1
0
mirror of https://github.com/doitsujin/dxvk.git synced 2024-12-14 09:23:53 +01:00
dxvk/src/d3d9/d3d9_common_texture.h
2021-02-14 23:55:00 +00:00

490 lines
14 KiB
C++

#pragma once
#include "d3d9_format.h"
#include "d3d9_util.h"
#include "d3d9_caps.h"
#include "../dxvk/dxvk_device.h"
#include "../util/util_bit.h"
namespace dxvk {
class D3D9DeviceEx;
/**
* \brief Image memory mapping mode
*
* Determines how exactly \c LockBox will
* behave when mapping an image.
*/
enum D3D9_COMMON_TEXTURE_MAP_MODE {
D3D9_COMMON_TEXTURE_MAP_MODE_NONE, ///< No mapping available
D3D9_COMMON_TEXTURE_MAP_MODE_BACKED, ///< Mapped image through buffer
D3D9_COMMON_TEXTURE_MAP_MODE_SYSTEMMEM, ///< Only a buffer - no image
};
/**
* \brief Common texture description
*
* Contains all members that can be
* defined for 2D, Cube and 3D textures.
*/
struct D3D9_COMMON_TEXTURE_DESC {
UINT Width;
UINT Height;
UINT Depth;
UINT ArraySize;
UINT MipLevels;
DWORD Usage;
D3D9Format Format;
D3DPOOL Pool;
BOOL Discard;
D3DMULTISAMPLE_TYPE MultiSample;
DWORD MultisampleQuality;
BOOL IsBackBuffer;
};
struct D3D9ColorView {
inline Rc<DxvkImageView>& Pick(bool Srgb) {
return Srgb ? this->Srgb : this->Color;
}
inline const Rc<DxvkImageView>& Pick(bool Srgb) const {
return Srgb ? this->Srgb : this->Color;
}
Rc<DxvkImageView> Color;
Rc<DxvkImageView> Srgb;
};
template <typename T>
using D3D9SubresourceArray = std::array<T, caps::MaxSubresources>;
using D3D9SubresourceBitset = bit::bitset<caps::MaxSubresources>;
class D3D9CommonTexture {
public:
D3D9CommonTexture(
D3D9DeviceEx* pDevice,
const D3D9_COMMON_TEXTURE_DESC* pDesc,
D3DRESOURCETYPE ResourceType);
~D3D9CommonTexture();
/**
* \brief Device
* \returns The parent device
*/
D3D9DeviceEx* Device() const {
return m_device;
}
/**
* \brief Texture properties
*
* The returned data can be used to fill in
* \c D3D11_TEXTURE2D_DESC and similar structs.
* \returns Pointer to texture description
*/
const D3D9_COMMON_TEXTURE_DESC* Desc() const {
return &m_desc;
}
/**
* \brief Vulkan Format
* \returns The Vulkan format of the resource
*/
const D3D9_VK_FORMAT_MAPPING GetFormatMapping() const {
return m_mapping;
}
/**
* \brief Counts number of subresources
* \returns Number of subresources
*/
UINT CountSubresources() const {
return m_desc.ArraySize * m_desc.MipLevels;
}
/**
* \brief Map mode
* \returns Map mode
*/
D3D9_COMMON_TEXTURE_MAP_MODE GetMapMode() const {
return m_mapMode;
}
/**
* \brief The DXVK image
* Note, this will be nullptr if the map mode is D3D9_COMMON_TEXTURE_MAP_MODE_SYSTEMMEM
* \returns The DXVK image
*/
Rc<DxvkImage> GetImage() const {
return m_image;
}
/**
* \brief Get a copy of the main image, but with a single sample
* This function will allocate/reuse an image with the same info
* as the main image
* \returns An image with identical info, but 1 sample
*/
Rc<DxvkImage> GetResolveImage() {
if (unlikely(m_resolveImage == nullptr))
m_resolveImage = CreateResolveImage();
return m_resolveImage;
}
Rc<DxvkBuffer> GetBuffer(UINT Subresource) {
return m_buffers[Subresource];
}
DxvkBufferSliceHandle GetMappedSlice(UINT Subresource) {
return m_mappedSlices[Subresource];
}
DxvkBufferSliceHandle DiscardMapSlice(UINT Subresource) {
DxvkBufferSliceHandle handle = m_buffers[Subresource]->allocSlice();
m_mappedSlices[Subresource] = handle;
return handle;
}
/**
* \brief Computes subresource from the subresource index
*
* Used by some functions that operate on only
* one subresource, such as \c UpdateSurface.
* \param [in] Aspect The image aspect
* \param [in] Subresource Subresource index
* \returns The Vulkan image subresource
*/
VkImageSubresource GetSubresourceFromIndex(
VkImageAspectFlags Aspect,
UINT Subresource) const;
/**
* \brief Normalizes and validates texture description
*
* Fills in undefined values and validates the texture
* parameters. Any error returned by this method should
* be forwarded to the application.
