open-gpu-kernel-modules/kernel-open/nvidia/os-interface.c

2137 lines
45 KiB
C
Raw Normal View History

2022-05-09 22:18:59 +02:00
/*
* SPDX-FileCopyrightText: Copyright (c) 1999-2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#define __NO_VERSION__
#include "os-interface.h"
#include "nv-linux.h"
#include "nv-time.h"
extern char *NVreg_TemporaryFilePath;
#define MAX_ERROR_STRING 512
static char nv_error_string[MAX_ERROR_STRING];
nv_spinlock_t nv_error_string_lock;
extern nv_linux_state_t nv_ctl_device;
extern nv_kthread_q_t nv_kthread_q;
NvU32 os_page_size = PAGE_SIZE;
NvU64 os_page_mask = NV_PAGE_MASK;
NvU8 os_page_shift = PAGE_SHIFT;
NvU32 os_sev_status = 0;
NvBool os_sev_enabled = 0;
#if defined(CONFIG_DMA_SHARED_BUFFER)
NvBool os_dma_buf_enabled = NV_TRUE;
#else
NvBool os_dma_buf_enabled = NV_FALSE;
#endif // CONFIG_DMA_SHARED_BUFFER
void NV_API_CALL os_disable_console_access(void)
{
console_lock();
}
void NV_API_CALL os_enable_console_access(void)
{
console_unlock();
}
typedef struct semaphore os_mutex_t;
//
// os_alloc_mutex - Allocate the RM mutex
//
// ppMutex - filled in with pointer to opaque structure to mutex data type
//
NV_STATUS NV_API_CALL os_alloc_mutex
(
void **ppMutex
)
{
NV_STATUS rmStatus;
os_mutex_t *os_mutex;
rmStatus = os_alloc_mem(ppMutex, sizeof(os_mutex_t));
if (rmStatus != NV_OK)
{
nv_printf(NV_DBG_ERRORS, "NVRM: failed to allocate mutex!\n");
return rmStatus;
}
os_mutex = (os_mutex_t *)*ppMutex;
NV_INIT_MUTEX(os_mutex);
return NV_OK;
}
//
// os_free_mutex - Free resources associated with mutex allocated
// via os_alloc_mutex above.
//
// pMutex - Pointer to opaque structure to mutex data type
//
void NV_API_CALL os_free_mutex
(
void *pMutex
)
{
os_mutex_t *os_mutex = (os_mutex_t *)pMutex;
if (os_mutex != NULL)
{
os_free_mem(pMutex);
}
}
//
// pMutex - Pointer to opaque structure to mutex data type
//
NV_STATUS NV_API_CALL os_acquire_mutex
(
void *pMutex
)
{
os_mutex_t *os_mutex = (os_mutex_t *)pMutex;
if (!NV_MAY_SLEEP())
{
return NV_ERR_INVALID_REQUEST;
}
down(os_mutex);
return NV_OK;
}
NV_STATUS NV_API_CALL os_cond_acquire_mutex
(
void * pMutex
)
{
os_mutex_t *os_mutex = (os_mutex_t *)pMutex;
if (!NV_MAY_SLEEP())
{
return NV_ERR_INVALID_REQUEST;
}
if (down_trylock(os_mutex))
{
return NV_ERR_TIMEOUT_RETRY;
}
return NV_OK;
}
void NV_API_CALL os_release_mutex
(
void *pMutex
)
{
os_mutex_t *os_mutex = (os_mutex_t *)pMutex;
up(os_mutex);
}
typedef struct semaphore os_semaphore_t;
void* NV_API_CALL os_alloc_semaphore
(
NvU32 initialValue
)
{
NV_STATUS rmStatus;
os_semaphore_t *os_sema;
rmStatus = os_alloc_mem((void *)&os_sema, sizeof(os_semaphore_t));
if (rmStatus != NV_OK)
{
nv_printf(NV_DBG_ERRORS, "NVRM: failed to allocate semaphore!\n");
return NULL;
}
NV_INIT_SEMA(os_sema, initialValue);
return (void *)os_sema;
}
void NV_API_CALL os_free_semaphore
(
void *pSema
)
{
os_semaphore_t *os_sema = (os_semaphore_t *)pSema;
os_free_mem(os_sema);
}
NV_STATUS NV_API_CALL os_acquire_semaphore
(
void *pSema
)
{
os_semaphore_t *os_sema = (os_semaphore_t *)pSema;
if (!NV_MAY_SLEEP())
{
return NV_ERR_INVALID_REQUEST;
}
down(os_sema);
return NV_OK;
}
NV_STATUS NV_API_CALL os_cond_acquire_semaphore
(
void * pSema
)
{
os_semaphore_t *os_sema = (os_semaphore_t *)pSema;
//
// NOTE: down_trylock() is safe to call from IRQ, se we don't need an
// NV_MAY_SLEEP() check here. We do check it in os_cond_acquire_mutex(),
// even though it is also calling down_trylock(), since that keeps it
// in line with the kernel's 'struct mutex' API.
