mirror of
https://github.com/doitsujin/dxvk.git
synced 2024-12-13 16:08:50 +01:00
894d9606d5
Provides Enhanced Sync-like functionality (#678).
481 lines
18 KiB
C++
481 lines
18 KiB
C++
#include "dxgi_presenter.h"
|
|
|
|
#include "../spirv/spirv_module.h"
|
|
|
|
#include <dxgi_presenter_frag.h>
|
|
#include <dxgi_presenter_vert.h>
|
|
|
|
namespace dxvk {
|
|
|
|
DxgiVkPresenter::DxgiVkPresenter(
|
|
const DxgiOptions* pOptions,
|
|
const Rc<DxvkDevice>& device,
|
|
HWND window)
|
|
: m_window (window),
|
|
m_device (device),
|
|
m_context (device->createContext()),
|
|
m_syncMode(pOptions->syncMode) {
|
|
|
|
// Some games don't work with deferred surface creation,
|
|
// so we should default to initializing it immediately.
|
|
if (!pOptions->deferSurfaceCreation)
|
|
m_surface = CreateSurface();
|
|
|
|
// Reset options for the swap chain itself. We will
|
|
// create a swap chain object before presentation.
|
|
m_options.preferredSurfaceFormat = { VK_FORMAT_UNDEFINED, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR };
|
|
m_options.preferredPresentMode = VK_PRESENT_MODE_FIFO_KHR;
|
|
m_options.preferredBufferSize = { 0u, 0u };
|
|
m_options.preferredBufferCount = 0;
|
|
|
|
// Samplers for presentation. We'll create one with point sampling that will
|
|
// be used when the back buffer resolution matches the output resolution, and
|
|
// one with linar sampling that will be used when the image will be scaled.
|
|
m_samplerFitting = CreateSampler(VK_FILTER_NEAREST, VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER);
|
|
m_samplerScaling = CreateSampler(VK_FILTER_LINEAR, VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER);
|
|
|
|
// Create objects required for the gamma ramp. This is implemented partially
|
|
// with an UBO, which stores global parameters, and a lookup texture, which
|
|
// stores the actual gamma ramp and can be sampled with a linear filter.
|
|
m_gammaSampler = CreateSampler(VK_FILTER_LINEAR, VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE);
|
|
m_gammaTexture = CreateGammaTexture();
|
|
m_gammaTextureView = CreateGammaTextureView();
|
|
|
|
// Set up context state. The shader bindings and the
|
|
// constant state objects will never be modified.
|
|
m_iaState.primitiveTopology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP;
|
|
m_iaState.primitiveRestart = VK_FALSE;
|
|
m_iaState.patchVertexCount = 0;
|
|
|
|
m_rsState.polygonMode = VK_POLYGON_MODE_FILL;
|
|
m_rsState.cullMode = VK_CULL_MODE_BACK_BIT;
|
|
m_rsState.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
|
|
m_rsState.depthClampEnable = VK_FALSE;
|
|
m_rsState.depthBiasEnable = VK_FALSE;
|
|
m_rsState.depthBiasConstant = 0.0f;
|
|
m_rsState.depthBiasClamp = 0.0f;
|
|
m_rsState.depthBiasSlope = 0.0f;
|
|
|
|
m_msState.sampleMask = 0xffffffff;
|
|
m_msState.enableAlphaToCoverage = VK_FALSE;
|
|