* \param [in,out] pDesc Texture description
* \returns \c S_OK if the parameters are valid
*/
static HRESULT NormalizeTextureProperties(
D3D9DeviceEx* pDevice,
D3D9_COMMON_TEXTURE_DESC* pDesc);
/**
* \brief Shadow
* \returns Whether the texture is to be depth compared
*/
bool IsShadow() const {
return m_shadow;
}
/**
* \brief Subresource
* \returns The subresource idx of a given face and mip level
*/
UINT CalcSubresource(UINT Face, UINT MipLevel) const {
return Face * m_desc.MipLevels + MipLevel;
}
/**
* \brief Creates buffers
* Creates mapping and staging buffers for all subresources
* allocates new buffers if necessary
*/
void CreateBuffers() {
const uint32_t count = CountSubresources();
for (uint32_t i = 0; i < count; i++)
CreateBufferSubresource(i);
}
/**
* \brief Creates a buffer
* Creates mapping and staging buffers for a given subresource
* allocates new buffers if necessary
* \returns Whether an allocation happened
*/
bool CreateBufferSubresource(UINT Subresource);
/**
* \brief Destroys a buffer
* Destroys mapping and staging buffers for a given subresource
*/
void DestroyBufferSubresource(UINT Subresource) {
m_buffers[Subresource] = nullptr;
SetDirty(Subresource, true);
}
bool IsDynamic() const {
return m_desc.Usage & D3DUSAGE_DYNAMIC;
}
/**
* \brief Managed
* \returns Whether a resource is managed (pool) or not
*/
bool IsManaged() const {
return IsPoolManaged(m_desc.Pool);
}
/**
* \brief Render Target
* \returns Whether a resource is a render target or not
*/
bool IsRenderTarget() const {
return m_desc.Usage & D3DUSAGE_RENDERTARGET;
}
/**
* \brief Depth stencil
* \returns Whether a resource is a depth stencil or not
*/
bool IsDepthStencil() const {
return m_desc.Usage & D3DUSAGE_DEPTHSTENCIL;
}
/**
* \brief Autogen Mipmap
* \returns Whether the texture is to have automatic mip generation
*/
bool IsAutomaticMip() const {
return m_desc.Usage & D3DUSAGE_AUTOGENMIPMAP;
}
/**
* \brief Checks whether sRGB views can be created
* \returns Whether the format is sRGB compatible.
*/
bool IsSrgbCompatible() const {
return m_mapping.FormatSrgb;
}
/**
* \brief Recreate main image view
* Recreates the main view of the sampler w/ a specific LOD.
* SetLOD only works on MANAGED textures so this is A-okay.
*/
void CreateSampleView(UINT Lod);
/**
* \brief Extent
* \returns The extent of the top-level mip
*/
VkExtent3D GetExtent() const {
return VkExtent3D{ m_desc.Width, m_desc.Height, m_desc.Depth };
}
/**
* \brief Mip Extent
* \returns The extent of a mip or subresource
*/
VkExtent3D GetExtentMip(UINT Subresource) const {
UINT MipLevel = Subresource % m_desc.MipLevels;
return util::computeMipLevelExtent(GetExtent(), MipLevel);
}
bool MarkHazardous() {
return std::exchange(m_hazardous, true);
}
D3DRESOURCETYPE GetType() {
return m_type;
}
const D3D9_VK_FORMAT_MAPPING& GetMapping() { return m_mapping; }
void SetLocked(UINT Subresource, bool value) { m_locked.set(Subresource, value); }
bool GetLocked(UINT Subresource) const { return m_locked.get(Subresource); }
void SetDirty(UINT Subresource, bool value) { m_dirty.set(Subresource, value); }
bool GetDirty(UINT Subresource) const { return m_dirty.get(Subresource); }
void MarkAllDirty() { m_dirty.setAll(); }
void SetReadOnlyLocked(UINT Subresource, bool readOnly) { return m_readOnly.set(Subresource, readOnly); }
bool GetReadOnlyLocked(UINT Subresource) const { return m_readOnly.get(Subresource); }
const Rc<DxvkImageView>& GetSampleView(bool srgb) const {
return m_sampleView.Pick(srgb && IsSrgbCompatible());
}
VkImageLayout DetermineRenderTargetLayout() const {
return m_image != nullptr &&
m_image->info().tiling == VK_IMAGE_TILING_OPTIMAL &&
!m_hazardous
? VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL
: VK_IMAGE_LAYOUT_GENERAL;
}
VkImageLayout DetermineDepthStencilLayout(bool write, bool hazardous) const {
VkImageLayout layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