//
if (down_trylock(os_sema))
{
return NV_ERR_TIMEOUT_RETRY;
}
return NV_OK;
}
NV_STATUS NV_API_CALL os_release_semaphore
(
void *pSema
)
{
os_semaphore_t *os_sema = (os_semaphore_t *)pSema;
up(os_sema);
return NV_OK;
}
NvBool NV_API_CALL os_semaphore_may_sleep(void)
{
return NV_MAY_SLEEP();
}
NvBool NV_API_CALL os_is_isr(void)
{
return (in_irq());
}
// return TRUE if the caller is the super-user
NvBool NV_API_CALL os_is_administrator(void)
{
return NV_IS_SUSER();
}
NvBool NV_API_CALL os_allow_priority_override(void)
{
return capable(CAP_SYS_NICE);
}
NvU64 NV_API_CALL os_get_num_phys_pages(void)
{
return (NvU64)NV_NUM_PHYSPAGES;
}
char* NV_API_CALL os_string_copy(
char *dst,
const char *src
)
{
return strcpy(dst, src);
}
NvU32 NV_API_CALL os_string_length(
const char* str
)
{
return strlen(str);
}
NvU32 NV_API_CALL os_strtoul(const char *str, char **endp, NvU32 base)
{
return (NvU32)simple_strtoul(str, endp, base);
}
NvS32 NV_API_CALL os_string_compare(const char *str1, const char *str2)
{
return strcmp(str1, str2);
}
void *os_mem_copy_custom(
void *dstPtr,
const void *srcPtr,
NvU32 length
)
{
void *ret = dstPtr;
NvU32 dwords, bytes = length;
NvU8 *dst = dstPtr;
const NvU8 *src = srcPtr;
if ((length >= 128) &&
(((NvUPtr)dst & 3) == 0) & (((NvUPtr)src & 3) == 0))
{
dwords = (length / sizeof(NvU32));
bytes = (length % sizeof(NvU32));
while (dwords != 0)
{
*(NvU32 *)dst = *(const NvU32 *)src;
dst += sizeof(NvU32);
src += sizeof(NvU32);
dwords--;
}
}
while (bytes != 0)
{
*dst = *src;
dst++;
src++;
bytes--;
}
return ret;
}
void *NV_API_CALL os_mem_copy(
void *dst,
const void *src,
NvU32 length
)
{
#if defined(NVCPU_AARCH64)
/*
* TODO: Remove once memset/memcpy restructure is complete
*
* When performing memcpy for memory mapped as device, memcpy_[to/from]io
* must be used. WAR to check the source and destination to determine the
* correct memcpy_io to use.
*
* This WAR is limited to just aarch64 for now because the address range used
* to map ioremap and vmalloc is different on ppc64le, and is_vmalloc_addr()
* does not correctly handle this. is_ioremap_addr() is needed instead. This
* will have to be addressed when reorganizing RM to use the new memset model.
*/
if (is_vmalloc_addr(dst) && !is_vmalloc_addr(src))
{
memcpy_toio(dst, src, length);
return dst;
}
else if (!is_vmalloc_addr(dst) && is_vmalloc_addr(src))
{
memcpy_fromio(dst, src, length);
return dst;
}
else if (is_vmalloc_addr(dst) && is_vmalloc_addr(src))
{
return os_mem_copy_custom(dst, src, length);
}
else
#endif
{
#if defined(CONFIG_CC_OPTIMIZE_FOR_SIZE)
/*
* When the kernel is configured with CC_OPTIMIZE_FOR_SIZE=y, Kbuild uses
* -Os universally. With -Os, GCC will aggressively inline builtins, even
* if -fno-builtin is specified, including memcpy with a tiny byte-copy
* loop on x86 (rep movsb). This is horrible for performance - a strict
* dword copy is much faster - so when we detect this case, just provide
* our own implementation.
*/
return os_mem_copy_custom(dst, src, length);
#else
/*
* Generally speaking, the kernel-provided memcpy will be the fastest,
* (optimized much better for the target architecture than the above
* loop), so we want to use that whenever we can get to it.
*/
return memcpy(dst, src, length);
#endif
}
}
NV_STATUS NV_API_CALL os_memcpy_from_user(
void *to,
const void *from,
NvU32 n
)
{
return (NV_COPY_FROM_USER(to, from, n) ? NV_ERR_INVALID_ADDRESS : NV_OK);
}
NV_STATUS NV_API_CALL os_memcpy_to_user(
void *to,
const void *from,
NvU32 n
)
{
return (NV_COPY_TO_USER(to, from, n) ? NV_ERR_INVALID_ADDRESS : NV_OK);
}
void* NV_API_CALL os_mem_set(
void *dst,
NvU8 c,
NvU32 length
)
{
#if defined(NVCPU_AARCH64)
/*
* TODO: Remove once memset/memcpy restructure is complete
*
* WAR to check the destination to determine if the memory is of type Device
* or Normal, and use the correct memset.
*
* This WAR is limited to just aarch64 for now because the address range used
* to map ioremap and vmalloc is different on ppc64le, and is_vmalloc_addr()
* does not correctly handle this. is_ioremap_addr() is needed instead. This
* will have to be addressed when reorganizing RM to use the new memset model.
*/
if (is_vmalloc_addr(dst))
{
memset_io(dst, (int)c, length);
return dst;
}
else
#endif
return memset(dst, (int)c, length);
}
NvS32 NV_API_CALL os_mem_cmp(
const NvU8 *buf0,
const NvU8* buf1,
NvU32 length
)
{
return memcmp(buf0, buf1, length);
}
/*
* Operating System Memory Functions
*
* There are 2 interesting aspects of resource manager memory allocations
* that need special consideration on Linux:
*
* 1. They are typically very large, (e.g. single allocations of 164KB)
*
* 2. The resource manager assumes that it can safely allocate memory in
* interrupt handlers.