m_msState.enableAlphaToOne = VK_FALSE;
|
|
|
|
VkStencilOpState stencilOp;
|
|
stencilOp.failOp = VK_STENCIL_OP_KEEP;
|
|
stencilOp.passOp = VK_STENCIL_OP_KEEP;
|
|
stencilOp.depthFailOp = VK_STENCIL_OP_KEEP;
|
|
stencilOp.compareOp = VK_COMPARE_OP_ALWAYS;
|
|
stencilOp.compareMask = 0xFFFFFFFF;
|
|
stencilOp.writeMask = 0xFFFFFFFF;
|
|
stencilOp.reference = 0;
|
|
|
|
m_dsState.enableDepthTest = VK_FALSE;
|
|
m_dsState.enableDepthWrite = VK_FALSE;
|
|
m_dsState.enableStencilTest = VK_FALSE;
|
|
m_dsState.depthCompareOp = VK_COMPARE_OP_ALWAYS;
|
|
m_dsState.stencilOpFront = stencilOp;
|
|
m_dsState.stencilOpBack = stencilOp;
|
|
|
|
m_loState.enableLogicOp = VK_FALSE;
|
|
m_loState.logicOp = VK_LOGIC_OP_NO_OP;
|
|
|
|
m_blendMode.enableBlending = VK_FALSE;
|
|
m_blendMode.colorSrcFactor = VK_BLEND_FACTOR_ONE;
|
|
m_blendMode.colorDstFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
|
|
m_blendMode.colorBlendOp = VK_BLEND_OP_ADD;
|
|
m_blendMode.alphaSrcFactor = VK_BLEND_FACTOR_ONE;
|
|
m_blendMode.alphaDstFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
|
|
m_blendMode.alphaBlendOp = VK_BLEND_OP_ADD;
|
|
m_blendMode.writeMask = VK_COLOR_COMPONENT_R_BIT
|
|
| VK_COLOR_COMPONENT_G_BIT
|
|
| VK_COLOR_COMPONENT_B_BIT
|
|
| VK_COLOR_COMPONENT_A_BIT;
|
|
|
|
m_vertShader = CreateVertexShader();
|
|
m_fragShader = CreateFragmentShader();
|
|
|
|
m_hud = hud::Hud::createHud(m_device);
|
|
}
|
|
|
|
|
|
DxgiVkPresenter::~DxgiVkPresenter() {
|
|
m_device->waitForIdle();
|
|
}
|
|
|
|
|
|
void DxgiVkPresenter::InitBackBuffer(const Rc<DxvkImage>& Image) {
|
|
m_context->beginRecording(
|
|
m_device->createCommandList());
|
|
|
|
VkImageSubresourceRange sr;
|
|
sr.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
sr.baseMipLevel = 0;
|
|
sr.levelCount = Image->info().mipLevels;
|
|
sr.baseArrayLayer = 0;
|
|
sr.layerCount = Image->info().numLayers;
|
|
|
|
m_context->initImage(Image, sr);
|
|
|
|
m_device->submitCommandList(
|
|
m_context->endRecording(),
|
|
nullptr, nullptr);
|
|
}
|
|
|
|
|
|
void DxgiVkPresenter::PresentImage(UINT SyncInterval, const Rc<DxvkEvent>& SyncEvent) {
|
|
if (m_hud != nullptr)
|
|
m_hud->update();
|
|
|
|
// Wait for frame event to be signaled. This is used
|
|
// to enforce the device's frame latency requirement.
|
|
SyncEvent->wait();
|
|
|
|
// Check whether the back buffer size is the same
|
|
// as the window size, in which case we should use
|
|
// VK_FILTER_NEAREST to avoid blurry output
|
|
const bool fitSize =
|
|
m_backBuffer->info().extent.width == m_options.preferredBufferSize.width
|
|
&& m_backBuffer->info().extent.height == m_options.preferredBufferSize.height;
|
|
|
|
for (uint32_t i = 0; i < SyncInterval || i < 1; i++) {
|
|
m_context->beginRecording(
|
|
m_device->createCommandList());
|
|
|
|
// Resolve back buffer if it is multisampled. We
|
|
// only have to do it only for the first frame.
