mirror of
https://github.com/NVIDIA/open-gpu-kernel-modules.git
synced 2025-01-22 03:52:10 +01:00
579 lines
24 KiB
C
579 lines
24 KiB
C
|
/*******************************************************************************
|
||
|
Copyright (c) 2017-2019 NVIDIA Corporation
|
||
|
|
||
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
of this software and associated documentation files (the "Software"), to
|
||
|
deal in the Software without restriction, including without limitation the
|
||
|
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
||
|
sell copies of the Software, and to permit persons to whom the Software is
|
||
|
furnished to do so, subject to the following conditions:
|
||
|
|
||
|
The above copyright notice and this permission notice shall be
|
||
|
included in all copies or substantial portions of the Software.
|
||
|
|
||
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
||
|
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||
|
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||
|
DEALINGS IN THE SOFTWARE.
|
||
|
|
||
|
*******************************************************************************/
|
||
|
|
||
|
#include "uvm_test.h"
|
||
|
#include "uvm_test_ioctl.h"
|
||
|
|
||
|
#include "uvm_global.h"
|
||
|
#include "uvm_gpu.h"
|
||
|
#include "uvm_pmm_sysmem.h"
|
||
|
#include "uvm_va_block.h"
|
||
|
#include "uvm_va_range.h"
|
||
|
#include "uvm_va_space.h"
|
||
|
|
||
|
// Pre-allocated array used for dma-to-virt translations
|
||
|
static uvm_reverse_map_t g_sysmem_translations[PAGES_PER_UVM_VA_BLOCK];
|
||
|
|
||
|
// We use our own separate reverse map to easily specify contiguous DMA
|
||
|
// address ranges
|
||
|
static uvm_pmm_sysmem_mappings_t g_reverse_map;
|
||
|
|
||
|
static uvm_gpu_t *g_volta_plus_gpu;
|
||
|
|
||
|
// Check that the DMA addresses in the range defined by
|
||
|
// [base_dma_addr:base_dma_addr + uvm_va_block_size(va_block)] and page_mask
|
||
|
// are registered in the reverse map, using one call per entry. The returned
|
||
|
// virtual addresses must belong to va_block. The function assumes a 1:1
|
||
|
// dma-to-virt mapping for the whole VA block
|
||
|
static NV_STATUS check_reverse_map_block_page(uvm_va_block_t *va_block,
|
||
|
NvU64 base_dma_addr,
|
||
|
const uvm_page_mask_t *page_mask)
|
||
|
{
|
||
|
uvm_page_index_t page_index;
|
||
|
|
||
|
for_each_va_block_page(page_index, va_block) {
|
||
|
size_t num_pages;
|
||
|
|
||
|
memset(g_sysmem_translations, 0, sizeof(g_sysmem_translations));
|
||
|
num_pages = uvm_pmm_sysmem_mappings_dma_to_virt(&g_reverse_map,
|
||
|
base_dma_addr + page_index * PAGE_SIZE,
|
||
|
PAGE_SIZE,
|
||
|
g_sysmem_translations,
|
||
|
PAGES_PER_UVM_VA_BLOCK);
|
||
|
if (!page_mask || uvm_page_mask_test(page_mask, page_index)) {
|
||
|
TEST_CHECK_RET(num_pages == 1);
