology"); } }(); m_module.setExecutionMode(m_entryPointId, mode); } void DxbcCompiler::emitDclMaxOutputVertexCount(const DxbcShaderInstruction& ins) { // dcl_max_output_vertex_count has one operand: // (imm0) The maximum number of vertices m_gs.outputVertexCount = ins.imm[0].u32; m_module.setOutputVertices(m_entryPointId, m_gs.outputVertexCount); } void DxbcCompiler::emitVectorAlu(const DxbcShaderInstruction& ins) { std::array src; for (uint32_t i = 0; i < ins.srcCount; i++) src.at(i) = emitRegisterLoad(ins.src[i], ins.dst[0].mask); DxbcRegisterValue dst; dst.type.ctype = ins.dst[0].dataType; dst.type.ccount = ins.dst[0].mask.setCount(); const uint32_t typeId = getVectorTypeId(dst.type); switch (ins.op) { ///////////////////// // Move instructions case DxbcOpcode::Mov: dst.id = src.at(0).id; break; ///////////////////////////////////// // ALU operations on float32 numbers case DxbcOpcode::Add: dst.id = m_module.opFAdd(typeId, src.at(0).id, src.at(1).id); break; case DxbcOpcode::Div: dst.id = m_module.opFDiv(typeId, src.at(0).id, src.at(1).id); break; case DxbcOpcode::Exp: dst.id = m_module.opExp2( typeId, src.at(0).id); break; case DxbcOpcode::Log: dst.id = m_module.opLog2( typeId, src.at(0).id); break; case DxbcOpcode::Mad: dst.id = m_module.opFFma(typeId, src.at(0).id, src.at(1).id, src.at(2).id); break; case DxbcOpcode::Max: dst.id = m_module.opFMax(typeId, src.at(0).id, src.at(1).id); break; case DxbcOpcode::Min: dst.id = m_module.opFMin(typeId, src.at(0).id, src.at(1).id); break; case DxbcOpcode::Mul: dst.id = m_module.opFMul(typeId, src.at(0).id, src.at(1).id); break; case DxbcOpcode::Sqrt: dst.id = m_module.opSqrt( typeId, src.at(0).id); break; case DxbcOpcode::Rsq: dst.id = m_module.opInverseSqrt( typeId, src.at(0).id); break; ///////////////////////////////////// // ALU operations on signed integers case DxbcOpcode::IAdd: dst.id = m_module.opIAdd(typeId, src.at(0).id, src.at(1).id); break; case DxbcOpcode::IMad: dst.id = m_module.opIAdd(typeId, m_module.opIMul(typeId, src.at(0).id, src.at(1).id), src.at(2).id); break; case DxbcOpcode::IMax: dst.id = m_module.opSMax(typeId, src.at(0).id, src.at(1).id); break; case DxbcOpcode::IMin: dst.id = m_module.opSMin(typeId, src.at(0).id, src.at(1).id); break; case DxbcOpcode::INeg: dst.id = m_module.opSNegate( typeId, src.at(0).id); break; /////////////////////////////////////// // Bit operations on unsigned integers case DxbcOpcode::And: dst.id = m_module.opBitwiseAnd(typeId, src.at(0).id, src.at(1).id); break; case DxbcOpcode::Not: dst.id = m_module.opNot( typeId, src.at(0).id); break; case DxbcOpcode::Or: dst.id = m_module.opBitwiseOr(typeId, src.at(0).id, src.at(1).id); break; case DxbcOpcode::Xor: dst.id = m_module.opBitwiseXor(typeId, src.at(0).id, src.at(1).id); break; default: Logger::warn(str::format( "DxbcCompiler: Unhandled instruction: ", ins.op)); return; } // Store computed value dst = emitDstOperandModifiers(dst, ins.modifiers); emitRegisterStore(ins.dst[0], dst); } void DxbcCompiler::emitVectorCmov(const DxbcShaderInstruction& ins) { // movc has four operands: // (dst0) The destination register // (src0) The condition vector // (src0) Vector to select from if the condition is not 0 // (src0) Vector to select from if the condition is 0 const DxbcRegisterValue condition = emitRegisterLoad(ins.src[0], ins.dst[0].mask); const DxbcRegisterValue selectTrue = emitRegisterLoad(ins.src[1], ins.dst[0].mask); const DxbcRegisterValue selectFalse = emitRegisterLoad(ins.src[2], ins.dst[0].mask); const uint32_t componentCount = ins.dst[0].mask.setCount(); // We'll compare against a vector of zeroes to generate a // boolean vector, which in turn will be used by OpSelect uint32_t zeroType = m_module.defIntType(32, 0); uint32_t boolType = m_module.defBoolType(); uint32_t zero = m_module.constu32(0); if (componentCount > 1) { zeroType = m_module.defVectorType(zeroType, componentCount); boolType = m_module.defVectorType(boolType, componentCount); const std::array zeroVec = { zero, zero, zero, zero }; zero = m_module.constComposite(zeroType, componentCount, zeroVec.data()); } // Use the component mask to select the vector components DxbcRegisterValue result; result.type.ctype = ins.dst[0].dataType; result.type.ccount = componentCount; result.id = m_module.opSelect( getVectorTypeId(result.type), m_module.opINotEqual(boolType, condition.id, zero), selectTrue.id, selectFalse.id); // Apply result modifiers to floating-point results result = emitDstOperandModifiers(result, ins.modifiers); emitRegisterStore(ins.dst[0], result); } void DxbcCompiler::emitVectorCmp(const DxbcShaderInstruction& ins) { // Compare instructions have three operands: // (dst0) The destination register // (src0) The first vector to compare // (src1) The second vector to compare const std::array src = { emitRegisterLoad(ins.src[0], ins.dst[0].mask), emitRegisterLoad(ins.src[1], ins.dst[0].mask), }; const uint32_t componentCount = ins.dst[0].mask.setCount(); // Condition, which is a boolean vector used // to select between the ~0u and 0u vectors. uint32_t condition = 0; uint32_t conditionType = m_module.defBoolType(); if (componentCount > 1) conditionType = m_module.defVectorType(conditionType, componentCount); switch (ins.op) { case DxbcOpcode::Eq: condition = m_module.opFOrdEqual( conditionType, src.at(0).id, src.at(1).id); break; case DxbcOpcode::Ge: condition = m_module.opFOrdGreaterThanEqual( conditionType, src.at(0).id, src.at(1).id); break; case DxbcOpcode::Lt: condition = m_module.opFOrdLessThan( conditionType, src.at(0).id, src.at(1).id); break; case DxbcOpcode::Ne: condition = m_module.opFOrdNotEqual( conditionType, src.at(0).id, src.at(1).id); break; case DxbcOpcode::IEq: condition = m_module.opIEqual( conditionType, src.at(0).id, src.at(1).id); break; case DxbcOpcode::IGe: condition = m_module.opSGreaterThanEqual( conditionType, src.at(0).id, src.at(1).id); break; case DxbcOpcode::ILt: condition = m_module.opSLessThan( conditionType, src.at(0).id, src.at(1).id); break; case DxbcOpcode::INe: condition = m_module.opINotEqual( conditionType, src.at(0).id, src.at(1).id); break; default: Logger::warn(str::format( "DxbcCompiler: Unhandled instruction: ", ins.op)); return; } // Generate constant vectors for selection uint32_t sFalse = m_module.constu32( 0u); uint32_t sTrue = m_module.constu32(~0u); DxbcRegisterValue result; result.type.ctype = DxbcScalarType::Uint32; result.type.ccount = componentCount; const uint32_t typeId = getVectorTypeId(result.type); if (componentCount > 1) { const std::array vFalse = { sFalse, sFalse, sFalse, sFalse }; const std::array vTrue = { sTrue, sTrue, sTrue, sTrue }; sFalse = m_module.constComposite(typeId, componentCount, vFalse.data()); sTrue = m_module.constComposite(typeId, componentCount, vTrue .data()); } // Perform component-wise mask selection // based on the condition evaluated above. result.id = m_module.opSelect( typeId, condition, sTrue, sFalse); emitRegisterStore(ins.dst[0], result); } void DxbcCompiler::emitVectorDot(const DxbcShaderInstruction& ins) { const DxbcRegMask srcMask(true, ins.op >= DxbcOpcode::Dp2, ins.op >= DxbcOpcode::Dp3, ins.op >= DxbcOpcode::Dp4); const std::array src = { emitRegisterLoad(ins.src[0], srcMask), emitRegisterLoad(ins.src[1], srcMask), }; DxbcRegisterValue dst; dst.type.ctype = ins.dst[0].dataType; dst.type.ccount = 1; dst.id = m_module.opDot( getVectorTypeId(dst.type), src.at(0).id, src.at(1).id); dst = emitDstOperandModifiers(dst, ins.modifiers); emitRegisterStore(ins.dst[0], dst); } void DxbcCompiler::emitVectorIdiv(const DxbcShaderInstruction& ins) { // udiv has four operands: // (dst0) Quotient destination register // (dst1) Remainder destination register // (src0) The first vector to compare // (src1) The second vector to compare if (ins.dst[0].type == DxbcOperandType::Null && ins.dst[1].type == DxbcOperandType::Null) return; // FIXME support this if applications require it if (ins.dst[0].type != DxbcOperandType::Null && ins.dst[1].type != DxbcOperandType::Null && ins.dst[0].mask != ins.dst[1].mask) { Logger::warn("DxbcCompiler: Umul with different destination masks not supported"); return; } // Load source operands as integers with the // mask of one non-NULL destination operand const DxbcRegMask srcMask = ins.dst[0].type != DxbcOperandType::Null ? ins.dst[0].mask : ins.dst[1].mask; const std::array src = { emitRegisterLoad(ins.src[0], srcMask), emitRegisterLoad(ins.src[1], srcMask), }; // Compute results only if the destination // operands are not NULL. if (ins.dst[0].type != DxbcOperandType::Null) { DxbcRegisterValue quotient; quotient.type.ctype = ins.dst[0].dataType; quotient.type.ccount = ins.dst[0].mask.setCount(); quotient.id = m_module.opUDiv( getVectorTypeId(quotient.type), src.at(0).id, src.at(1).id); quotient = emitDstOperandModifiers(quotient, ins.modifiers); emitRegisterStore(ins.dst[0], quotient); } if (ins.dst[1].type != DxbcOperandType::Null) { DxbcRegisterValue remainder; remainder.type.ctype = ins.dst[1].dataType; remainder.type.ccount = ins.dst[1].mask.setCount(); remainder.id = m_module.opUMod( getVectorTypeId(remainder.type), src.at(0).id, src.at(1).id); remainder = emitDstOperandModifiers(remainder, ins.modifiers); emitRegisterStore(ins.dst[1], remainder); } } void DxbcCompiler::emitVectorImul(const DxbcShaderInstruction& ins) { // imul and umul have four operands: // (dst0) High destination register // (dst1) Low destination register // (src0) The first vector to compare // (src1) The second vector to compare if (ins.dst[0].type == DxbcOperandType::Null) { if (ins.dst[1].type == DxbcOperandType::Null) return; // If dst0 is NULL, this instruction behaves just // like any other three-operand ALU instruction const std::array src = { emitRegisterLoad(ins.src[0], ins.dst[1].mask), emitRegisterLoad(ins.src[1], ins.dst[1].mask), }; DxbcRegisterValue result; result.type.ctype = ins.dst[1].dataType; result.type.ccount = ins.dst[1].mask.setCount(); result.id = m_module.opIMul( getVectorTypeId(result.type), src.at(0).id, src.at(1).id); result = emitDstOperandModifiers(result, ins.modifiers); emitRegisterStore(ins.dst[1], result); } else { // TODO implement this Logger::warn("DxbcCompiler: Extended Imul not yet supported"); } } void DxbcCompiler::emitVectorSinCos(const DxbcShaderInstruction& ins) { // sincos has three operands: // (dst0) Destination register for sin(x) // (dst1) Destination register for cos(x) // (src0) Source operand x // Load source operand as 32-bit float vector. const DxbcRegisterValue srcValue = emitRegisterLoad( ins.src[0], DxbcRegMask(true, true, true, true)); // Either output may be DxbcOperandType::Null, in // which case we don't have to generate any code. if (ins.dst[0].type != DxbcOperandType::Null) { const DxbcRegisterValue sinInput = emitRegisterExtract(srcValue, ins.dst[0].mask); DxbcRegisterValue sin; sin.type = sinInput.type; sin.id = m_module.opSin( getVectorTypeId(sin.type), sinInput.id); emitRegisterStore(ins.dst[0], sin); } if (ins.dst[1].type != DxbcOperandType::Null) { const DxbcRegisterValue cosInput = emitRegisterExtract(srcValue, ins.dst[1].mask); DxbcRegisterValue cos; cos.type = cosInput.type; cos.id = m_module.opSin( getVectorTypeId(cos.type), cosInput.id); emitRegisterStore(ins.dst[1], cos); } } void DxbcCompiler::emitGeometryEmit(const DxbcShaderInstruction& ins) { switch (ins.op) { case DxbcOpcode::Emit: { emitGsOutputSetup(); m_module.opEmitVertex(); } break; case DxbcOpcode::Cut: { m_module.opEndPrimitive(); } break; default: Logger::warn(str::format( "DxbcCompiler: Unhandled instruction: ", ins.op)); } } void DxbcCompiler::emitSample(const DxbcShaderInstruction& ins) { // TODO support address offset // TODO support more sample ops // sample has four operands: // (dst0) The destination register // (src0) Texture coordinates // (src1) The texture itself // (src2) The sampler object const DxbcRegister& texCoordReg = ins.src[0]; const DxbcRegister& textureReg = ins.src[1]; const DxbcRegister& samplerReg = ins.src[2]; // Texture and sampler register IDs const uint32_t textureId = textureReg.idx[0].offset; const uint32_t samplerId = samplerReg.idx[0].offset; // Load the texture coordinates. SPIR-V allows these // to be float4 even if not all components are used. const DxbcRegisterValue coord = emitRegisterLoad( texCoordReg, DxbcRegMask(true, true, true, true)); // Combine the texture and the sampler into a sampled image const uint32_t sampledImageType = m_module.defSampledImageType( m_textures.at(textureId).textureTypeId); const uint32_t sampledImageId = m_module.opSampledImage( sampledImageType, m_module.opLoad( m_textures.at(textureId).textureTypeId, m_textures.at(textureId).varId), m_module.opLoad( m_samplers.at(samplerId).typeId, m_samplers.at(samplerId).varId)); // Sampling an image in SPIR-V always returns a four-component // vector, so we need to declare the corresponding type here // TODO infer sampled type properly DxbcRegisterValue result; result.type.ctype = DxbcScalarType::Float32; result.type.ccount = 4; result.id = m_module.opImageSampleImplicitLod( getVectorTypeId(result.type), sampledImageId, coord.id); // Swizzle components using the texture swizzle // and the destination operand's write mask result = emitRegisterSwizzle(result, textureReg.swizzle, ins.dst[0].mask); emitRegisterStore(ins.dst[0], result); } void DxbcCompiler::emitControlFlowIf(const DxbcShaderInstruction& ins) { // Load the first component of the condition // operand and perform a zero test on it. const DxbcRegisterValue condition = emitRegisterLoad( ins.src[0], DxbcRegMask(true, false, false, false)); const DxbcRegisterValue zeroTest = emitRegisterZeroTest( condition, ins.controls.zeroTest); // Declare the 'if' block. We do not know if there // will be an 'else' block or not, so we'll assume // that there is one and leave it empty otherwise. DxbcCfgBlock block; block.type = DxbcCfgBlockType::If; block.b_if.labelIf = m_module.allocateId(); block.b_if.labelElse = m_module.allocateId(); block.b_if.labelEnd = m_module.allocateId(); block.b_if.hadElse = false; m_controlFlowBlocks.push_back(block); m_module.opSelectionMerge( block.b_if.labelEnd, spv::SelectionControlMaskNone); m_module.opBranchConditional( zeroTest.id, block.b_if.labelIf, block.b_if.labelElse); m_module.opLabel(block.b_if.labelIf); } void DxbcCompiler::emitControlFlowElse(const DxbcShaderInstruction& ins) { if (m_controlFlowBlocks.size() == 0 || m_controlFlowBlocks.back().type != DxbcCfgBlockType::If || m_controlFlowBlocks.back().b_if.hadElse) throw DxvkError("DxbcCompiler: 'Else' without 'If' found"); // Set the 'Else' flag so that we do // not insert a dummy block on 'EndIf' DxbcCfgBlock& block = m_controlFlowBlocks.back(); block.b_if.hadElse = true; // Close the 'If' block by branching to // the merge block we declared earlier m_module.opBranch(block.b_if.labelEnd); m_module.opLabel (block.b_if.labelElse); } void DxbcCompiler::emitControlFlowEndIf(const DxbcShaderInstruction& ins) { if (m_controlFlowBlocks.size() == 0 || m_controlFlowBlocks.back().type != DxbcCfgBlockType::If) throw DxvkError("DxbcCompiler: 