|
|
if (m_backBufferResolve != nullptr && i == 0) {
|
|
VkImageSubresourceLayers resolveSubresources;
|
|
resolveSubresources.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
resolveSubresources.mipLevel = 0;
|
|
resolveSubresources.baseArrayLayer = 0;
|
|
resolveSubresources.layerCount = 1;
|
|
|
|
m_context->resolveImage(
|
|
m_backBufferResolve, resolveSubresources,
|
|
m_backBuffer, resolveSubresources,
|
|
VK_FORMAT_UNDEFINED);
|
|
}
|
|
|
|
auto swapSemas = m_swapchain->getSemaphorePair();
|
|
auto swapImage = m_swapchain->getImageView(swapSemas.acquireSync);
|
|
|
|
m_context->bindShader(VK_SHADER_STAGE_VERTEX_BIT, m_vertShader);
|
|
m_context->bindShader(VK_SHADER_STAGE_FRAGMENT_BIT, m_fragShader);
|
|
|
|
DxvkRenderTargets renderTargets;
|
|
renderTargets.color[0].view = swapImage;
|
|
renderTargets.color[0].layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
|
|
m_context->bindRenderTargets(renderTargets, false);
|
|
|
|
VkViewport viewport;
|
|
viewport.x = 0.0f;
|
|
viewport.y = 0.0f;
|
|
viewport.width = float(swapImage->imageInfo().extent.width);
|
|
viewport.height = float(swapImage->imageInfo().extent.height);
|
|
viewport.minDepth = 0.0f;
|
|
viewport.maxDepth = 1.0f;
|
|
|
|
VkRect2D scissor;
|
|
scissor.offset.x = 0;
|
|
scissor.offset.y = 0;
|
|
scissor.extent.width = swapImage->imageInfo().extent.width;
|
|
scissor.extent.height = swapImage->imageInfo().extent.height;
|
|
|
|
m_context->setViewports(1, &viewport, &scissor);
|
|
|
|
m_context->setRasterizerState(m_rsState);
|
|
m_context->setMultisampleState(m_msState);
|
|
m_context->setDepthStencilState(m_dsState);
|
|
m_context->setLogicOpState(m_loState);
|
|
m_context->setBlendMode(0, m_blendMode);
|
|
|
|
m_context->setInputAssemblyState(m_iaState);
|
|
m_context->setInputLayout(0, nullptr, 0, nullptr);
|
|
|
|
m_context->bindResourceSampler(BindingIds::Sampler, fitSize ? m_samplerFitting : m_samplerScaling);
|
|
m_context->bindResourceSampler(BindingIds::GammaSmp, m_gammaSampler);
|
|
|
|
m_context->bindResourceView(BindingIds::Texture, m_backBufferView, nullptr);
|
|
m_context->bindResourceView(BindingIds::GammaTex, m_gammaTextureView, nullptr);
|
|
|
|
m_context->draw(4, 1, 0, 0);
|
|
|
|
if (m_hud != nullptr)
|
|
m_hud->render(m_context, m_options.preferredBufferSize);
|
|
|
|
if (i == SyncInterval - 1) {
|
|
DxvkEventRevision eventRev;
|
|
eventRev.event = SyncEvent;
|
|
eventRev.revision = SyncEvent->reset();
|
|
m_context->signalEvent(eventRev);
|
|
}
|
|
|
|
m_device->submitCommandList(
|
|
m_context->endRecording(),
|
|
swapSemas.acquireSync,
|
|
swapSemas.presentSync);
|
|
|
|
m_swapchain->present(
|
|
swapSemas.presentSync);
|
|
}
|
|
}
|
|
|
|
|
|
void DxgiVkPresenter::UpdateBackBuffer(const Rc<DxvkImage>& Image) {
|
|
// Explicitly destroy the old stuff
|
|
m_backBuffer = Image;
|
|
m_backBufferResolve = nullptr;
|
|
m_backBufferView = nullptr;
|
|
|
|
// If a multisampled back buffer was requested, we also need to
|
|
// create a resolve image with otherwise identical properties.
|
|
// Multisample images cannot be sampled from.