|
||
|
TEST_CHECK_RET(g_sysmem_translations[0].va_block == va_block);
|
||
|
TEST_CHECK_RET(nv_kref_read(&va_block->kref) >= 2);
|
||
|
TEST_CHECK_RET(uvm_reverse_map_start(&g_sysmem_translations[0]) == uvm_va_block_cpu_page_address(va_block, page_index));
|
||
|
TEST_CHECK_RET(uvm_va_block_region_num_pages(g_sysmem_translations[0].region) == 1);
|
||
|
TEST_CHECK_RET(UVM_ID_IS_CPU(g_sysmem_translations[0].owner));
|
||
|
uvm_va_block_release(g_sysmem_translations[0].va_block);
|
||
|
}
|
||
|
else {
|
||
|
TEST_CHECK_RET(num_pages == 0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return NV_OK;
|
||
|
}
|
||
|
|
||
|
// Check that the DMA addresses in the range defined by
|
||
|
// [base_dma_addr:base_dma_addr + uvm_va_block_size(va_block)] and page_mask
|
||
|
// are registered in the reverse map, using a single translation call. The
|
||
|
// returned virtual addresses must belong to va_block. The function assumes a
|
||
|
// 1:1 dma-to-virt mapping for the whole VA block
|
||
|
static NV_STATUS check_reverse_map_block_batch(uvm_va_block_t *va_block,
|
||
|
NvU64 base_dma_addr,
|
||
|
const uvm_page_mask_t *page_mask)
|
||
|
{
|
||
|
size_t num_translations;
|
||
|
size_t num_pages;
|
||
|
size_t reverse_map_index;
|
||
|
|
||
|
memset(g_sysmem_translations, 0, sizeof(g_sysmem_translations));
|
||
|
num_translations = uvm_pmm_sysmem_mappings_dma_to_virt(&g_reverse_map,
|
||
|
base_dma_addr,
|
||
|
uvm_va_block_size(va_block),
|
||
|
g_sysmem_translations,
|
||
|
PAGES_PER_UVM_VA_BLOCK);
|
||
|
if (num_translations == 0 && page_mask)
|
||
|
TEST_CHECK_RET(uvm_page_mask_empty(page_mask));
|
||
|
|
||
|
num_pages = 0;
|
||
|
for (reverse_map_index = 0; reverse_map_index < num_translations; ++reverse_map_index) {
|
||
|
uvm_reverse_map_t *reverse_map = &g_sysmem_translations[reverse_map_index];
|
||
|
size_t num_reverse_map_pages = uvm_va_block_region_num_pages(reverse_map->region);
|
||
|
|
||
|
num_pages += num_reverse_map_pages;
|
||
|
|
||
|
TEST_CHECK_RET(reverse_map->va_block == va_block);
|
||
|
TEST_CHECK_RET(nv_kref_read(&va_block->kref) >= 2);
|
||
|
uvm_va_block_release(reverse_map->va_block);
|
||
|
TEST_CHECK_RET(UVM_ID_IS_CPU(reverse_map->owner));
|
||
|
}
|
||
|
|
||
|
if (page_mask)
|
||
|
TEST_CHECK_RET(num_pages == uvm_page_mask_weight(page_mask));
|
||
|
else
|
||
|
TEST_CHECK_RET(num_pages == uvm_va_block_num_cpu_pages(va_block));
|
||
|
|
||
|
return NV_OK;
|
||
|
}
|
||
|
|
||
|
// Check that the DMA addresses for all the CPU pages of the two given VA blocks
|
||
|
// are registered in the reverse map, using a single translation call. The
|
||
|
// returned virtual addresses must belong to one of the blocks. The function
|
||
|
// assumes a 1:1 dma-to-virt mapping for each VA block and that va_block1 is
|
||
|
// mapped behind va_block0.