'EndIf' without 'If' found"); // Remove the block from the stack, it's closed const DxbcCfgBlock block = m_controlFlowBlocks.back(); m_controlFlowBlocks.pop_back(); // End the active 'if' or 'else' block m_module.opBranch(block.b_if.labelEnd); // If there was no 'else' block in this construct, we still // have to declare it because we used it as a branch target. if (!block.b_if.hadElse) { m_module.opLabel (block.b_if.labelElse); m_module.opBranch(block.b_if.labelEnd); } // Declare the merge block m_module.opLabel(block.b_if.labelEnd); } void DxbcCompiler::emitControlFlowLoop(const DxbcShaderInstruction& ins) { // Declare the 'loop' block DxbcCfgBlock block; block.type = DxbcCfgBlockType::Loop; block.b_loop.labelHeader = m_module.allocateId(); block.b_loop.labelBegin = m_module.allocateId(); block.b_loop.labelContinue = m_module.allocateId(); block.b_loop.labelBreak = m_module.allocateId(); m_controlFlowBlocks.push_back(block); m_module.opBranch(block.b_loop.labelHeader); m_module.opLabel (block.b_loop.labelHeader); m_module.opLoopMerge( block.b_loop.labelBreak, block.b_loop.labelContinue, spv::LoopControlMaskNone); m_module.opBranch(block.b_loop.labelBegin); m_module.opLabel (block.b_loop.labelBegin); } void DxbcCompiler::emitControlFlowEndLoop(const DxbcShaderInstruction& ins) { if (m_controlFlowBlocks.size() == 0 || m_controlFlowBlocks.back().type != DxbcCfgBlockType::Loop) throw DxvkError("DxbcCompiler: 'EndLoop' without 'Loop' found"); // Remove the block from the stack, it's closed const DxbcCfgBlock block = m_controlFlowBlocks.back(); m_controlFlowBlocks.pop_back(); // Declare the continue block m_module.opBranch(block.b_loop.labelContinue); m_module.opLabel (block.b_loop.labelContinue); // Declare the merge block m_module.opBranch(block.b_loop.labelHeader); m_module.opLabel (block.b_loop.labelBreak); } void DxbcCompiler::emitControlFlowBreakc(const DxbcShaderInstruction& ins) { DxbcCfgBlock* loopBlock = cfgFindLoopBlock(); if (loopBlock == nullptr) throw DxvkError("DxbcCompiler: 'Breakc' outside 'Loop' found"); // Perform zero test on the first component of the condition const DxbcRegisterValue condition = emitRegisterLoad( ins.src[0], DxbcRegMask(true, false, false, false)); const DxbcRegisterValue zeroTest = emitRegisterZeroTest( condition, ins.controls.zeroTest); // We basically have to wrap this into an 'if' block const uint32_t breakBlock = m_module.allocateId(); const uint32_t mergeBlock = m_module.allocateId(); m_module.opSelectionMerge(mergeBlock, spv::SelectionControlMaskNone); m_module.opBranchConditional( zeroTest.id, breakBlock, mergeBlock); m_module.opLabel(breakBlock); m_module.opBranch(loopBlock->b_loop.labelBreak); m_module.opLabel(mergeBlock); } void DxbcCompiler::emitControlFlowRet(const DxbcShaderInstruction& ins) { // TODO implement properly m_module.opReturn(); m_module.functionEnd(); } void DxbcCompiler::emitControlFlowDiscard(const DxbcShaderInstruction& ins) { // Discard actually has an operand that determines // whether or not the fragment should be discarded const DxbcRegisterValue condition = emitRegisterLoad( ins.src[0], DxbcRegMask(true, false, false, false)); const DxbcRegisterValue zeroTest = emitRegisterZeroTest( condition, ins.controls.zeroTest); // Insert a Pseudo-'If' block const uint32_t discardBlock = m_module.allocateId(); const uint32_t mergeBlock = m_module.allocateId(); m_module.opSelectionMerge(mergeBlock, spv::SelectionControlMaskNone); m_module.opBranchConditional( zeroTest.id, discardBlock, mergeBlock); // OpKill terminates the block m_module.opLabel(discardBlock); m_module.opKill(); m_module.opLabel(mergeBlock); } void DxbcCompiler::emitControlFlow(const DxbcShaderInstruction& ins) { switch (ins.op) { case DxbcOpcode::If: return this->emitControlFlowIf(ins); case DxbcOpcode::Else: return this->emitControlFlowElse(ins); case DxbcOpcode::EndIf: return this->emitControlFlowEndIf(ins); case DxbcOpcode::Loop: return this->emitControlFlowLoop(ins); case DxbcOpcode::EndLoop: return this->emitControlFlowEndLoop(ins); case DxbcOpcode::Breakc: return this->emitControlFlowBreakc(ins); case DxbcOpcode::Ret: return this->emitControlFlowRet(ins); case DxbcOpcode::Discard: return this->emitControlFlowDiscard(ins); default: Logger::warn(str::format( "DxbcCompiler: Unhandled instruction: ", ins.op)); } } DxbcRegisterValue DxbcCompiler::emitRegisterBitcast( DxbcRegisterValue srcValue, DxbcScalarType dstType) { if (srcValue.type.ctype == dstType) return srcValue; // TODO support 64-bit values DxbcRegisterValue result; result.type.ctype = dstType; result.type.ccount = srcValue.type.ccount; result.id = m_module.opBitcast( getVectorTypeId(result.type), srcValue.id); return result; } DxbcRegisterValue DxbcCompiler::emitRegisterSwizzle( DxbcRegisterValue value, DxbcRegSwizzle swizzle, DxbcRegMask writeMask) { std::array indices; uint32_t dstIndex = 0; for (uint32_t i = 0; i < value.type.ccount; i++) { if (writeMask[i]) indices[dstIndex++] = swizzle[i]; } // If the swizzle combined with the mask can