1
0
mirror of https://github.com/doitsujin/dxvk.git synced 2024-12-14 00:48:44 +01:00
dxvk/src/util/util_matrix.cpp

255 lines
8.4 KiB
C++

#include "util_matrix.h"
namespace dxvk {
// Identity
Matrix4::Matrix4() {
data[0] = { 1, 0, 0, 0 };
data[1] = { 0, 1, 0, 0 };
data[2] = { 0, 0, 1, 0 };
data[3] = { 0, 0, 0, 1 };
}
// Produces a scalar matrix, x * Identity
Matrix4::Matrix4(float x) {
data[0] = { x, 0, 0, 0 };
data[1] = { 0, x, 0, 0 };
data[2] = { 0, 0, x, 0 };
data[3] = { 0, 0, 0, x };
}
Matrix4::Matrix4(
const Vector4& v0,
const Vector4& v1,
const Vector4& v2,
const Vector4& v3) {
data[0] = v0;
data[1] = v1;
data[2] = v2;
data[3] = v3;
}
Vector4& Matrix4::operator[](size_t index) { return data[index]; }
const Vector4& Matrix4::operator[](size_t index) const { return data[index]; }
bool Matrix4::operator==(const Matrix4& m2) const {
const Matrix4& m1 = *this;
for (uint32_t i = 0; i < 4; i++) {
if (m1[i] != m2[i])
return false;
}
return true;
}
bool Matrix4::operator!=(const Matrix4& m2) const { return !operator==(m2); }
Matrix4 Matrix4::operator+(const Matrix4& other) const {
Matrix4 mat;
for (uint32_t i = 0; i < 4; i++)
mat[i] = data[i] + other.data[i];
return mat;
}
Matrix4 Matrix4::operator-(const Matrix4& other) const {
Matrix4 mat;
for (uint32_t i = 0; i < 4; i++)
mat[i] = data[i] - other.data[i];
return mat;
}
Matrix4 Matrix4::operator*(const Matrix4& m2) const {
const Matrix4& m1 = *this;
const Vector4 srcA0 = { m1[0] };
const Vector4 srcA1 = { m1[1] };
const Vector4 srcA2 = { m1[2] };
const Vector4 srcA3 = { m1[3] };
const Vector4 srcB0 = { m2[0] };
const Vector4 srcB1 = { m2[1] };
const Vector4 srcB2 = { m2[2] };
const Vector4 srcB3 = { m2[3] };
Matrix4 result;
result[0] = srcA0 * srcB0[0] + srcA1 * srcB0[1] + srcA2 * srcB0[2] + srcA3 * srcB0[3];
result[1] = srcA0 * srcB1[0] + srcA1 * srcB1[1] + srcA2 * srcB1[2] + srcA3 * srcB1[3];
result[2] = srcA0 * srcB2[0] + srcA1 * srcB2[1] + srcA2 * srcB2[2] + srcA3 * srcB2[3];
result[3] = srcA0 * srcB3[0] + srcA1 * srcB3[1] + srcA2 * srcB3[2] + srcA3 * srcB3[3];
return result;
}
Vector4 Matrix4::operator*(const Vector4& v) const {
const Matrix4& m = *this;
const Vector4 mul0 = { m[0] * v[0] };
const Vector4 mul1 = { m[1] * v[1] };
const Vector4 mul2 = { m[2] * v[2] };
const Vector4 mul3 = { m[3] * v[3] };
const Vector4 add0 = { mul0 + mul1 };
const Vector4 add1 = { mul2 + mul3 };
return add0 + add1;
}
Matrix4 Matrix4::operator*(float scalar) const {
Matrix4 mat;
for (uint32_t i = 0; i < 4; i++)
mat[i] = data[i] * scalar;
return mat;
}
