1
0
mirror of https://github.com/doitsujin/dxvk.git synced 2024-12-14 09:23:53 +01:00
dxvk/src/dxbc/dxbc_decoder.cpp
2018-06-07 15:05:06 +02:00

360 lines
12 KiB
C++

#include "dxbc_decoder.h"
namespace dxvk {
const uint32_t* DxbcCodeSlice::ptrAt(uint32_t id) const {
if (m_ptr + id >= m_end)
throw DxvkError("DxbcCodeSlice: End of stream");
return m_ptr + id;
}
uint32_t DxbcCodeSlice::at(uint32_t id) const {
if (m_ptr + id >= m_end)
throw DxvkError("DxbcCodeSlice: End of stream");
return m_ptr[id];
}
uint32_t DxbcCodeSlice::read() {
if (m_ptr >= m_end)
throw DxvkError("DxbcCodeSlice: End of stream");
return *(m_ptr++);
}
DxbcCodeSlice DxbcCodeSlice::take(uint32_t n) const {
if (m_ptr + n > m_end)
throw DxvkError("DxbcCodeSlice: End of stream");
return DxbcCodeSlice(m_ptr, m_ptr + n);
}
DxbcCodeSlice DxbcCodeSlice::skip(uint32_t n) const {
if (m_ptr + n > m_end)
throw DxvkError("DxbcCodeSlice: End of stream");
return DxbcCodeSlice(m_ptr + n, m_end);
}
void DxbcDecodeContext::decodeInstruction(DxbcCodeSlice& code) {
const uint32_t token0 = code.at(0);
// Initialize the instruction structure. Some of these values
// may not get written otherwise while decoding the instruction.
m_instruction.op = static_cast<DxbcOpcode>(bit::extract(token0, 0, 10));
m_instruction.opClass = DxbcInstClass::Undefined;
m_instruction.sampleControls = { 0, 0, 0 };
m_instruction.dstCount = 0;
m_instruction.srcCount = 0;
m_instruction.immCount = 0;
m_instruction.dst = m_dstOperands.data();
m_instruction.src = m_srcOperands.data();
m_instruction.imm = m_immOperands.data();
m_instruction.customDataType = DxbcCustomDataClass::Comment;
m_instruction.customDataSize = 0;
m_instruction.customData = nullptr;
// Reset the index pointer, which may still contain
// a non-zero value from the previous iteration
m_indexId = 0;
// Instruction length, in DWORDs. This includes the token
// itself and any other prefix that an instruction may have.
uint32_t length = 0;
if (m_instruction.op == DxbcOpcode::CustomData) {
length = code.at(1);
this->decodeCustomData(code.take(length));
} else {
length = bit::extract(token0, 24, 30);
this->decodeOperation(code.take(length));
}
// Advance the caller's slice to the next token so that
// they can make consecutive calls to decodeInstruction()
code = code.skip(length);
}
void DxbcDecodeContext::decodeCustomData(DxbcCodeSlice code) {
const uint32_t blockLength = code.at(1);
if (blockLength < 2) {
Logger::err("DxbcDecodeContext: Invalid custom data block");
return;
}
// Custom data blocks have their own instruction class
m_instruction.op = DxbcOpcode::CustomData;
m_instruction.opClass = DxbcInstClass::CustomData;
// We'll point into the code buffer rather than making a copy
m_instruction.customDataType = static_cast<DxbcCustomDataClass>(
bit::extract(code.at(0), 11, 31));
m_instruction.customDataSize = blockLength - 2;
m_instruction.customData = code.ptrAt(2);
}
void DxbcDecodeContext::decodeOperation(DxbcCodeSlice code) {
uint32_t token = code.read();
// Result modifiers, which are applied to common ALU ops
m_instruction.modifiers.saturate = !!bit::extract(token, 13, 13);
m_instruction.modifiers.precise = !!bit::extract(token, 19, 22);
// Opcode controls. It will depend on the
// opcode itself which ones are valid.