|
||
|
static NV_STATUS check_reverse_map_two_blocks_batch(NvU64 base_dma_addr,
|
||
|
uvm_va_block_t *va_block0,
|
||
|
uvm_va_block_t *va_block1)
|
||
|
{
|
||
|
size_t num_pages;
|
||
|
size_t num_translations;
|
||
|
size_t reverse_map_index;
|
||
|
|
||
|
memset(g_sysmem_translations, 0, sizeof(g_sysmem_translations));
|
||
|
num_translations = uvm_pmm_sysmem_mappings_dma_to_virt(&g_reverse_map,
|
||
|
base_dma_addr,
|
||
|
UVM_VA_BLOCK_SIZE,
|
||
|
g_sysmem_translations,
|
||
|
PAGES_PER_UVM_VA_BLOCK);
|
||
|
TEST_CHECK_RET(num_translations == 2);
|
||
|
|
||
|
num_pages = 0;
|
||
|
for (reverse_map_index = 0; reverse_map_index < num_translations; ++reverse_map_index) {
|
||
|
uvm_va_block_t *block;
|
||
|
uvm_reverse_map_t *reverse_map = &g_sysmem_translations[reverse_map_index];
|
||
|
NvU64 virt_addr = uvm_reverse_map_start(reverse_map);
|
||
|
size_t num_reverse_map_pages = uvm_va_block_region_num_pages(reverse_map->region);
|
||
|
|
||
|
if (reverse_map_index == 0)
|
||
|
block = va_block0;
|
||
|
else
|
||
|
block = va_block1;
|
||
|
|
||
|
TEST_CHECK_RET(reverse_map->va_block == block);
|
||
|
TEST_CHECK_RET(nv_kref_read(&block->kref) >= 2);
|
||
|
uvm_va_block_release(reverse_map->va_block);
|
||
|
TEST_CHECK_RET(num_reverse_map_pages == uvm_va_block_num_cpu_pages(block));
|
||
|
TEST_CHECK_RET(virt_addr == block->start);
|
||
|
TEST_CHECK_RET(UVM_ID_IS_CPU(reverse_map->owner));
|
||
|
|
||
|
num_pages += num_reverse_map_pages;
|
||
|
}
|
||
|
|
||
|
TEST_CHECK_RET(num_pages == uvm_va_block_num_cpu_pages(va_block0) + uvm_va_block_num_cpu_pages(va_block1));
|
||
|
|
||
|
return NV_OK;
|
||
|
}
|
||
|
|
||
|
static const NvU64 g_base_dma_addr = UVM_VA_BLOCK_SIZE;
|
||
|
|
||
|
// This function adds the mappings for all the subregions in va_block defined
|
||
|
// by page_mask. g_base_dma_addr is used as the base DMA address for the whole
|
||
|
// VA block.
|
||
|
static NV_STATUS test_pmm_sysmem_reverse_map_single(uvm_va_block_t *va_block,
|
||
|
uvm_page_mask_t *page_mask,
|
||
|
uvm_chunk_size_t split_size,
|
||
|
bool merge)
|
||
|
{
|
||
|
NV_STATUS status = NV_OK;
|
||
|
uvm_va_block_region_t subregion;
|
||
|
|
||
|
TEST_CHECK_RET(is_power_of_2(split_size));
|
||
|
TEST_CHECK_RET(split_size >= PAGE_SIZE);
|
||
|
|
||
|
for_each_va_block_subregion_in_mask(subregion, page_mask, uvm_va_block_region_from_block(va_block)) {
|
||
|
TEST_CHECK_RET(is_power_of_2(uvm_va_block_region_size(subregion)));
|
||
|
uvm_mutex_lock(&va_block->lock);
|
||
|
status = uvm_pmm_sysmem_mappings_add_gpu_mapping(&g_reverse_map,
|
||
|
g_base_dma_addr + subregion.first * PAGE_SIZE,
|
||
|
va_block->start + subregion.first * PAGE_SIZE,
|
||
|
uvm_va_block_region_size(subregion),
|
||
|
va_block,
|
||
|
UVM_ID_CPU);
|
||
|
uvm_mutex_unlock(&va_block->lock);
|
||
|
if (status != NV_OK)