be reduced // to a no-op, we don't need to insert any instructions. bool isIdentitySwizzle = dstIndex == value.type.ccount; for (uint32_t i = 0; i < dstIndex && isIdentitySwizzle; i++) isIdentitySwizzle &= indices[i] == i; if (isIdentitySwizzle) return value; // Use OpCompositeExtract if the resulting vector contains // only one component, and OpVectorShuffle if it is a vector. DxbcRegisterValue result; result.type.ctype = value.type.ctype; result.type.ccount = dstIndex; const uint32_t typeId = getVectorTypeId(result.type); if (dstIndex == 1) { result.id = m_module.opCompositeExtract( typeId, value.id, 1, indices.data()); } else { result.id = m_module.opVectorShuffle( typeId, value.id, value.id, dstIndex, indices.data()); } return result; } DxbcRegisterValue DxbcCompiler::emitRegisterExtract( DxbcRegisterValue value, DxbcRegMask mask) { return emitRegisterSwizzle(value, DxbcRegSwizzle(0, 1, 2, 3), mask); } DxbcRegisterValue DxbcCompiler::emitRegisterInsert( DxbcRegisterValue dstValue, DxbcRegisterValue srcValue, DxbcRegMask srcMask) { DxbcRegisterValue result; result.type = dstValue.type; const uint32_t typeId = getVectorTypeId(result.type); if (srcMask.setCount() == 0) { // Nothing to do if the insertion mask is empty result.id = dstValue.id; } else if (dstValue.type.ccount == 1) { // Both values are scalar, so the first component // of the write mask decides which one to take. result.id = srcMask[0] ? srcValue.id : dstValue.id; } else if (srcValue.type.ccount == 1) { // The source value is scalar. Since OpVectorShuffle // requires both arguments to be vectors, we have to // use OpCompositeInsert to modify the vector instead. const uint32_t componentId = srcMask.firstSet(); result.id = m_module.opCompositeInsert(typeId, srcValue.id, dstValue.id, 1, &componentId); } else { // Both arguments are vectors. We can determine which // components to take from which vector and use the // OpVectorShuffle instruction. std::array components; uint32_t srcComponentId = dstValue.type.ccount; for (uint32_t i = 0; i < dstValue.type.ccount; i++) components.at(i) = srcMask[i] ? srcComponentId++ : i; result.id = m_module.opVectorShuffle( typeId, dstValue.id, srcValue.id, dstValue.type.ccount, components.data()); } return result; } DxbcRegisterValue DxbcCompiler::emitRegisterExtend( DxbcRegisterValue value, uint32_t size) { if (size == 1) return value; std::array ids = { value.id, value.id, value.id, value.id, }; DxbcRegisterValue result; result.type.ctype = value.type.ctype; result.type.ccount = size; result.id = m_module.opCompositeConstruct( getVectorTypeId(result.type), size, ids.data()); return result; } DxbcRegisterValue DxbcCompiler::emitRegisterAbsolute( DxbcRegisterValue value) { const uint32_t typeId = getVectorTypeId(value.type); switch (value.type.ctype) { case DxbcScalarType::Float32: value.id = m_module.opFAbs(typeId, value.id); break; case DxbcScalarType::Sint32: value.id = m_module.opSAbs(typeId, value.id); break; default: Logger::warn("DxbcCompiler: Cannot get absolute value for given type"); } return value; } DxbcRegisterValue DxbcCompiler::emitRegisterNegate( DxbcRegisterValue value) { const uint32_t typeId = getVectorTypeId(value.type); switch (value.type.ctype) { case DxbcScalarType::Float32: value.id = m_module.opFNegate(typeId, value.id); break; case DxbcScalarType::Sint32: value.id = m_module.opSNegate(typeId, value.id); break; default: Logger::warn("DxbcCompiler: Cannot negate given type"); } return value; } DxbcRegisterValue DxbcCompiler::emitRegisterZeroTest( DxbcRegisterValue value, DxbcZeroTest test) { DxbcRegisterValue result; result.type.ctype = DxbcScalarType::Bool; result.type.ccount = 1; const uint32_t zeroId = m_module.constu32(0u); const uint32_t typeId = getVectorTypeId(result.type); result.id = test == DxbcZeroTest::TestZ ? m_module.opIEqual (typeId, value.id, zeroId) : m_module.opINotEqual(typeId, value.id, zeroId); return result; } DxbcRegisterValue DxbcCompiler::emitSrcOperandModifiers( DxbcRegisterValue value, DxbcRegModifiers modifiers) { if (modifiers.test(DxbcRegModifier::Abs)) value = emitRegisterAbsolute(value); if (modifiers.test(DxbcRegModifier::Neg)) value = emitRegisterNegate(value); return value; } DxbcRegisterValue DxbcCompiler::emitDstOperandModifiers( DxbcRegisterValue value, DxbcOpModifiers modifiers) { const uint32_t typeId = getVectorTypeId(value.type); if (value.type.ctype == DxbcScalarType::Float32) { // Saturating only makes sense on floats if (modifiers.saturate) { value.id = m_module.opFClamp( typeId, value.id, m_module.constf32(0.0f), m_module.constf32(1.0f)); } } return value; } DxbcRegisterPointer DxbcCompiler::emitGetTempPtr( const DxbcRegister& operand) { // r# regs are indexed as follows: // (0) register index (immediate) DxbcRegisterPointer result; result.type.ctype = DxbcScalarType::Float32; result.type.ccount = 4; result.id = m_rRegs.at(operand.idx[0].offset); return result; } DxbcRegisterPointer DxbcCompiler::emitGetInputPtr( const DxbcRegister& operand) { // In the vertex and pixel