m_instruction.controls = DxbcShaderOpcodeControls(token);
// Process extended opcode tokens
while (bit::extract(token, 31, 31)) {
token = code.read();
const DxbcExtOpcode extOpcode
= static_cast<DxbcExtOpcode>(bit::extract(token, 0, 5));
switch (extOpcode) {
case DxbcExtOpcode::SampleControls: {
struct {
int u : 4;
int v : 4;
int w : 4;
} aoffimmi;
aoffimmi.u = bit::extract(token, 9, 12);
aoffimmi.v = bit::extract(token, 13, 16);
aoffimmi.w = bit::extract(token, 17, 20);
// Four-bit signed numbers, sign-extend them
m_instruction.sampleControls.u = aoffimmi.u;
m_instruction.sampleControls.v = aoffimmi.v;
m_instruction.sampleControls.w = aoffimmi.w;
} break;
case DxbcExtOpcode::ResourceDim:
case DxbcExtOpcode::ResourceReturnType:
break; // part of resource description
default:
Logger::warn(str::format(
"DxbcDecodeContext: Unhandled extended opcode: ",
extOpcode));
}
}
// Retrieve the instruction format in order to parse the
// operands. Doing this mostly automatically means that
// the compiler can rely on the operands being valid.
const DxbcInstFormat format = dxbcInstructionFormat(m_instruction.op);
m_instruction.opClass = format.instructionClass;
for (uint32_t i = 0; i < format.operandCount; i++)
this->decodeOperand(code, format.operands[i]);
}
void DxbcDecodeContext::decodeComponentSelection(DxbcRegister& reg, uint32_t token) {
// Pick the correct component selection mode based on the
// component count. We'll simplify this here so that the
// compiler can assume that everything is a 4D vector.
reg.componentCount = static_cast<DxbcComponentCount>(bit::extract(token, 0, 1));
switch (reg.componentCount) {
// No components - used for samplers etc.
case DxbcComponentCount::Component0:
reg.mask = DxbcRegMask(false, false, false, false);
reg.swizzle = DxbcRegSwizzle(0, 0, 0, 0);
break;
// One component - used for immediates
// and a few built-in registers.
case DxbcComponentCount::Component1:
reg.mask = DxbcRegMask(true, false, false, false);
reg.swizzle = DxbcRegSwizzle(0, 0, 0, 0);
break;
// Four components - everything else. This requires us
// to actually parse the component selection mode.
case DxbcComponentCount::Component4: {
const DxbcRegMode componentMode =
static_cast<DxbcRegMode>(bit::extract(token, 2, 3));
switch (componentMode) {
// Write mask for destination operands
case DxbcRegMode::Mask:
reg.mask = bit::extract(token, 4, 7);
reg.swizzle = DxbcRegSwizzle(0, 1, 2, 3);
break;
// Swizzle for source operands (including resources)
case DxbcRegMode::Swizzle:
reg.mask = DxbcRegMask(true, true, true, true);
reg.swizzle = DxbcRegSwizzle(
bit::extract(token, 4, 5),
bit::extract(token, 6, 7),
bit::extract(token, 8, 9),
bit::extract(token, 10, 11));
break;
// Selection of one component. We can generate both a
// mask and a swizzle for this so that the compiler
// won't have to deal with this case specifically.