if (unlikely(hazardous)) {
layout = write
? VK_IMAGE_LAYOUT_GENERAL
: VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL;
}
if (unlikely(m_image->info().tiling != VK_IMAGE_TILING_OPTIMAL))
layout = VK_IMAGE_LAYOUT_GENERAL;
return layout;
}
Rc<DxvkImageView> CreateView(
UINT Layer,
UINT Lod,
VkImageUsageFlags UsageFlags,
bool Srgb);
D3D9SubresourceBitset& GetUploadBitmask() { return m_needsUpload; }
void SetNeedsUpload(UINT Subresource, bool upload) { m_needsUpload.set(Subresource, upload); }
bool GetNeedsUpload(UINT Subresource) const { return m_needsUpload.get(Subresource); }
bool NeedsAnyUpload() { return m_needsUpload.any(); }
void ClearNeedsUpload() { return m_needsUpload.clearAll(); }
void SetNeedsMipGen(bool value) { m_needsMipGen = value; }
bool NeedsMipGen() const { return m_needsMipGen; }
DWORD ExposedMipLevels() { return m_exposedMipLevels; }
void SetMipFilter(D3DTEXTUREFILTERTYPE filter) { m_mipFilter = filter; }
D3DTEXTUREFILTERTYPE GetMipFilter() const { return m_mipFilter; }
void PreLoadAll();
void PreLoadSubresource(UINT Subresource);
void AddUpdateDirtyBox(CONST D3DBOX* pDirtyBox, uint32_t layer) {
if (pDirtyBox) {
D3DBOX box = *pDirtyBox;
if (box.Right <= box.Left
|| box.Bottom <= box.Top
|| box.Back <= box.Front)
return;
D3DBOX& updateBox = m_updateDirtyBoxes[layer];
if (updateBox.Left == updateBox.Right) {
updateBox = box;
} else {
updateBox.Left = std::min(updateBox.Left, box.Left);
updateBox.Right = std::max(updateBox.Right, box.Right);
updateBox.Top = std::min(updateBox.Top, box.Top);
updateBox.Bottom = std::max(updateBox.Bottom, box.Bottom);
updateBox.Front = std::min(updateBox.Front, box.Front);
updateBox.Back = std::max(updateBox.Back, box.Back);
}
} else {
m_updateDirtyBoxes[layer] = { 0, 0, m_desc.Width, m_desc.Height, 0, m_desc.Depth };
}
}
void ClearUpdateDirtyBoxes() {
for (uint32_t i = 0; i < m_updateDirtyBoxes.size(); i++) {
m_updateDirtyBoxes[i] = { 0, 0, 0, 0, 0, 0 };
}
}
const D3DBOX& GetUpdateDirtyBox(uint32_t layer) const {
return m_updateDirtyBoxes[layer];
}
private:
D3D9DeviceEx* m_device;
D3D9_COMMON_TEXTURE_DESC m_desc;
D3DRESOURCETYPE m_type;
D3D9_COMMON_TEXTURE_MAP_MODE m_mapMode;
Rc<DxvkImage> m_image;
Rc<DxvkImage> m_resolveImage;
D3D9SubresourceArray<
Rc<DxvkBuffer>> m_buffers;
D3D9SubresourceArray<
DxvkBufferSliceHandle> m_mappedSlices;
D3D9_VK_FORMAT_MAPPING m_mapping;
bool m_shadow; //< Depth Compare-ness
int64_t m_size = 0;
bool m_systemmemModified = false;
bool m_hazardous = false;
D3D9ColorView m_sampleView;
D3D9SubresourceBitset m_locked = { };
D3D9SubresourceBitset m_readOnly = { };
D3D9SubresourceBitset m_dirty = { };
D3D9SubresourceBitset m_needsUpload = { };
DWORD m_exposedMipLevels = 0;
bool m_needsMipGen = false;
D3DTEXTUREFILTERTYPE m_mipFilter = D3DTEXF_LINEAR;
std::array<D3DBOX, 6> m_updateDirtyBoxes;
/**
* \brief Mip level
* \returns Size of packed mip level in bytes
*/
VkDeviceSize GetMipSize(UINT Subresource) const;
Rc<DxvkImage> CreatePrimaryImage(D3DRESOURCETYPE ResourceType, bool TryOffscreenRT) const;
Rc<DxvkImage> CreateResolveImage() const;
BOOL DetermineShadowState() const;
BOOL CheckImageSupport(
const DxvkImageCreateInfo* pImageInfo,
VkImageTiling Tiling) const;
VkImageUsageFlags EnableMetaCopyUsage(
VkFormat Format,
VkImageTiling Tiling) const;
D3D9_COMMON_TEXTURE_MAP_MODE DetermineMapMode() const {
if (m_desc.Format == D3D9Format::NULL_FORMAT)
return D3D9_COMMON_TEXTURE_MAP_MODE_NONE;
if (m_desc.Pool == D3DPOOL_SYSTEMMEM || m_desc.Pool == D3DPOOL_SCRATCH)
return D3D9_COMMON_TEXTURE_MAP_MODE_SYSTEMMEM;
return D3D9_COMMON_TEXTURE_MAP_MODE_BACKED;
}
static VkImageType GetImageTypeFromResourceType(
D3DRESOURCETYPE Dimension);
static VkImageViewType GetImageViewTypeFromResourceType(
D3DRESOURCETYPE Dimension,
UINT Layer);
static VkImageLayout OptimizeLayout(
VkImageUsageFlags Usage);
static constexpr UINT AllLayers = UINT32_MAX;
};
}