|
|
if (Image->info().sampleCount != VK_SAMPLE_COUNT_1_BIT) {
|
|
DxvkImageCreateInfo resolveInfo;
|
|
resolveInfo.type = VK_IMAGE_TYPE_2D;
|
|
resolveInfo.format = Image->info().format;
|
|
resolveInfo.flags = 0;
|
|
resolveInfo.sampleCount = VK_SAMPLE_COUNT_1_BIT;
|
|
resolveInfo.extent = Image->info().extent;
|
|
resolveInfo.numLayers = 1;
|
|
resolveInfo.mipLevels = 1;
|
|
resolveInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT
|
|
| VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT
|
|
| VK_IMAGE_USAGE_TRANSFER_DST_BIT;
|
|
resolveInfo.stages = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT
|
|
| VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT
|
|
| VK_PIPELINE_STAGE_TRANSFER_BIT;
|
|
resolveInfo.access = VK_ACCESS_SHADER_READ_BIT
|
|
| VK_ACCESS_TRANSFER_WRITE_BIT
|
|
| VK_ACCESS_COLOR_ATTACHMENT_READ_BIT
|
|
| VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
|
|
resolveInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
|
|
resolveInfo.layout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
|
|
|
|
m_backBufferResolve = m_device->createImage(
|
|
resolveInfo, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
|
|
}
|
|
|
|
// Create an image view that allows the
|
|
// image to be bound as a shader resource.
|
|
DxvkImageViewCreateInfo viewInfo;
|
|
viewInfo.type = VK_IMAGE_VIEW_TYPE_2D;
|
|
viewInfo.format = Image->info().format;
|
|
viewInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT;
|
|
viewInfo.aspect = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
viewInfo.minLevel = 0;
|
|
viewInfo.numLevels = 1;
|
|
viewInfo.minLayer = 0;
|
|
viewInfo.numLayers = 1;
|
|
|
|
m_backBufferView = m_device->createImageView(
|
|
m_backBufferResolve != nullptr
|
|
? m_backBufferResolve
|
|
: m_backBuffer,
|
|
viewInfo);
|
|
|
|
InitBackBuffer(m_backBuffer);
|
|
}
|
|
|
|
|
|
void DxgiVkPresenter::SetGammaControl(
|
|
const DXGI_VK_GAMMA_CURVE* pGammaCurve) {
|
|
m_context->beginRecording(
|
|
m_device->createCommandList());
|
|
|
|
m_context->updateImage(m_gammaTexture,
|
|
VkImageSubresourceLayers { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 },
|
|
VkOffset3D { 0, 0, 0 },
|
|
VkExtent3D { DXGI_VK_GAMMA_CP_COUNT, 1, 1 },
|
|
pGammaCurve, 0, 0);
|
|
|
|
m_device->submitCommandList(
|
|
m_context->endRecording(),
|
|
nullptr, nullptr);
|
|
}
|
|
|
|
|
|
void DxgiVkPresenter::RecreateSwapchain(DXGI_FORMAT Format, BOOL Vsync, VkExtent2D WindowSize, UINT BufferCount) {
|
|
if (m_surface == nullptr)
|
|
m_surface = CreateSurface();
|
|
|
|
DxvkSwapchainProperties options;
|
|
options.preferredSurfaceFormat = PickSurfaceFormat(Format);
|
|
options.preferredPresentMode = PickPresentMode(Vsync);
|
|
options.preferredBufferSize = WindowSize;
|
|
options.preferredBufferCount = BufferCount;
|
|
|
|
const bool doRecreate =
|
|
options.preferredSurfaceFormat.format != m_options.preferredSurfaceFormat.format
|
|
|| options.preferredSurfaceFormat.colorSpace != m_options.preferredSurfaceFormat.colorSpace
|
|
|| options.preferredPresentMode != m_options.preferredPresentMode
|
|