case DxbcRegMode::Select1: {
const uint32_t n = bit::extract(token, 4, 5);
reg.mask = DxbcRegMask(n == 0, n == 1, n == 2, n == 3);
reg.swizzle = DxbcRegSwizzle(n, n, n, n);
} break;
default:
Logger::warn("DxbcDecodeContext: Invalid component selection mode");
}
} break;
default:
Logger::warn("DxbcDecodeContext: Invalid component count");
}
}
void DxbcDecodeContext::decodeOperandExtensions(DxbcCodeSlice& code, DxbcRegister& reg, uint32_t token) {
while (bit::extract(token, 31, 31)) {
token = code.read();
// Type of the extended operand token
const DxbcOperandExt extTokenType =
static_cast<DxbcOperandExt>(bit::extract(token, 0, 5));
switch (extTokenType) {
// Operand modifiers, which are used to manipulate the
// value of a source operand during the load operation
case DxbcOperandExt::OperandModifier:
reg.modifiers = bit::extract(token, 6, 13);
break;
default:
Logger::warn(str::format(
"DxbcDecodeContext: Unhandled extended operand token: ",
extTokenType));
}
}
}
void DxbcDecodeContext::decodeOperandImmediates(DxbcCodeSlice& code, DxbcRegister& reg) {
if (reg.type == DxbcOperandType::Imm32
|| reg.type == DxbcOperandType::Imm64) {
switch (reg.componentCount) {
// This is commonly used if only one vector
// component is involved in an operation
case DxbcComponentCount::Component1: {
reg.imm.u32_1 = code.read();
} break;
// Typical four-component vector
case DxbcComponentCount::Component4: {
reg.imm.u32_4[0] = code.read();
reg.imm.u32_4[1] = code.read();
reg.imm.u32_4[2] = code.read();
reg.imm.u32_4[3] = code.read();
} break;
default:
Logger::warn("DxbcDecodeContext: Invalid component count for immediate operand");
}
}
}
void DxbcDecodeContext::decodeOperandIndex(DxbcCodeSlice& code, DxbcRegister& reg, uint32_t token) {
reg.idxDim = bit::extract(token, 20, 21);
for (uint32_t i = 0; i < reg.idxDim; i++) {
// An index can be encoded in various different ways
const DxbcOperandIndexRepresentation repr =
static_cast<DxbcOperandIndexRepresentation>(
bit::extract(token, 22 + 3 * i, 24 + 3 * i));
switch (repr) {
case DxbcOperandIndexRepresentation::Imm32:
reg.idx[i].offset = static_cast<int32_t>(code.read());
reg.idx[i].relReg = nullptr;
break;
case DxbcOperandIndexRepresentation::Relative:
reg.idx[i].offset = 0;
reg.idx[i].relReg = &m_indices.at(m_indexId);
this->decodeRegister(code,
m_indices.at(m_indexId++),
DxbcScalarType::Sint32);
break;
case DxbcOperandIndexRepresentation::Imm32Relative:
reg.idx[i].offset = static_cast<int32_t>(code.read());
reg.idx[i].relReg = &m_indices.at(m_indexId);
this->decodeRegister(code,
m_indices.at(m_indexId++),
DxbcScalarType::Sint32);
break;
default:
Logger::warn(str::format(
"DxbcDecodeContext: Unhandled index representation: ",
repr));
}
}
}
void DxbcDecodeContext::decodeRegister(DxbcCodeSlice& code, DxbcRegister& reg, DxbcScalarType type) {
const uint32_t token = code.read();
reg.type = static_cast<DxbcOperandType>(bit::extract(token, 12, 19));
reg.dataType = type;
reg.modifiers = 0;
reg.idxDim = 0;
for (uint32_t i = 0; i < DxbcMaxRegIndexDim; i++) {
reg.idx[i].relReg = nullptr;
reg.idx[i].offset = 0;
}
this->decodeComponentSelection(reg, token);
this->decodeOperandExtensions(code, reg, token);
this->decodeOperandImmediates(code, reg);
this->decodeOperandIndex(code, reg, token);
}
void DxbcDecodeContext::decodeImm32(DxbcCodeSlice& code, DxbcImmediate& imm, DxbcScalarType type) {
imm.u32 = code.read();
}
void DxbcDecodeContext::decodeOperand(DxbcCodeSlice& code, const DxbcInstOperandFormat& format) {
switch (format.kind) {
case DxbcOperandKind::DstReg: {
const uint32_t operandId = m_instruction.dstCount++;
this->decodeRegister(code, m_dstOperands.at(operandId), format.type);
} break;
case DxbcOperandKind::SrcReg: {
const uint32_t operandId = m_instruction.srcCount++;
this->decodeRegister(code, m_srcOperands.at(operandId), format.type);
} break;
case DxbcOperandKind::Imm32: {
const uint32_t operandId = m_instruction.immCount++;
this->decodeImm32(code, m_immOperands.at(operandId), format.type);
} break;
default:
throw DxvkError("DxbcDecodeContext: Invalid operand format");
}
}
}