*
* The first requires that we call vmalloc, the second kmalloc. We decide
* which one to use at run time, based on the size of the request and the
* context. Allocations larger than 128KB require vmalloc, in the context
* of an ISR they fail.
*/
#if defined(NV_VGX_HYPER)
/*
* Citrix Hypervisor-8.0 Dom0 sysmem ends up getting fragmented because
* of which high-order kmalloc allocations fail. We try to avoid it by
* requesting allocations not larger than 8K.
*
* KVM will be affected low memory pressure situation a lot,
* particularly if hugetlbfs hugepages are being used. Hence, 8K applies
* here too.
*/
#define KMALLOC_LIMIT 8192
#else
#define KMALLOC_LIMIT 131072
#endif
#define VMALLOC_ALLOCATION_SIZE_FLAG (1 << 0)
NV_STATUS NV_API_CALL os_alloc_mem(
void **address,
NvU64 size
)
{
unsigned long alloc_size;
if (address == NULL)
return NV_ERR_INVALID_ARGUMENT;
*address = NULL;
NV_MEM_TRACKING_PAD_SIZE(size);
//
// NV_KMALLOC, nv_vmalloc take an input of 4 bytes in x86. To avoid
// truncation and wrong allocation, below check is required.
//
alloc_size = size;
if (alloc_size != size)
return NV_ERR_INVALID_PARAMETER;
if (!NV_MAY_SLEEP())
{
if (alloc_size <= KMALLOC_LIMIT)
NV_KMALLOC_ATOMIC(*address, alloc_size);
}
else
{
if (alloc_size <= KMALLOC_LIMIT)
{
NV_KMALLOC_NO_OOM(*address, alloc_size);
}
if (*address == NULL)
{
*address = nv_vmalloc(alloc_size);
alloc_size |= VMALLOC_ALLOCATION_SIZE_FLAG;
}
}
NV_MEM_TRACKING_HIDE_SIZE(address, alloc_size);
return ((*address != NULL) ? NV_OK : NV_ERR_NO_MEMORY);
}
void NV_API_CALL os_free_mem(void *address)
{
NvU32 size;
NV_MEM_TRACKING_RETRIEVE_SIZE(address, size);
if (size & VMALLOC_ALLOCATION_SIZE_FLAG)
{
size &= ~VMALLOC_ALLOCATION_SIZE_FLAG;
nv_vfree(address, size);
}
else
NV_KFREE(address, size);
}
/*****************************************************************************
*
* Name: osGetCurrentTime
*
*****************************************************************************/
NV_STATUS NV_API_CALL os_get_current_time(
NvU32 *seconds,
NvU32 *useconds
)
{
struct timespec64 tm;
ktime_get_real_ts64(&tm);
*seconds = tm.tv_sec;
*useconds = tm.tv_nsec / NSEC_PER_USEC;
return NV_OK;
}
//
// Get the High resolution tick count of the system uptime
//
NvU64 NV_API_CALL os_get_current_tick_hr(void)
{
struct timespec64 tm;
ktime_get_raw_ts64(&tm);
return (NvU64) timespec64_to_ns(&tm);
}
#if BITS_PER_LONG >= 64
NvU64 NV_API_CALL os_get_current_tick(void)
{
#if defined(NV_JIFFIES_TO_TIMESPEC_PRESENT)
struct timespec ts;
jiffies_to_timespec(jiffies, &ts);
return (NvU64) timespec_to_ns(&ts);
#else
struct timespec64 ts;
jiffies_to_timespec64(jiffies, &ts);
return (NvU64) timespec64_to_ns(&ts);
#endif
}
NvU64 NV_API_CALL os_get_tick_resolution(void)
{
return (NvU64)jiffies_to_usecs(1) * NSEC_PER_USEC;
}
#else
NvU64 NV_API_CALL os_get_current_tick(void)
{
/*
* 'jiffies' overflows regularly on 32-bit builds (unsigned long is 4 bytes
* instead of 8 bytes), so it's unwise to build a tick counter on it, since
* the rest of the Resman assumes the 'tick' returned from this function is
* monotonically increasing and never overflows.
*
* Instead, use the previous implementation that we've lived with since the
* beginning, which uses system clock time to calculate the tick. This is
* subject to problems if the system clock time changes dramatically
* (more than a second or so) while the Resman is actively tracking a
* timeout.
*/
NvU32 seconds, useconds;
(void) os_get_current_time(&seconds, &useconds);
return ((NvU64)seconds * NSEC_PER_SEC +
(NvU64)useconds * NSEC_PER_USEC);
}
NvU64 NV_API_CALL os_get_tick_resolution(void)
{
/*
* os_get_current_tick() uses os_get_current_time(), which has
* microsecond resolution.
*/
return 1000ULL;
}
#endif
//---------------------------------------------------------------------------
//
// Misc services.