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
TEST_CHECK_RET(check_reverse_map_block_page(va_block, g_base_dma_addr, page_mask) == NV_OK);
|
||
|
TEST_CHECK_RET(check_reverse_map_block_batch(va_block, g_base_dma_addr, page_mask) == NV_OK);
|
||
|
|
||
|
if (split_size != UVM_CHUNK_SIZE_MAX) {
|
||
|
for_each_va_block_subregion_in_mask(subregion, page_mask, uvm_va_block_region_from_block(va_block)) {
|
||
|
TEST_CHECK_RET(uvm_va_block_region_size(subregion) > split_size);
|
||
|
|
||
|
uvm_mutex_lock(&va_block->lock);
|
||
|
status = uvm_pmm_sysmem_mappings_split_gpu_mappings(&g_reverse_map,
|
||
|
g_base_dma_addr + subregion.first * PAGE_SIZE,
|
||
|
split_size);
|
||
|
uvm_mutex_unlock(&va_block->lock);
|
||
|
TEST_CHECK_RET(status == NV_OK);
|
||
|
}
|
||
|
|
||
|
TEST_CHECK_RET(check_reverse_map_block_page(va_block, g_base_dma_addr, page_mask) == NV_OK);
|
||
|
TEST_CHECK_RET(check_reverse_map_block_batch(va_block, g_base_dma_addr, page_mask) == NV_OK);
|
||
|
}
|
||
|
|
||
|
if (split_size != UVM_CHUNK_SIZE_MAX && merge) {
|
||
|
for_each_va_block_subregion_in_mask(subregion, page_mask, uvm_va_block_region_from_block(va_block)) {
|
||
|
uvm_pmm_sysmem_mappings_merge_gpu_mappings(&g_reverse_map,
|
||
|
g_base_dma_addr + subregion.first * PAGE_SIZE,
|
||
|
uvm_va_block_region_size(subregion));
|
||
|
}
|
||
|
|
||
|
TEST_CHECK_RET(check_reverse_map_block_page(va_block, g_base_dma_addr, page_mask) == NV_OK);
|
||
|
TEST_CHECK_RET(check_reverse_map_block_batch(va_block, g_base_dma_addr, page_mask) == NV_OK);
|
||
|
}
|
||
|
|
||
|
for_each_va_block_subregion_in_mask(subregion, page_mask, uvm_va_block_region_from_block(va_block)) {
|
||
|
NvU64 subregion_dma_addr = g_base_dma_addr + subregion.first * PAGE_SIZE;
|
||
|
|
||
|
if (split_size == UVM_CHUNK_SIZE_MAX || merge) {
|
||
|
uvm_mutex_lock(&va_block->lock);
|
||
|
uvm_pmm_sysmem_mappings_remove_gpu_mapping(&g_reverse_map, subregion_dma_addr);
|
||
|
uvm_mutex_unlock(&va_block->lock);
|
||
|
}
|
||
|
else {
|
||
|
size_t chunk;
|
||
|
size_t num_chunks = uvm_va_block_region_size(subregion) / split_size;
|
||
|
TEST_CHECK_RET(num_chunks > 1);
|
||
|
|
||
|
uvm_mutex_lock(&va_block->lock);
|
||
|
|
||
|
for (chunk = 0; chunk < num_chunks; ++chunk)
|
||
|
uvm_pmm_sysmem_mappings_remove_gpu_mapping(&g_reverse_map, subregion_dma_addr + chunk * split_size);
|
||
|
|
||
|
uvm_mutex_unlock(&va_block->lock);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
uvm_page_mask_zero(page_mask);
|
||
|
|
||
|
TEST_CHECK_RET(check_reverse_map_block_page(va_block, g_base_dma_addr, page_mask) == NV_OK);
|
||
|
TEST_CHECK_RET(check_reverse_map_block_batch(va_block, g_base_dma_addr, page_mask) == NV_OK);
|
||
|
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
static uvm_page_mask_t g_page_mask;
|
||
|
|
||
|