|| options.preferredBufferSize.width != m_options.preferredBufferSize.width
|
|
|| options.preferredBufferSize.height != m_options.preferredBufferSize.height;
|
|
|
|
if (doRecreate) {
|
|
Logger::info(str::format(
|
|
"DxgiVkPresenter: Recreating swap chain: ",
|
|
"\n Format: ", options.preferredSurfaceFormat.format,
|
|
"\n Present mode: ", options.preferredPresentMode,
|
|
"\n Buffer size: ", options.preferredBufferSize.width, "x", options.preferredBufferSize.height));
|
|
|
|
if (m_swapchain == nullptr)
|
|
m_swapchain = m_device->createSwapchain(m_surface, options);
|
|
else
|
|
m_swapchain->changeProperties(options);
|
|
|
|
m_options = options;
|
|
}
|
|
}
|
|
|
|
|
|
VkSurfaceFormatKHR DxgiVkPresenter::PickSurfaceFormat(DXGI_FORMAT Fmt) const {
|
|
std::vector<VkSurfaceFormatKHR> formats;
|
|
|
|
switch (Fmt) {
|
|
case DXGI_FORMAT_R8G8B8A8_UNORM:
|
|
case DXGI_FORMAT_B8G8R8A8_UNORM: {
|
|
formats.push_back({ VK_FORMAT_R8G8B8A8_UNORM, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR });
|
|
formats.push_back({ VK_FORMAT_B8G8R8A8_UNORM, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR });
|
|
} break;
|
|
|
|
case DXGI_FORMAT_R8G8B8A8_UNORM_SRGB:
|
|
case DXGI_FORMAT_B8G8R8A8_UNORM_SRGB: {
|
|
formats.push_back({ VK_FORMAT_R8G8B8A8_SRGB, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR });
|
|
formats.push_back({ VK_FORMAT_B8G8R8A8_SRGB, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR });
|
|
} break;
|
|
|
|
case DXGI_FORMAT_R10G10B10A2_UNORM: {
|
|
formats.push_back({ VK_FORMAT_A2B10G10R10_UNORM_PACK32, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR });
|
|
formats.push_back({ VK_FORMAT_A2R10G10B10_UNORM_PACK32, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR });
|
|
} break;
|
|
|
|
case DXGI_FORMAT_R16G16B16A16_FLOAT: {
|
|
formats.push_back({ VK_FORMAT_R16G16B16A16_SFLOAT, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR });
|
|
} break;
|
|
|
|
default:
|
|
Logger::warn(str::format("DxgiVkPresenter: Unknown format: ", Fmt));
|
|
}
|
|
|
|
return m_surface->pickSurfaceFormat(
|
|
formats.size(), formats.data());
|
|
}
|
|
|
|
|
|
VkPresentModeKHR DxgiVkPresenter::PickPresentMode(BOOL Vsync) const {
|
|
std::array<VkPresentModeKHR, 4> modes;
|
|
size_t n = 0;
|
|
|
|
if (Vsync) {
|
|
if (m_syncMode == DxgiSyncMode::Mailbox)
|
|
modes[n++] = VK_PRESENT_MODE_MAILBOX_KHR;
|
|
modes[n++] = VK_PRESENT_MODE_FIFO_KHR;
|
|
} else {
|
|
modes[n++] = VK_PRESENT_MODE_IMMEDIATE_KHR;
|
|
modes[n++] = VK_PRESENT_MODE_MAILBOX_KHR;
|
|
modes[n++] = VK_PRESENT_MODE_FIFO_RELAXED_KHR;
|
|
}
|
|
|
|
return m_surface->pickPresentMode(n, modes.data());
|
|
}
|
|
|
|
|
|
Rc<DxvkSurface> DxgiVkPresenter::CreateSurface() {
|
|
HINSTANCE instance = reinterpret_cast<HINSTANCE>(
|
|
GetWindowLongPtr(m_window, GWLP_HINSTANCE));
|
|
|
|
return m_device->adapter()->createSurface(instance, m_window);
|
|
}
|
|
|
|
|
|
Rc<DxvkSampler> DxgiVkPresenter::CreateSampler(
|
|
VkFilter Filter,
|
|
VkSamplerAddressMode AddressMode) {
|
|
DxvkSamplerCreateInfo samplerInfo;
|
|
samplerInfo.magFilter = Filter;
|
|