//
//---------------------------------------------------------------------------
NV_STATUS NV_API_CALL os_delay_us(NvU32 MicroSeconds)
{
return nv_sleep_us(MicroSeconds);
}
NV_STATUS NV_API_CALL os_delay(NvU32 MilliSeconds)
{
return nv_sleep_ms(MilliSeconds);
}
NvU64 NV_API_CALL os_get_cpu_frequency(void)
{
NvU64 cpu_hz = 0;
#if defined(CONFIG_CPU_FREQ)
cpu_hz = (cpufreq_get(0) * 1000);
#elif defined(NVCPU_X86_64)
NvU64 tsc[2];
tsc[0] = nv_rdtsc();
mdelay(250);
tsc[1] = nv_rdtsc();
cpu_hz = ((tsc[1] - tsc[0]) * 4);
#endif
return cpu_hz;
}
NvU32 NV_API_CALL os_get_current_process(void)
{
return NV_GET_CURRENT_PROCESS();
}
void NV_API_CALL os_get_current_process_name(char *buf, NvU32 len)
{
task_lock(current);
strncpy(buf, current->comm, len - 1);
buf[len - 1] = '\0';
task_unlock(current);
}
NV_STATUS NV_API_CALL os_get_current_thread(NvU64 *threadId)
{
if (in_interrupt())
*threadId = 0;
else
*threadId = (NvU64) current->pid;
return NV_OK;
}
/*******************************************************************************/
/* */
/* Debug and logging utilities follow */
/* */
/*******************************************************************************/
// The current debug display level (default to maximum debug level)
NvU32 cur_debuglevel = 0xffffffff;
/*
* The binary core of RM (nv-kernel.o) calls both out_string, and nv_printf.
*/
inline void NV_API_CALL out_string(const char *str)
{
printk("%s", str);
}
/*
* nv_printf() prints to the kernel log for the driver.
* Returns the number of characters written.
*/
int NV_API_CALL nv_printf(NvU32 debuglevel, const char *printf_format, ...)
{
va_list arglist;
int chars_written = 0;
if (debuglevel >= ((cur_debuglevel >> 4) & 0x3))
{
size_t length;
char *temp;
// When printk is called to extend the output of the previous line
// (i.e. when the previous line did not end in \n), the printk call
// must contain KERN_CONT. Older kernels still print the line
// correctly, but KERN_CONT was technically always required.
// This means that every call to printk() needs to have a KERN_xxx
// prefix. The only way to get this is to rebuild the format string
// into a new buffer, with a KERN_xxx prefix prepended.
// Unfortunately, we can't guarantee that two calls to nv_printf()
// won't be interrupted by a printk from another driver. So to be
// safe, we always append KERN_CONT. It's still technically wrong,
// but it works.
// The long-term fix is to modify all NV_PRINTF-ish calls so that the
// string always contains only one \n (at the end) and NV_PRINTF_EX
// is deleted. But that is unlikely to ever happen.
length = strlen(printf_format);
if (length < 1)
return 0;
temp = kmalloc(length + sizeof(KERN_CONT), GFP_ATOMIC);
if (!temp)
return 0;
// KERN_CONT changed in the 3.6 kernel, so we can't assume its
// composition or size.
memcpy(temp, KERN_CONT, sizeof(KERN_CONT) - 1);
memcpy(temp + sizeof(KERN_CONT) - 1, printf_format, length + 1);
va_start(arglist, printf_format);
chars_written = vprintk(temp, arglist);
va_end(arglist);
kfree(temp);
}
return chars_written;
}
NvS32 NV_API_CALL os_snprintf(char *buf, NvU32 size, const char *fmt, ...)
{
va_list arglist;
int chars_written;
va_start(arglist, fmt);
chars_written = vsnprintf(buf, size, fmt, arglist);
va_end(arglist);
return chars_written;
}
NvS32 NV_API_CALL os_vsnprintf(char *buf, NvU32 size, const char *fmt, va_list arglist)
{
return vsnprintf(buf, size, fmt, arglist);
}
void NV_API_CALL os_log_error(const char *fmt, va_list ap)
{
unsigned long flags;
NV_SPIN_LOCK_IRQSAVE(&nv_error_string_lock, flags);
vsnprintf(nv_error_string, MAX_ERROR_STRING, fmt, ap);
nv_error_string[MAX_ERROR_STRING - 1] = 0;
printk(KERN_ERR "%s", nv_error_string);
NV_SPIN_UNLOCK_IRQRESTORE(&nv_error_string_lock, flags);
}
void NV_API_CALL os_io_write_byte(
NvU32 address,
NvU8 value
)
{
outb(value, address);
}
void NV_API_CALL os_io_write_word(
NvU32 address,
NvU16 value
)
{
outw(value, address);
}
void NV_API_CALL os_io_write_dword(
NvU32 address,
NvU32 value
)
{
outl(value, address);
}
NvU8 NV_API_CALL os_io_read_byte(
NvU32 address
)
{
return inb(address);
}
NvU16 NV_API_CALL os_io_read_word(
NvU32 address
)
{
return inw(address);
}
NvU32 NV_API_CALL os_io_read_dword(
NvU32 address
)
{
return inl(address);
}
static NvBool NV_API_CALL xen_support_fully_virtualized_kernel(void)
{
#if defined(NV_XEN_SUPPORT_FULLY_VIRTUALIZED_KERNEL)
return (os_is_vgx_hyper());
#endif
return NV_FALSE;
}
void* NV_API_CALL os_map_kernel_space(
NvU64 start,
NvU64 size_bytes,
NvU32 mode
)
{
void *vaddr;
if (!xen_support_fully_virtualized_kernel() && start == 0)
{
if (mode != NV_MEMORY_CACHED)
{
nv_printf(NV_DBG_ERRORS,
"NVRM: os_map_kernel_space: won't map address 0x%0llx UC!\n", start);
return NULL;
}
else
return (void *)PAGE_OFFSET;
}
if (!NV_MAY_SLEEP())
{
nv_printf(NV_DBG_ERRORS,
"NVRM: os_map_kernel_space: can't map 0x%0llx, invalid context!\n", start);
os_dbg_breakpoint();
return NULL;
}
switch (mode)
{
case NV_MEMORY_CACHED:
vaddr = nv_ioremap_cache(start, size_bytes);
break;
case NV_MEMORY_WRITECOMBINED:
vaddr = rm_disable_iomap_wc() ?