static NV_STATUS test_pmm_sysmem_reverse_map_single_whole(uvm_va_space_t *va_space, NvU64 addr)
|
||
|
{
|
||
|
NV_STATUS status;
|
||
|
uvm_va_block_t *va_block;
|
||
|
const bool merge_array[] = {false, true};
|
||
|
const uvm_chunk_size_t chunk_split_array[] = { UVM_CHUNK_SIZE_4K, UVM_CHUNK_SIZE_64K, UVM_CHUNK_SIZE_MAX };
|
||
|
unsigned merge_index;
|
||
|
unsigned chunk_split_index;
|
||
|
|
||
|
status = uvm_va_block_find(va_space, addr, &va_block);
|
||
|
if (status != NV_OK)
|
||
|
return status;
|
||
|
|
||
|
TEST_CHECK_RET(is_power_of_2(uvm_va_block_size(va_block)));
|
||
|
|
||
|
for (merge_index = 0; merge_index < ARRAY_SIZE(merge_array); ++merge_index) {
|
||
|
for (chunk_split_index = 0; chunk_split_index < ARRAY_SIZE(chunk_split_array); ++chunk_split_index) {
|
||
|
// The reverse map has PAGE_SIZE granularity
|
||
|
if (chunk_split_array[chunk_split_index] < PAGE_SIZE)
|
||
|
continue;
|
||
|
|
||
|
uvm_page_mask_region_fill(&g_page_mask, uvm_va_block_region_from_block(va_block));
|
||
|
|
||
|
TEST_CHECK_RET(test_pmm_sysmem_reverse_map_single(va_block,
|
||
|
&g_page_mask,
|
||
|
chunk_split_array[chunk_split_index],
|
||
|
merge_array[merge_index]) == NV_OK);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
static NV_STATUS test_pmm_sysmem_reverse_map_single_pattern(uvm_va_space_t *va_space, NvU64 addr)
|
||
|
{
|
||
|
NV_STATUS status;
|
||
|
uvm_va_block_t *va_block;
|
||
|
uvm_page_index_t page_index;
|
||
|
|
||
|
status = uvm_va_block_find(va_space, addr, &va_block);
|
||
|
if (status != NV_OK)
|
||
|
return status;
|
||
|
|
||
|
uvm_page_mask_zero(&g_page_mask);
|
||
|
|
||
|
for_each_va_block_page(page_index, va_block) {
|
||
|
if (page_index % 2 == 0)
|
||
|
uvm_page_mask_set(&g_page_mask, page_index);
|
||
|
}
|
||
|
|
||
|
return test_pmm_sysmem_reverse_map_single(va_block, &g_page_mask, UVM_CHUNK_SIZE_MAX, false);
|
||
|
}
|
||
|
|
||
|
// This function assumes that addr points at a VA range with 4 sized VA blocks
|
||
|
// with size UVM_VA_BLOCK_SIZE / 4.
|
||
|
static NV_STATUS test_pmm_sysmem_reverse_map_many_blocks(uvm_va_space_t *va_space, NvU64 addr)
|
||
|
{
|
||
|
NV_STATUS status;
|
||
|
uvm_va_block_t *va_block0;
|
||
|
uvm_va_block_t *va_block1;
|
||
|
NvU64 base_dma_addr0;
|
||
|
NvU64 base_dma_addr1;
|
||
|
|
||
|
status = uvm_va_block_find(va_space, addr + UVM_VA_BLOCK_SIZE / 4, &va_block0);
|
||
|
if (status != NV_OK)
|
||
|
return status;
|
||
|
|
||
|
status = uvm_va_block_find(va_space, addr + 3 * UVM_VA_BLOCK_SIZE / 4, &va_block1);
|
||
|
if (status != NV_OK)
|
||
|
return status;
|
||
|
|
||
|
TEST_CHECK_RET(va_block0 != va_block1);
|
||
|
|
||
|
base_dma_addr0 = g_base_dma_addr + uvm_va_block_size(va_block0);
|
||
|
base_dma_addr1 = base_dma_addr0 + uvm_va_block_size(va_block0);
|
||
|
|
||
|