Matrix4 Matrix4::operator/(float scalar) const {
Matrix4 mat;
for (uint32_t i = 0; i < 4; i++)
mat[i] = data[i] / scalar;
return mat;
}
Matrix4& Matrix4::operator+=(const Matrix4& other) {
return (*this = (*this) + other);
}
Matrix4& Matrix4::operator-=(const Matrix4& other) {
return (*this = (*this) - other);
}
Matrix4& Matrix4::operator*=(const Matrix4& other) {
return (*this = (*this) * other);
}
Matrix4 transpose(const Matrix4& m) {
Matrix4 result;
for (uint32_t i = 0; i < 4; i++) {
for (uint32_t j = 0; j < 4; j++)
result[i][j] = m.data[j][i];
}
return result;
}
float determinant(const Matrix4& m) {
float coef00 = m[2][2] * m[3][3] - m[3][2] * m[2][3];
float coef02 = m[1][2] * m[3][3] - m[3][2] * m[1][3];
float coef03 = m[1][2] * m[2][3] - m[2][2] * m[1][3];
float coef04 = m[2][1] * m[3][3] - m[3][1] * m[2][3];
float coef06 = m[1][1] * m[3][3] - m[3][1] * m[1][3];
float coef07 = m[1][1] * m[2][3] - m[2][1] * m[1][3];
float coef08 = m[2][1] * m[3][2] - m[3][1] * m[2][2];
float coef10 = m[1][1] * m[3][2] - m[3][1] * m[1][2];
float coef11 = m[1][1] * m[2][2] - m[2][1] * m[1][2];
float coef12 = m[2][0] * m[3][3] - m[3][0] * m[2][3];
float coef14 = m[1][0] * m[3][3] - m[3][0] * m[1][3];
float coef15 = m[1][0] * m[2][3] - m[2][0] * m[1][3];
float coef16 = m[2][0] * m[3][2] - m[3][0] * m[2][2];
float coef18 = m[1][0] * m[3][2] - m[3][0] * m[1][2];
float coef19 = m[1][0] * m[2][2] - m[2][0] * m[1][2];
float coef20 = m[2][0] * m[3][1] - m[3][0] * m[2][1];
float coef22 = m[1][0] * m[3][1] - m[3][0] * m[1][1];
float coef23 = m[1][0] * m[2][1] - m[2][0] * m[1][1];
Vector4 fac0 = { coef00, coef00, coef02, coef03 };
Vector4 fac1 = { coef04, coef04, coef06, coef07 };
Vector4 fac2 = { coef08, coef08, coef10, coef11 };
Vector4 fac3 = { coef12, coef12, coef14, coef15 };
Vector4 fac4 = { coef16, coef16, coef18, coef19 };
Vector4 fac5 = { coef20, coef20, coef22, coef23 };
Vector4 vec0 = { m[1][0], m[0][0], m[0][0], m[0][0] };
Vector4 vec1 = { m[1][1], m[0][1], m[0][1], m[0][1] };
Vector4 vec2 = { m[1][2], m[0][2], m[0][2], m[0][2] };
Vector4 vec3 = { m[1][3], m[0][3], m[0][3], m[0][3] };
Vector4 inv0 = { vec1 * fac0 - vec2 * fac1 + vec3 * fac2 };
Vector4 inv1 = { vec0 * fac0 - vec2 * fac3 + vec3 * fac4 };
Vector4 inv2 = { vec0 * fac1 - vec1 * fac3 + vec3 * fac5 };
Vector4 inv3 = { vec0 * fac2 - vec1 * fac4 + vec2 * fac5 };
Vector4 signA = { +1, -1, +1, -1 };
Vector4 signB = { -1, +1, -1, +1 };
Matrix4 inverse = { inv0 * signA, inv1 * signB, inv2 * signA, inv3 * signB };
Vector4 row0 = { inverse[0][0], inverse[1][0], inverse[2][0], inverse[3][0] };