nv_ioremap_nocache(start, size_bytes) :
nv_ioremap_wc(start, size_bytes);
break;
case NV_MEMORY_UNCACHED:
case NV_MEMORY_DEFAULT:
vaddr = nv_ioremap_nocache(start, size_bytes);
break;
default:
nv_printf(NV_DBG_ERRORS,
"NVRM: os_map_kernel_space: unsupported mode!\n");
return NULL;
}
return vaddr;
}
void NV_API_CALL os_unmap_kernel_space(
void *addr,
NvU64 size_bytes
)
{
if (addr == (void *)PAGE_OFFSET)
return;
nv_iounmap(addr, size_bytes);
}
// flush the cpu's cache, uni-processor version
NV_STATUS NV_API_CALL os_flush_cpu_cache(void)
{
CACHE_FLUSH();
return NV_OK;
}
// flush the cache of all cpus
NV_STATUS NV_API_CALL os_flush_cpu_cache_all(void)
{
#if defined(NVCPU_AARCH64)
CACHE_FLUSH_ALL();
return NV_OK;
#endif
return NV_ERR_NOT_SUPPORTED;
}
NV_STATUS NV_API_CALL os_flush_user_cache(void)
{
#if defined(NVCPU_AARCH64)
if (!NV_MAY_SLEEP())
{
return NV_ERR_NOT_SUPPORTED;
}
//
// The Linux kernel does not export an interface for flushing a range,
// although it is possible. For now, just flush the entire cache to be
// safe.
//
CACHE_FLUSH_ALL();
return NV_OK;
#else
return NV_ERR_NOT_SUPPORTED;
#endif
}
void NV_API_CALL os_flush_cpu_write_combine_buffer(void)
{
WRITE_COMBINE_FLUSH();
}
// override initial debug level from registry
void NV_API_CALL os_dbg_init(void)
{
NvU32 new_debuglevel;
nvidia_stack_t *sp = NULL;
NV_SPIN_LOCK_INIT(&nv_error_string_lock);
if (nv_kmem_cache_alloc_stack(&sp) != 0)
{
return;
}
if (NV_OK == rm_read_registry_dword(sp, NULL,
"ResmanDebugLevel",
&new_debuglevel))
{
if (new_debuglevel != (NvU32)~0)
cur_debuglevel = new_debuglevel;
}
nv_kmem_cache_free_stack(sp);
}
void NV_API_CALL os_dbg_set_level(NvU32 new_debuglevel)
{
nv_printf(NV_DBG_SETUP, "NVRM: Changing debuglevel from 0x%x to 0x%x\n",
cur_debuglevel, new_debuglevel);
cur_debuglevel = new_debuglevel;
}
NV_STATUS NV_API_CALL os_schedule(void)
{
if (NV_MAY_SLEEP())
{
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(1);
return NV_OK;
}
else
{
nv_printf(NV_DBG_ERRORS, "NVRM: os_schedule: Attempted to yield"
" the CPU while in atomic or interrupt"
" context\n");
return NV_ERR_ILLEGAL_ACTION;
}
}
typedef struct {
nv_kthread_q_item_t item;
void *data;
} os_queue_data_t;
static void os_execute_work_item(void *_oqd)
{
os_queue_data_t *oqd = _oqd;
nvidia_stack_t *sp = NULL;
void *data = oqd->data;
NV_KFREE(oqd, sizeof(os_queue_data_t));
if (nv_kmem_cache_alloc_stack(&sp) != 0)
{
return;
}
rm_execute_work_item(sp, data);
nv_kmem_cache_free_stack(sp);
}
NV_STATUS NV_API_CALL os_queue_work_item(struct os_work_queue *queue, void *data)
{
os_queue_data_t *oqd;
nv_kthread_q_t *kthread;
/* Use the global queue unless a valid queue was provided */
kthread = queue ? &queue->nvk : &nv_kthread_q;
/* Make sure the kthread is active */
if (unlikely(!kthread->q_kthread)) {
nv_printf(NV_DBG_ERRORS, "NVRM: queue is not enabled\n");
return NV_ERR_NOT_READY;
}
/* Allocate atomically just in case we're called in atomic context. */
NV_KMALLOC_ATOMIC(oqd, sizeof(os_queue_data_t));
if (!oqd)
return NV_ERR_NO_MEMORY;
nv_kthread_q_item_init(&oqd->item, os_execute_work_item, oqd);
oqd->data = data;
nv_kthread_q_schedule_q_item(kthread, &oqd->item);
return NV_OK;
}
NV_STATUS NV_API_CALL os_flush_work_queue(struct os_work_queue *queue)
{
nv_kthread_q_t *kthread;
/* Use the global queue unless a valid queue was provided */
kthread = queue ? &queue->nvk : &nv_kthread_q;
if (NV_MAY_SLEEP())
{
if (kthread->q_kthread)