TEST_CHECK_RET(is_power_of_2(uvm_va_block_size(va_block0)));
|
||
|
TEST_CHECK_RET(is_power_of_2(uvm_va_block_size(va_block1)));
|
||
|
|
||
|
uvm_mutex_lock(&va_block0->lock);
|
||
|
status = uvm_pmm_sysmem_mappings_add_gpu_mapping(&g_reverse_map,
|
||
|
base_dma_addr0,
|
||
|
va_block0->start,
|
||
|
uvm_va_block_size(va_block0),
|
||
|
va_block0,
|
||
|
UVM_ID_CPU);
|
||
|
uvm_mutex_unlock(&va_block0->lock);
|
||
|
TEST_CHECK_RET(status == NV_OK);
|
||
|
|
||
|
uvm_mutex_lock(&va_block1->lock);
|
||
|
status = uvm_pmm_sysmem_mappings_add_gpu_mapping(&g_reverse_map,
|
||
|
base_dma_addr1,
|
||
|
va_block1->start,
|
||
|
uvm_va_block_size(va_block1),
|
||
|
va_block1,
|
||
|
UVM_ID_CPU);
|
||
|
uvm_mutex_unlock(&va_block1->lock);
|
||
|
|
||
|
// Check each VA block individually
|
||
|
if (status == NV_OK) {
|
||
|
TEST_CHECK_GOTO(check_reverse_map_block_page(va_block0, base_dma_addr0, NULL) == NV_OK, error);
|
||
|
TEST_CHECK_GOTO(check_reverse_map_block_batch(va_block0, base_dma_addr0, NULL) == NV_OK, error);
|
||
|
TEST_CHECK_GOTO(check_reverse_map_block_page(va_block1, base_dma_addr1, NULL) == NV_OK, error);
|
||
|
TEST_CHECK_GOTO(check_reverse_map_block_batch(va_block1, base_dma_addr1, NULL) == NV_OK, error);
|
||
|
|
||
|
// Check both VA blocks at the same time
|
||
|
TEST_CHECK_GOTO(check_reverse_map_two_blocks_batch(g_base_dma_addr, va_block0, va_block1) == NV_OK, error);
|
||
|
|
||
|
error:
|
||
|
uvm_mutex_lock(&va_block1->lock);
|
||
|
uvm_pmm_sysmem_mappings_remove_gpu_mapping(&g_reverse_map, base_dma_addr1);
|
||
|
uvm_mutex_unlock(&va_block1->lock);
|
||
|
}
|
||
|
|
||
|
uvm_mutex_lock(&va_block0->lock);
|
||
|
uvm_pmm_sysmem_mappings_remove_gpu_mapping(&g_reverse_map, base_dma_addr0);
|
||
|
uvm_mutex_unlock(&va_block0->lock);
|
||
|
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
// This function registers a non-uniform distribution of chunks (mixing 4K and 64K chunks)
|
||
|
// and merges them back to verify that the logic is working.
|
||
|
static NV_STATUS test_pmm_sysmem_reverse_map_merge(uvm_va_space_t *va_space, NvU64 addr)
|
||
|
{
|
||
|
NV_STATUS status = NV_OK;
|
||
|
uvm_va_block_t *va_block;
|
||
|
const unsigned chunks_64k_pos[] =
|
||
|
{
|
||
|
16,
|
||
|
64,
|
||
|
96,
|
||
|
192,
|
||
|
208,
|
||
|
224,
|
||
|
288,
|
||
|
320,
|
||
|
384,
|
||
|
480
|
||
|
};
|
||
|
uvm_page_index_t page_index;
|
||
|
unsigned i;
|
||
|
|
||
|
if (PAGE_SIZE != UVM_PAGE_SIZE_4K)
|
||
|
return NV_OK;
|
||
|
|
||
|
status = uvm_va_block_find(va_space, addr, &va_block);
|
||
|
if (status != NV_OK)
|
||
|
return status;
|
||
|
|
||
|
TEST_CHECK_RET(uvm_va_block_size(va_block) == UVM_VA_BLOCK_SIZE);
|
||
|
|
||
|
page_index = 0;
|
||
|
for (i = 0; i < ARRAY_SIZE(chunks_64k_pos); ++i) {
|
||
|
// Fill with 4K mappings until the next 64K mapping
|
||
|
while (page_index < chunks_64k_pos[i]) {