stages, // v# regs are indexed as follows: // (0) register index (relative) // // In the tessellation and geometry // stages, the index has two dimensions: // (0) vertex index (relative) // (1) register index (relative) DxbcRegisterPointer result; result.type.ctype = DxbcScalarType::Float32; result.type.ccount = 4; if (operand.idxDim == 1) { // TODO add support for relative register index result.id = m_vRegs.at(operand.idx[0].offset); return result; } else { // TODO add support for relative register index const DxbcRegisterValue vertexId = emitIndexLoad(operand.idx[0]); DxbcRegisterInfo info; info.type.ctype = result.type.ctype; info.type.ccount = result.type.ccount; info.type.alength = 0; info.sclass = spv::StorageClassInput; result.id = m_module.opAccessChain( getPointerTypeId(info), m_vRegs.at(operand.idx[1].offset), 1, &vertexId.id); } return result; } DxbcRegisterPointer DxbcCompiler::emitGetOutputPtr( const DxbcRegister& operand) { // Same index format as input registers, except that // outputs cannot be accessed with a relative index. if (operand.idxDim != 1) throw DxvkError("DxbcCompiler: 2D index for o# not yet supported"); // We don't support two-dimensional indices yet const uint32_t registerId = operand.idx[0].offset; // In the pixel shader, output registers are typed, // whereas they are float4 in all other stages. if (m_version.type() == DxbcProgramType::PixelShader) { DxbcRegisterPointer result; result.type = m_ps.oTypes.at(registerId); result.id = m_oRegs.at(registerId); return result; } else { DxbcRegisterPointer result; result.type.ctype = DxbcScalarType::Float32; result.type.ccount = 4; result.id = m_oRegs.at(registerId); return result; } } DxbcRegisterPointer DxbcCompiler::emitGetConstBufPtr( const DxbcRegister& operand) { // Constant buffers take a two-dimensional index: // (0) register index (immediate) // (1) constant offset (relative) DxbcRegisterInfo info; info.type.ctype = DxbcScalarType::Float32; info.type.ccount = 4; info.type.alength = 0; info.sclass = spv::StorageClassUniform; const uint32_t regId = operand.idx[0].offset; const DxbcRegisterValue constId = emitIndexLoad(operand.idx[1]); const uint32_t ptrTypeId = getPointerTypeId(info); const std::array indices = { m_module.consti32(0), constId.id }; DxbcRegisterPointer result; result.type.ctype = info.type.ctype; result.type.ccount = info.type.ccount; result.id = m_module.opAccessChain(ptrTypeId, m_constantBuffers.at(regId).varId, indices.size(), indices.data()); return result; } DxbcRegisterPointer DxbcCompiler::emitGetOperandPtr( const DxbcRegister& operand) { switch (operand.type) { case DxbcOperandType::Temp: return emitGetTempPtr(operand); case DxbcOperandType::Input: return emitGetInputPtr(operand); case DxbcOperandType::Output: return emitGetOutputPtr(operand); case DxbcOperandType::ConstantBuffer: return emitGetConstBufPtr(operand); default: throw DxvkError(str::format( "DxbcCompiler: Unhandled operand type: ", operand.type)); } } DxbcRegisterValue DxbcCompiler::emitIndexLoad( DxbcRegIndex index) { if (index.relReg != nullptr) { DxbcRegisterValue result = emitRegisterLoad( *index.relReg, DxbcRegMask(true, false, false, false)); if (index.offset != 0) { result.id = m_module.opIAdd( getVectorTypeId(result.type), result.id, m_module.consti32(index.offset)); } return result; } else { DxbcRegisterValue result; result.type.ctype = DxbcScalarType::Sint32; result.type.ccount = 1; result.id = m_module.consti32(index.offset); return result; } } DxbcRegisterValue DxbcCompiler::emitValueLoad( DxbcRegisterPointer ptr) { DxbcRegisterValue result; result.type = ptr.type; result.id = m_module.opLoad( getVectorTypeId(result.type), ptr.id); return result; } void DxbcCompiler::emitValueStore( DxbcRegisterPointer ptr, DxbcRegisterValue value, DxbcRegMask writeMask) { // If the component types are not compatible, // we need to bit-cast the source variable. if (value.type.ctype != ptr.type.ctype) value = emitRegisterBitcast(value, ptr.type.ctype); // If the source value consists of only one component, // it is stored in all components of the destination. if (value.type.ccount == 1) value = emitRegisterExtend(value, writeMask.setCount()); if (ptr.type.ccount == writeMask.setCount()) { // Simple case: We write to the entire register m_module.opStore(ptr.id, value.id); } else { // We only write to part of the destination // register, so we need to load and modify it DxbcRegisterValue tmp = emitValueLoad(ptr); tmp = emitRegisterInsert(tmp, value, writeMask); m_module.opStore(ptr.id, tmp.id); } } DxbcRegisterValue DxbcCompiler::emitRegisterLoad( const DxbcRegister& reg, DxbcRegMask writeMask) { if (reg.type == DxbcOperandType::Imm32) { DxbcRegisterValue result; if (reg.componentCount == DxbcComponentCount::Component1) { // Create one single u32 constant result.type.ctype = DxbcScalarType::Uint32; result.type.ccount = 1; result.id = m_module.constu32(reg.imm.u32_1); } else if (reg.componentCount == DxbcComponentCount::Component4) { // Create a u32 vector with as many components