nv_kthread_q_flush(kthread);
return NV_OK;
}
else
{
nv_printf(NV_DBG_ERRORS,
"NVRM: os_flush_work_queue: attempted to execute passive"
"work from an atomic or interrupt context.\n");
return NV_ERR_ILLEGAL_ACTION;
}
}
extern NvU32 NVreg_EnableDbgBreakpoint;
void NV_API_CALL os_dbg_breakpoint(void)
{
if (NVreg_EnableDbgBreakpoint == 0)
{
return;
}
#if defined(CONFIG_X86_REMOTE_DEBUG) || defined(CONFIG_KGDB) || defined(CONFIG_XMON)
#if defined(NVCPU_X86_64)
__asm__ __volatile__ ("int $3");
#elif defined(NVCPU_ARM)
__asm__ __volatile__ (".word %c0" :: "i" (KGDB_COMPILED_BREAK));
#elif defined(NVCPU_AARCH64)
# warning "Need to implement os_dbg_breakpoint() for aarch64"
#elif defined(NVCPU_PPC64LE)
__asm__ __volatile__ ("trap");
#endif // NVCPU_*
#elif defined(CONFIG_KDB)
KDB_ENTER();
#endif // CONFIG_X86_REMOTE_DEBUG || CONFIG_KGDB || CONFIG_XMON
}
NvU32 NV_API_CALL os_get_cpu_number()
{
NvU32 cpu_id = get_cpu();
put_cpu();
return cpu_id;
}
NvU32 NV_API_CALL os_get_cpu_count()
{
return NV_NUM_CPUS();
}
NvBool NV_API_CALL os_pat_supported(void)
{
return (nv_pat_mode != NV_PAT_MODE_DISABLED);
}
NvBool NV_API_CALL os_is_efi_enabled(void)
{
return NV_EFI_ENABLED();
}
void NV_API_CALL os_get_screen_info(
NvU64 *pPhysicalAddress,
NvU16 *pFbWidth,
NvU16 *pFbHeight,
NvU16 *pFbDepth,
NvU16 *pFbPitch,
NvU64 consoleBar1Address,
NvU64 consoleBar2Address
)
{
#if defined(CONFIG_FB)
int i;
*pPhysicalAddress = 0;
*pFbWidth = *pFbHeight = *pFbDepth = *pFbPitch = 0;
for (i = 0; i < num_registered_fb; i++)
{
if (!registered_fb[i])
continue;
/* Make sure base address is mapped to GPU BAR */
if ((registered_fb[i]->fix.smem_start == consoleBar1Address) ||
(registered_fb[i]->fix.smem_start == consoleBar2Address))
{
*pPhysicalAddress = registered_fb[i]->fix.smem_start;
*pFbWidth = registered_fb[i]->var.xres;
*pFbHeight = registered_fb[i]->var.yres;
*pFbDepth = registered_fb[i]->var.bits_per_pixel;
*pFbPitch = registered_fb[i]->fix.line_length;
break;
}
}
#else
*pPhysicalAddress = 0;
*pFbWidth = *pFbHeight = *pFbDepth = *pFbPitch = 0;
#endif
}
void NV_API_CALL os_dump_stack()
{
dump_stack();
}
typedef struct os_spinlock_s
{
nv_spinlock_t lock;
unsigned long eflags;
} os_spinlock_t;
NV_STATUS NV_API_CALL os_alloc_spinlock(void **ppSpinlock)
{
NV_STATUS rmStatus;
os_spinlock_t *os_spinlock;
rmStatus = os_alloc_mem(ppSpinlock, sizeof(os_spinlock_t));
if (rmStatus != NV_OK)
{
nv_printf(NV_DBG_ERRORS, "NVRM: failed to allocate spinlock!\n");
return rmStatus;
}
os_spinlock = (os_spinlock_t *)*ppSpinlock;
NV_SPIN_LOCK_INIT(&os_spinlock->lock);
os_spinlock->eflags = 0;
return NV_OK;
}
void NV_API_CALL os_free_spinlock(void *pSpinlock)
{
os_free_mem(pSpinlock);
}
NvU64 NV_API_CALL os_acquire_spinlock(void *pSpinlock)
{
os_spinlock_t *os_spinlock = (os_spinlock_t *)pSpinlock;
unsigned long eflags;
NV_SPIN_LOCK_IRQSAVE(&os_spinlock->lock, eflags);
os_spinlock->eflags = eflags;
#if defined(NVCPU_X86_64)
eflags &= X86_EFLAGS_IF;
#elif defined(NVCPU_AARCH64)
eflags &= PSR_I_BIT;
#endif
return eflags;
}
void NV_API_CALL os_release_spinlock(void *pSpinlock, NvU64 oldIrql)
{
os_spinlock_t *os_spinlock = (os_spinlock_t *)pSpinlock;
unsigned long eflags;
eflags = os_spinlock->eflags;
os_spinlock->eflags = 0;
NV_SPIN_UNLOCK_IRQRESTORE(&os_spinlock->lock, eflags);
}
#define NV_KERNEL_RELEASE ((LINUX_VERSION_CODE >> 16) & 0x0ff)
#define NV_KERNEL_VERSION ((LINUX_VERSION_CODE >> 8) & 0x0ff)
#define NV_KERNEL_SUBVERSION ((LINUX_VERSION_CODE) & 0x0ff)