|
||
|
uvm_mutex_lock(&va_block->lock);
|
||
|
status = uvm_pmm_sysmem_mappings_add_gpu_mapping(&g_reverse_map,
|
||
|
g_base_dma_addr + page_index * PAGE_SIZE,
|
||
|
uvm_va_block_cpu_page_address(va_block, page_index),
|
||
|
PAGE_SIZE,
|
||
|
va_block,
|
||
|
UVM_ID_CPU);
|
||
|
uvm_mutex_unlock(&va_block->lock);
|
||
|
TEST_CHECK_RET(status == NV_OK);
|
||
|
|
||
|
++page_index;
|
||
|
}
|
||
|
|
||
|
// Register the 64K mapping
|
||
|
uvm_mutex_lock(&va_block->lock);
|
||
|
status = uvm_pmm_sysmem_mappings_add_gpu_mapping(&g_reverse_map,
|
||
|
g_base_dma_addr + page_index * PAGE_SIZE,
|
||
|
uvm_va_block_cpu_page_address(va_block, page_index),
|
||
|
UVM_CHUNK_SIZE_64K,
|
||
|
va_block,
|
||
|
UVM_ID_CPU);
|
||
|
uvm_mutex_unlock(&va_block->lock);
|
||
|
TEST_CHECK_RET(status == NV_OK);
|
||
|
|
||
|
page_index += UVM_PAGE_SIZE_64K / PAGE_SIZE;
|
||
|
}
|
||
|
|
||
|
// Fill the tail with 4K mappings, too
|
||
|
while (page_index < PAGES_PER_UVM_VA_BLOCK) {
|
||
|
uvm_mutex_lock(&va_block->lock);
|
||
|
status = uvm_pmm_sysmem_mappings_add_gpu_mapping(&g_reverse_map,
|
||
|
g_base_dma_addr + page_index * PAGE_SIZE,
|
||
|
uvm_va_block_cpu_page_address(va_block, page_index),
|
||
|
PAGE_SIZE,
|
||
|
va_block,
|
||
|
UVM_ID_CPU);
|
||
|
uvm_mutex_unlock(&va_block->lock);
|
||
|
TEST_CHECK_RET(status == NV_OK);
|
||
|
|
||
|
++page_index;
|
||
|
}
|
||
|
|
||
|
TEST_CHECK_RET(check_reverse_map_block_page(va_block, g_base_dma_addr, NULL) == NV_OK);
|
||
|
TEST_CHECK_RET(check_reverse_map_block_batch(va_block, g_base_dma_addr, NULL) == NV_OK);
|
||
|
|
||
|
uvm_mutex_lock(&va_block->lock);
|
||
|
uvm_pmm_sysmem_mappings_merge_gpu_mappings(&g_reverse_map,
|
||
|
g_base_dma_addr,
|
||
|
uvm_va_block_size(va_block));
|
||
|
uvm_mutex_unlock(&va_block->lock);
|
||
|
|
||
|
TEST_CHECK_RET(check_reverse_map_block_page(va_block, g_base_dma_addr, NULL) == NV_OK);
|
||
|
TEST_CHECK_RET(check_reverse_map_block_batch(va_block, g_base_dma_addr, NULL) == NV_OK);
|
||
|
|
||
|
uvm_mutex_lock(&va_block->lock);
|
||
|
uvm_pmm_sysmem_mappings_remove_gpu_mapping(&g_reverse_map, g_base_dma_addr);
|
||
|
uvm_mutex_unlock(&va_block->lock);
|
||
|
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
static NV_STATUS test_pmm_sysmem_reverse_map_remove_on_eviction(uvm_va_space_t *va_space, NvU64 addr)
|
||
|
{
|
||
|
uvm_va_block_t *va_block;
|
||
|
NV_STATUS status = uvm_va_block_find(va_space, addr, &va_block);
|
||
|
|
||
|
if (status != NV_OK)
|
||
|
return status;
|
||
|
|
||
|
TEST_CHECK_RET(is_power_of_2(uvm_va_block_size(va_block)));
|
||
|
|
||
|
uvm_mutex_lock(&va_block->lock);
|
||
|
status = uvm_pmm_sysmem_mappings_add_gpu_mapping(&g_reverse_map,
|
||
|
g_base_dma_addr,
|
||
|
addr,
|
||
|
uvm_va_block_size(va_block),
|
||
|
va_block,
|
||
|
UVM_ID_CPU);
|
||
|