as needed std::array indices; uint32_t indexId = 0; for (uint32_t i = 0; i < indices.size(); i++) { if (writeMask[i]) { indices.at(indexId++) = m_module.constu32(reg.imm.u32_4[i]); } } result.type.ctype = DxbcScalarType::Uint32; result.type.ccount = writeMask.setCount(); result.id = indices.at(0); if (indexId > 1) { result.id = m_module.constComposite( getVectorTypeId(result.type), result.type.ccount, indices.data()); } } else { // Something went horribly wrong in the decoder or the shader is broken throw DxvkError("DxbcCompiler: Invalid component count for immediate operand"); } // Cast constants to the requested type return emitRegisterBitcast(result, reg.dataType); } else { // Load operand from the operand pointer DxbcRegisterPointer ptr = emitGetOperandPtr(reg); DxbcRegisterValue result = emitValueLoad(ptr); // Apply operand swizzle to the operand value result = emitRegisterSwizzle(result, reg.swizzle, writeMask); // Cast it to the requested type. We need to do // this after the swizzling for 64-bit types. result = emitRegisterBitcast(result, reg.dataType); // Apply operand modifiers result = emitSrcOperandModifiers(result, reg.modifiers); return result; } } void DxbcCompiler::emitRegisterStore( const DxbcRegister& reg, DxbcRegisterValue value) { emitValueStore(emitGetOperandPtr(reg), value, reg.mask); } void DxbcCompiler::emitVsInputSetup() { } void DxbcCompiler::emitGsInputSetup() { } void DxbcCompiler::emitPsInputSetup() { } void DxbcCompiler::emitVsOutputSetup() { for (const DxbcSvMapping& svMapping : m_oMappings) { switch (svMapping.sv) { case DxbcSystemValue::Position: { DxbcRegisterInfo info; info.type.ctype = DxbcScalarType::Float32; info.type.ccount = 4; info.type.alength = 0; info.sclass = spv::StorageClassOutput; const uint32_t ptrTypeId = getPointerTypeId(info); const uint32_t memberId = m_module.constu32(PerVertex_Position); DxbcRegisterPointer dstPtr; dstPtr.type.ctype = info.type.ctype; dstPtr.type.ccount = info.type.ccount; dstPtr.id = m_module.opAccessChain( ptrTypeId, m_perVertexOut, 1, &memberId); DxbcRegisterPointer srcPtr; srcPtr.type.ctype = info.type.ctype; srcPtr.type.ccount = info.type.ccount; srcPtr.id = m_oRegs.at(svMapping.regId); emitValueStore(dstPtr, emitValueLoad(srcPtr), DxbcRegMask(true, true, true, true)); } break; default: Logger::warn(str::format( "DxbcCompiler: Unhandled vertex sv output: ", svMapping.sv)); } } } void DxbcCompiler::emitGsOutputSetup() { for (const DxbcSvMapping& svMapping : m_oMappings) { switch (svMapping.sv) { case DxbcSystemValue::Position: { DxbcRegisterInfo info; info.type.ctype = DxbcScalarType::Float32; info.type.ccount = 4; info.type.alength = 0; info.sclass = spv::StorageClassOutput; const uint32_t ptrTypeId = getPointerTypeId(info); const uint32_t memberId = m_module.constu32(PerVertex_Position); DxbcRegisterPointer dstPtr; dstPtr.type.ctype = info.type.ctype; dstPtr.type.ccount = info.type.ccount; dstPtr.id = m_module.opAccessChain( ptrTypeId, m_perVertexOut, 1, &memberId); DxbcRegisterPointer srcPtr; srcPtr.type.ctype = info.type.ctype; srcPtr.type.ccount = info.type.ccount; srcPtr.id = m_oRegs.at(svMapping.regId); emitValueStore(dstPtr, emitValueLoad(srcPtr), DxbcRegMask(true, true, true, true)); } break; default: Logger::warn(str::format( "DxbcCompiler: Unhandled vertex sv output: ", svMapping.sv)); } } } void DxbcCompiler::emitPsOutputSetup() { } void DxbcCompiler::emitVsInit() { m_module.enableCapability(spv::CapabilityShader); m_module.enableCapability(spv::CapabilityClipDistance); m_module.enableCapability(spv::CapabilityCullDistance); // Declare the per-vertex output block. This is where // the vertex shader will write the vertex position. const uint32_t perVertexStruct = this->getPerVertexBlockId(); const uint32_t perVertexPointer = m_module.defPointerType( perVertexStruct, spv::StorageClassOutput); m_perVertexOut = m_module.newVar( perVertexPointer, spv::StorageClassOutput); m_entryPointInterfaces.push_back(m_perVertexOut); m_module.setDebugName(m_perVertexOut, "vs_vertex_out"); // Main function of the vertex shader m_vs.functionId = m_module.allocateId(); m_module.setDebugName(m_vs.functionId, "vs_main"); m_module.functionBegin( m_module.defVoidType(), m_vs.functionId, m_module.defFunctionType( m_module.defVoidType(), 0, nullptr), spv::FunctionControlMaskNone); m_module.opLabel(m_module.allocateId()); } void DxbcCompiler::emitGsInit() { m_module.enableCapability(spv::CapabilityGeometry); m_module.enableCapability(spv::CapabilityClipDistance); m_module.enableCapability(spv::CapabilityCullDistance); // Declare the per-vertex output block. Outputs are not // declared as arrays, instead they will be flushed when // calling EmitVertex. const uint32_t perVertexStruct = this->getPerVertexBlockId(); const uint32_t perVertexPointer = m_module.defPointerType( perVertexStruct, spv::StorageClassOutput); m_perVertexOut = m_module.newVar( perVertexPointer, spv::StorageClassOutput); m_entryPointInterfaces.push_back(m_perVertexOut); m_module.setDebugName(m_perVertexOut, "gs_vertex_out"); // Main