NV_STATUS NV_API_CALL os_get_version_info(os_version_info * pOsVersionInfo)
{
NV_STATUS status = NV_OK;
pOsVersionInfo->os_major_version = NV_KERNEL_RELEASE;
pOsVersionInfo->os_minor_version = NV_KERNEL_VERSION;
pOsVersionInfo->os_build_number = NV_KERNEL_SUBVERSION;
#if defined(UTS_RELEASE)
pOsVersionInfo->os_build_version_str = UTS_RELEASE;
#endif
#if defined(UTS_VERSION)
pOsVersionInfo->os_build_date_plus_str = UTS_VERSION;
#endif
return status;
}
NvBool NV_API_CALL os_is_xen_dom0(void)
{
#if defined(NV_DOM0_KERNEL_PRESENT)
return NV_TRUE;
#else
return NV_FALSE;
#endif
}
NvBool NV_API_CALL os_is_vgx_hyper(void)
{
#if defined(NV_VGX_HYPER)
return NV_TRUE;
#else
return NV_FALSE;
#endif
}
NV_STATUS NV_API_CALL os_inject_vgx_msi(NvU16 guestID, NvU64 msiAddr, NvU32 msiData)
{
#if defined(NV_VGX_HYPER) && defined(NV_DOM0_KERNEL_PRESENT) && \
defined(NV_XEN_IOEMU_INJECT_MSI)
int rc = 0;
rc = xen_ioemu_inject_msi(guestID, msiAddr, msiData);
if (rc)
{
nv_printf(NV_DBG_ERRORS,
"NVRM: %s: can't inject MSI to guest:%d, addr:0x%x, data:0x%x, err:%d\n",
__FUNCTION__, guestID, msiAddr, msiData, rc);
return NV_ERR_OPERATING_SYSTEM;
}
return NV_OK;
#else
return NV_ERR_NOT_SUPPORTED;
#endif
}
NvBool NV_API_CALL os_is_grid_supported(void)
{
#if defined(NV_GRID_BUILD)
return NV_TRUE;
#else
return NV_FALSE;
#endif
}
NvU32 NV_API_CALL os_get_grid_csp_support(void)
{
#if defined(NV_GRID_BUILD_CSP)
return NV_GRID_BUILD_CSP;
#else
return 0;
#endif
}
void NV_API_CALL os_bug_check(NvU32 bugCode, const char *bugCodeStr)
{
panic(bugCodeStr);
}
NV_STATUS NV_API_CALL os_get_euid(NvU32 *pSecToken)
{
*pSecToken = NV_CURRENT_EUID();
return NV_OK;
}
// These functions are needed only on x86_64 platforms.
#if defined(NVCPU_X86_64)
static NvBool os_verify_checksum(const NvU8 *pMappedAddr, NvU32 length)
{
NvU8 sum = 0;
NvU32 iter = 0;
for (iter = 0; iter < length; iter++)
sum += pMappedAddr[iter];
return sum == 0;
}
#define _VERIFY_SMBIOS3(_pMappedAddr) \
_pMappedAddr && \
(os_mem_cmp(_pMappedAddr, "_SM3_", 5) == 0 && \
_pMappedAddr[6] < 32 && \
_pMappedAddr[6] > 0 && \
os_verify_checksum(_pMappedAddr, _pMappedAddr[6]))
#define OS_VERIFY_SMBIOS3(pMappedAddr) _VERIFY_SMBIOS3((pMappedAddr))
#define _VERIFY_SMBIOS(_pMappedAddr) \
_pMappedAddr && \
(os_mem_cmp(_pMappedAddr, "_SM_", 4) == 0 && \
_pMappedAddr[5] < 32 && \
_pMappedAddr[5] > 0 && \
os_verify_checksum(_pMappedAddr, _pMappedAddr[5]) && \
os_mem_cmp((_pMappedAddr + 16), "_DMI_", 5) == 0 && \
os_verify_checksum((_pMappedAddr + 16), 15))
#define OS_VERIFY_SMBIOS(pMappedAddr) _VERIFY_SMBIOS((pMappedAddr))
#define SMBIOS_LEGACY_BASE 0xF0000
#define SMBIOS_LEGACY_SIZE 0x10000
static NV_STATUS os_get_smbios_header_legacy(NvU64 *pSmbsAddr)
{
NV_STATUS status = NV_ERR_OPERATING_SYSTEM;
NvU8 *pMappedAddr = NULL;
NvU8 *pIterAddr = NULL;
pMappedAddr = (NvU8*)os_map_kernel_space(SMBIOS_LEGACY_BASE,
SMBIOS_LEGACY_SIZE,
NV_MEMORY_CACHED);
if (pMappedAddr == NULL)
{
return NV_ERR_INSUFFICIENT_RESOURCES;
}
pIterAddr = pMappedAddr;
for (; pIterAddr < (pMappedAddr + SMBIOS_LEGACY_SIZE); pIterAddr += 16)
{
if (OS_VERIFY_SMBIOS3(pIterAddr))
{
*pSmbsAddr = SMBIOS_LEGACY_BASE + (pIterAddr - pMappedAddr);
status = NV_OK;
break;
}
if (OS_VERIFY_SMBIOS(pIterAddr))
{
*pSmbsAddr = SMBIOS_LEGACY_BASE + (pIterAddr - pMappedAddr);
status = NV_OK;
break;
}
}
os_unmap_kernel_space(pMappedAddr, SMBIOS_LEGACY_SIZE);
return status;
}
// This function is needed only if "efi" is enabled.