uvm_mutex_unlock(&va_block->lock);
|
||
|
|
||
|
uvm_mutex_lock(&va_block->lock);
|
||
|
uvm_pmm_sysmem_mappings_remove_gpu_mapping(&g_reverse_map, g_base_dma_addr);
|
||
|
uvm_mutex_unlock(&va_block->lock);
|
||
|
|
||
|
TEST_CHECK_RET(status == NV_OK);
|
||
|
|
||
|
uvm_pmm_sysmem_mappings_remove_gpu_mapping_on_eviction(&g_reverse_map, g_base_dma_addr);
|
||
|
uvm_pmm_sysmem_mappings_remove_gpu_mapping_on_eviction(&g_reverse_map, g_base_dma_addr);
|
||
|
|
||
|
return NV_OK;
|
||
|
}
|
||
|
|
||
|
static NV_STATUS test_pmm_sysmem_reverse_map(uvm_va_space_t *va_space, NvU64 addr1, NvU64 addr2)
|
||
|
{
|
||
|
NV_STATUS status = NV_OK;
|
||
|
uvm_gpu_t *gpu;
|
||
|
|
||
|
g_volta_plus_gpu = NULL;
|
||
|
|
||
|
// Find a GPU with support for access counters, since it is required to add
|
||
|
// or remove entries to the reverse map.
|
||
|
for_each_va_space_gpu(gpu, va_space) {
|
||
|
if (gpu->parent->access_counters_supported) {
|
||
|
// Initialize the reverse map.
|
||
|
status = uvm_pmm_sysmem_mappings_init(gpu, &g_reverse_map);
|
||
|
if (status != NV_OK)
|
||
|
return status;
|
||
|
|
||
|
g_volta_plus_gpu = gpu;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!g_volta_plus_gpu)
|
||
|
return NV_ERR_INVALID_DEVICE;
|
||
|
|
||
|
status = test_pmm_sysmem_reverse_map_single_whole(va_space, addr1);
|
||
|
|
||
|
if (status == NV_OK)
|
||
|
status = test_pmm_sysmem_reverse_map_single_pattern(va_space, addr1);
|
||
|
|
||
|
if (status == NV_OK)
|
||
|
status = test_pmm_sysmem_reverse_map_many_blocks(va_space, addr2);
|
||
|
|
||
|
if (status == NV_OK)
|
||
|
status = test_pmm_sysmem_reverse_map_merge(va_space, addr1);
|
||
|
|
||
|
if (status == NV_OK)
|
||
|
status = test_pmm_sysmem_reverse_map_remove_on_eviction(va_space, addr1);
|
||
|
|
||
|
uvm_pmm_sysmem_mappings_deinit(&g_reverse_map);
|
||
|
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
NV_STATUS uvm_test_pmm_sysmem(UVM_TEST_PMM_SYSMEM_PARAMS *params, struct file *filp)
|
||
|
{
|
||
|
NV_STATUS status;
|
||
|
uvm_va_space_t *va_space;
|
||
|
|
||
|
va_space = uvm_va_space_get(filp);
|
||
|
|
||
|
// Take the global lock to void interferences from different instances of
|
||
|
// the test, since we use a bunch of global variables
|
||
|
uvm_mutex_lock(&g_uvm_global.global_lock);
|
||
|
uvm_va_space_down_write(va_space);
|
||
|
|
||
|
if (uvm_pmm_sysmem_mappings_indirect_supported()) {
|
||
|
status = test_pmm_sysmem_reverse_map(va_space, params->range_address1, params->range_address2);
|
||
|
}
|
||
|
else {
|
||
|
UVM_TEST_PRINT("Skipping kernel_driver_pmm_sysmem test due to lack of support for radix_tree_replace_slot in Linux 4.10");
|
||
|
status = NV_OK;
|
||
|
}
|
||
|
|
||
|
uvm_va_space_up_write(va_space);
|
||
|
uvm_mutex_unlock(&g_uvm_global.global_lock);
|
||
|
|
||
|
return status;
|
||
|
}
|