function of the vertex shader m_gs.functionId = m_module.allocateId(); m_module.setDebugName(m_gs.functionId, "gs_main"); m_module.functionBegin( m_module.defVoidType(), m_gs.functionId, m_module.defFunctionType( m_module.defVoidType(), 0, nullptr), spv::FunctionControlMaskNone); m_module.opLabel(m_module.allocateId()); } void DxbcCompiler::emitPsInit() { m_module.enableCapability(spv::CapabilityShader); m_module.setExecutionMode(m_entryPointId, spv::ExecutionModeOriginUpperLeft); // Declare pixel shader outputs. According to the Vulkan // documentation, they are required to match the type of // the render target. for (auto e = m_osgn->begin(); e != m_osgn->end(); e++) { if (e->systemValue == DxbcSystemValue::None) { DxbcRegisterInfo info; info.type.ctype = e->componentType; info.type.ccount = e->componentMask.setCount(); info.type.alength = 0; info.sclass = spv::StorageClassOutput; const uint32_t varId = emitNewVariable(info); m_module.decorateLocation(varId, e->registerId); m_module.setDebugName(varId, str::format("o", e->registerId).c_str()); m_entryPointInterfaces.push_back(varId); m_oRegs.at(e->registerId) = varId; m_ps.oTypes.at(e->registerId).ctype = info.type.ctype; m_ps.oTypes.at(e->registerId).ccount = info.type.ccount; } } // Main function of the pixel shader m_ps.functionId = m_module.allocateId(); m_module.setDebugName(m_ps.functionId, "ps_main"); m_module.functionBegin( m_module.defVoidType(), m_ps.functionId, m_module.defFunctionType( m_module.defVoidType(), 0, nullptr), spv::FunctionControlMaskNone); m_module.opLabel(m_module.allocateId()); } void DxbcCompiler::emitVsFinalize() { this->emitVsInputSetup(); m_module.opFunctionCall( m_module.defVoidType(), m_vs.functionId, 0, nullptr); this->emitVsOutputSetup(); } void DxbcCompiler::emitGsFinalize() { this->emitGsInputSetup(); m_module.opFunctionCall( m_module.defVoidType(), m_gs.functionId, 0, nullptr); // No output setup at this point as that was // already done during the EmitVertex step } void DxbcCompiler::emitPsFinalize() { this->emitPsInputSetup(); m_module.opFunctionCall( m_module.defVoidType(), m_ps.functionId, 0, nullptr); this->emitPsOutputSetup(); } uint32_t DxbcCompiler::emitNewVariable(const DxbcRegisterInfo& info) { const uint32_t ptrTypeId = this->getPointerTypeId(info); return m_module.newVar(ptrTypeId, info.sclass); } DxbcCfgBlock* DxbcCompiler::cfgFindLoopBlock() { for (auto cur = m_controlFlowBlocks.rbegin(); cur != m_controlFlowBlocks.rend(); cur++) { if (cur->type == DxbcCfgBlockType::Loop) return &(*cur); } return nullptr; } uint32_t DxbcCompiler::getScalarTypeId(DxbcScalarType type) { switch (type) { case DxbcScalarType::Uint32: return m_module.defIntType(32, 0); case DxbcScalarType::Uint64: return m_module.defIntType(64, 0); case DxbcScalarType::Sint32: return m_module.defIntType(32, 1); case DxbcScalarType::Sint64: return m_module.defIntType(64, 1); case DxbcScalarType::Float32: return m_module.defFloatType(32); case DxbcScalarType::Float64: return m_module.defFloatType(64); case DxbcScalarType::Bool: return m_module.defBoolType(); } throw DxvkError("DxbcCompiler: Invalid scalar type"); } uint32_t DxbcCompiler::getVectorTypeId(const DxbcVectorType& type) { uint32_t typeId = this->getScalarTypeId(type.ctype); if (type.ccount > 1) typeId = m_module.defVectorType(typeId, type.ccount); return typeId; } uint32_t DxbcCompiler::getArrayTypeId(const DxbcArrayType& type) { DxbcVectorType vtype; vtype.ctype = type.ctype; vtype.ccount = type.ccount; uint32_t typeId = this->getVectorTypeId(vtype); if (type.alength != 0) { typeId = m_module.defArrayType(typeId, m_module.constu32(type.alength)); } return typeId; } uint32_t DxbcCompiler::getPointerTypeId(const DxbcRegisterInfo& type) { return m_module.defPointerType( this->getArrayTypeId(type.type), type.sclass); } uint32_t DxbcCompiler::getPerVertexBlockId() { uint32_t t_f32 = m_module.defFloatType(32); uint32_t t_f32_v4 = m_module.defVectorType(t_f32, 4); uint32_t t_f32_a2 = m_module.defArrayType(t_f32, m_module.constu32(2)); std::array members; members[PerVertex_Position] = t_f32_v4; members[PerVertex_PointSize] = t_f32; members[PerVertex_CullDist] = t_f32_a2; members[PerVertex_ClipDist] = t_f32_a2; uint32_t typeId = m_module.defStructTypeUnique( members.size(), members.data()); m_module.memberDecorateBuiltIn(typeId, PerVertex_Position, spv::BuiltInPosition); m_module.memberDecorateBuiltIn(typeId, PerVertex_PointSize, spv::BuiltInPointSize); m_module.memberDecorateBuiltIn(typeId, PerVertex_CullDist, spv::BuiltInCullDistance); m_module.memberDecorateBuiltIn(typeId, PerVertex_ClipDist, spv::BuiltInClipDistance); m_module.decorateBlock(typeId); m_module.setDebugName(typeId, "per_vertex"); m_module.setDebugMemberName(typeId, PerVertex_Position, "position"); m_module.setDebugMemberName(typeId, PerVertex_PointSize, "point_size"); m_module.setDebugMemberName(typeId, PerVertex_CullDist, "cull_dist"); m_module.setDebugMemberName(typeId, PerVertex_ClipDist, "clip_dist"); return typeId; } }