Vector4 dot0 = { m[0] * row0 };
return (dot0.x + dot0.y) + (dot0.z + dot0.w);
}
Matrix4 inverse(const Matrix4& m)
{
float coef00 = m[2][2] * m[3][3] - m[3][2] * m[2][3];
float coef02 = m[1][2] * m[3][3] - m[3][2] * m[1][3];
float coef03 = m[1][2] * m[2][3] - m[2][2] * m[1][3];
float coef04 = m[2][1] * m[3][3] - m[3][1] * m[2][3];
float coef06 = m[1][1] * m[3][3] - m[3][1] * m[1][3];
float coef07 = m[1][1] * m[2][3] - m[2][1] * m[1][3];
float coef08 = m[2][1] * m[3][2] - m[3][1] * m[2][2];
float coef10 = m[1][1] * m[3][2] - m[3][1] * m[1][2];
float coef11 = m[1][1] * m[2][2] - m[2][1] * m[1][2];
float coef12 = m[2][0] * m[3][3] - m[3][0] * m[2][3];
float coef14 = m[1][0] * m[3][3] - m[3][0] * m[1][3];
float coef15 = m[1][0] * m[2][3] - m[2][0] * m[1][3];
float coef16 = m[2][0] * m[3][2] - m[3][0] * m[2][2];
float coef18 = m[1][0] * m[3][2] - m[3][0] * m[1][2];
float coef19 = m[1][0] * m[2][2] - m[2][0] * m[1][2];
float coef20 = m[2][0] * m[3][1] - m[3][0] * m[2][1];
float coef22 = m[1][0] * m[3][1] - m[3][0] * m[1][1];
float coef23 = m[1][0] * m[2][1] - m[2][0] * m[1][1];
Vector4 fac0 = { coef00, coef00, coef02, coef03 };
Vector4 fac1 = { coef04, coef04, coef06, coef07 };
Vector4 fac2 = { coef08, coef08, coef10, coef11 };
Vector4 fac3 = { coef12, coef12, coef14, coef15 };
Vector4 fac4 = { coef16, coef16, coef18, coef19 };
Vector4 fac5 = { coef20, coef20, coef22, coef23 };
Vector4 vec0 = { m[1][0], m[0][0], m[0][0], m[0][0] };
Vector4 vec1 = { m[1][1], m[0][1], m[0][1], m[0][1] };
Vector4 vec2 = { m[1][2], m[0][2], m[0][2], m[0][2] };
Vector4 vec3 = { m[1][3], m[0][3], m[0][3], m[0][3] };
Vector4 inv0 = { vec1 * fac0 - vec2 * fac1 + vec3 * fac2 };
Vector4 inv1 = { vec0 * fac0 - vec2 * fac3 + vec3 * fac4 };
Vector4 inv2 = { vec0 * fac1 - vec1 * fac3 + vec3 * fac5 };
Vector4 inv3 = { vec0 * fac2 - vec1 * fac4 + vec2 * fac5 };
Vector4 signA = { +1, -1, +1, -1 };
Vector4 signB = { -1, +1, -1, +1 };
Matrix4 inverse = { inv0 * signA, inv1 * signB, inv2 * signA, inv3 * signB };
Vector4 row0 = { inverse[0][0], inverse[1][0], inverse[2][0], inverse[3][0] };
Vector4 dot0 = { m[0] * row0 };
float dot1 = (dot0.x + dot0.y) + (dot0.z + dot0.w);
return inverse * (1.0f / dot1);
}
Matrix4 hadamardProduct(const Matrix4& a, const Matrix4& b) {
Matrix4 result;
for (uint32_t i = 0; i < 4; i++)
result[i] = a[i] * b[i];
return result;
}
std::ostream& operator<<(std::ostream& os, const Matrix4& m) {
os << "Matrix4(";
for (uint32_t i = 0; i < 4; i++) {
os << "\n\t" << m[i];
if (i < 3)
os << ", ";
}
os << "\n)";
return os;
}
}