samplerInfo.minFilter = Filter;
|
|
samplerInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST;
|
|
samplerInfo.mipmapLodBias = 0.0f;
|
|
samplerInfo.mipmapLodMin = 0.0f;
|
|
samplerInfo.mipmapLodMax = 0.0f;
|
|
samplerInfo.useAnisotropy = VK_FALSE;
|
|
samplerInfo.maxAnisotropy = 1.0f;
|
|
samplerInfo.addressModeU = AddressMode;
|
|
samplerInfo.addressModeV = AddressMode;
|
|
samplerInfo.addressModeW = AddressMode;
|
|
samplerInfo.compareToDepth = VK_FALSE;
|
|
samplerInfo.compareOp = VK_COMPARE_OP_ALWAYS;
|
|
samplerInfo.borderColor = VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK;
|
|
samplerInfo.usePixelCoord = VK_FALSE;
|
|
return m_device->createSampler(samplerInfo);
|
|
}
|
|
|
|
|
|
Rc<DxvkImage> DxgiVkPresenter::CreateGammaTexture() {
|
|
DxvkImageCreateInfo info;
|
|
info.type = VK_IMAGE_TYPE_1D;
|
|
info.format = VK_FORMAT_R16G16B16A16_UNORM;
|
|
info.flags = 0;
|
|
info.sampleCount = VK_SAMPLE_COUNT_1_BIT;
|
|
info.extent = { DXGI_VK_GAMMA_CP_COUNT, 1, 1 };
|
|
info.numLayers = 1;
|
|
info.mipLevels = 1;
|
|
info.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT
|
|
| VK_IMAGE_USAGE_SAMPLED_BIT;
|
|
info.stages = VK_PIPELINE_STAGE_TRANSFER_BIT
|
|
| VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
|
|
info.access = VK_ACCESS_TRANSFER_WRITE_BIT
|
|
| VK_ACCESS_SHADER_READ_BIT;
|
|
info.tiling = VK_IMAGE_TILING_OPTIMAL;
|
|
info.layout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
|
|
return m_device->createImage(info, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
|
|
}
|
|
|
|
|
|
Rc<DxvkImageView> DxgiVkPresenter::CreateGammaTextureView() {
|
|
DxvkImageViewCreateInfo info;
|
|
info.type = VK_IMAGE_VIEW_TYPE_1D;
|
|
info.format = VK_FORMAT_R16G16B16A16_UNORM;
|
|
info.usage = VK_IMAGE_USAGE_SAMPLED_BIT;
|
|
info.aspect = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
info.minLevel = 0;
|
|
info.numLevels = 1;
|
|
info.minLayer = 0;
|
|
info.numLayers = 1;
|
|
return m_device->createImageView(m_gammaTexture, info);
|
|
}
|
|
|
|
|
|
Rc<DxvkShader> DxgiVkPresenter::CreateVertexShader() {
|
|
const SpirvCodeBuffer codeBuffer(dxgi_presenter_vert);
|
|
|
|
return m_device->createShader(
|
|
VK_SHADER_STAGE_VERTEX_BIT,
|
|
0, nullptr, { 0u, 1u },
|
|
codeBuffer);
|
|
}
|
|
|
|
|
|
Rc<DxvkShader> DxgiVkPresenter::CreateFragmentShader() {
|
|
const SpirvCodeBuffer codeBuffer(dxgi_presenter_frag);
|
|
|
|
// Shader resource slots
|
|
const std::array<DxvkResourceSlot, 4> resourceSlots = {{
|
|
{ BindingIds::Sampler, VK_DESCRIPTOR_TYPE_SAMPLER, VK_IMAGE_VIEW_TYPE_MAX_ENUM },
|
|
{ BindingIds::Texture, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, VK_IMAGE_VIEW_TYPE_2D },
|
|
{ BindingIds::GammaSmp, VK_DESCRIPTOR_TYPE_SAMPLER, VK_IMAGE_VIEW_TYPE_MAX_ENUM },
|
|
{ BindingIds::GammaTex, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, VK_IMAGE_VIEW_TYPE_1D },
|
|
}};
|
|
|
|
// Create the actual shader module
|
|
return m_device->createShader(
|
|
VK_SHADER_STAGE_FRAGMENT_BIT,
|
|
resourceSlots.size(),
|
|
resourceSlots.data(),
|
|
{ 1u, 1u },
|
|
codeBuffer);
|
|
}
|
|
|
|
}
|