#if (defined(NV_LINUX_EFI_H_PRESENT) && defined(CONFIG_EFI))
static NV_STATUS os_verify_smbios_header_uefi(NvU64 smbsAddr)
{
NV_STATUS status = NV_ERR_OBJECT_NOT_FOUND;
NvU64 start= 0, offset =0 , size = 32;
NvU8 *pMappedAddr = NULL, *pBufAddr = NULL;
start = smbsAddr;
offset = (start & ~os_page_mask);
start &= os_page_mask;
size = ((size + offset + ~os_page_mask) & os_page_mask);
pBufAddr = (NvU8*)os_map_kernel_space(start,
size,
NV_MEMORY_CACHED);
if (pBufAddr == NULL)
{
return NV_ERR_INSUFFICIENT_RESOURCES;
}
pMappedAddr = pBufAddr + offset;
if (OS_VERIFY_SMBIOS3(pMappedAddr))
{
status = NV_OK;
goto done;
}
if (OS_VERIFY_SMBIOS(pMappedAddr))
{
status = NV_OK;
}
done:
os_unmap_kernel_space(pBufAddr, size);
return status;
}
#endif
static NV_STATUS os_get_smbios_header_uefi(NvU64 *pSmbsAddr)
{
NV_STATUS status = NV_ERR_OPERATING_SYSTEM;
// Make sure that efi.h is present before using "struct efi".
#if (defined(NV_LINUX_EFI_H_PRESENT) && defined(CONFIG_EFI))
// Make sure that efi.h has SMBIOS3_TABLE_GUID present.
#if defined(SMBIOS3_TABLE_GUID)
if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
{
status = os_verify_smbios_header_uefi(efi.smbios3);
if (status == NV_OK)
{
*pSmbsAddr = efi.smbios3;
return NV_OK;
}
}
#endif
if (efi.smbios != EFI_INVALID_TABLE_ADDR)
{
status = os_verify_smbios_header_uefi(efi.smbios);
if (status == NV_OK)
{
*pSmbsAddr = efi.smbios;
return NV_OK;
}
}
#endif
return status;
}
#endif // defined(NVCPU_X86_64)
// The function locates the SMBIOS entry point.
NV_STATUS NV_API_CALL os_get_smbios_header(NvU64 *pSmbsAddr)
{
#if !defined(NVCPU_X86_64)
return NV_ERR_NOT_SUPPORTED;
#else
NV_STATUS status = NV_OK;
if (os_is_efi_enabled())
{
status = os_get_smbios_header_uefi(pSmbsAddr);
}
else
{
status = os_get_smbios_header_legacy(pSmbsAddr);
}
return status;
#endif
}
NV_STATUS NV_API_CALL os_get_acpi_rsdp_from_uefi
(
NvU32 *pRsdpAddr
)
{
NV_STATUS status = NV_ERR_NOT_SUPPORTED;
if (pRsdpAddr == NULL)
{
return NV_ERR_INVALID_STATE;
}
*pRsdpAddr = 0;
// Make sure that efi.h is present before using "struct efi".
#if (defined(NV_LINUX_EFI_H_PRESENT) && defined(CONFIG_EFI))
if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
{
*pRsdpAddr = efi.acpi20;
status = NV_OK;
}
else if (efi.acpi != EFI_INVALID_TABLE_ADDR)
{
*pRsdpAddr = efi.acpi;
status = NV_OK;
}
else
{
nv_printf(NV_DBG_ERRORS, "NVRM: RSDP Not found!\n");
status = NV_ERR_OPERATING_SYSTEM;
}
#endif
return status;
}
void NV_API_CALL os_add_record_for_crashLog(void *pbuffer, NvU32 size)
{
}
void NV_API_CALL os_delete_record_for_crashLog(void *pbuffer)
{
}
#if !defined(NV_VGPU_KVM_BUILD)
NV_STATUS NV_API_CALL os_call_vgpu_vfio(void *pvgpu_vfio_info, NvU32 cmd_type)
{
return NV_ERR_NOT_SUPPORTED;
}
#endif
NV_STATUS NV_API_CALL os_alloc_pages_node
(
NvS32 nid,
NvU32 size,
NvU32 flag,
NvU64 *pAddress
)
{
NV_STATUS status = NV_ERR_NOT_SUPPORTED;
#if defined(__GFP_THISNODE) && defined(GFP_HIGHUSER_MOVABLE) && \
defined(__GFP_COMP) && defined(__GFP_NORETRY) && defined(__GFP_NOWARN)
gfp_t gfp_mask;
struct page *alloc_addr;
unsigned int order = get_order(size);
/*
* Explanation of flags used:
*
* 1. __GFP_THISNODE: This will make sure the allocation happens
* on the node specified by nid.
*
* 2. GFP_HIGHUSER_MOVABLE: This makes allocations from ZONE_MOVABLE.
*
* 3. __GFP_COMP: This will make allocations with compound
* pages, which is needed in order to use
* vm_insert_page API.
*
* 4. __GFP_NORETRY: Used to avoid the Linux kernel OOM killer.
*
* 5. __GFP_NOWARN: Used to avoid a WARN_ON in the slowpath if
* the requested order is too large (just fail
* instead).
*
* 6. (Optional) __GFP_RECLAIM: Used to allow/forbid reclaim.
* This is part of GFP_USER and consequently
* GFP_HIGHUSER_MOVABLE.
*
* Some of these flags are relatively more recent, with the last of them
* (GFP_HIGHUSER_MOVABLE) having been added with this Linux kernel commit:
*
* 2007-07-17 769848c03895b63e5662eb7e4ec8c4866f7d0183
*
* Assume that this feature will only be used on kernels that support all
* of the needed GFP flags.
*/
gfp_mask = __GFP_THISNODE | GFP_HIGHUSER_MOVABLE | __GFP_COMP |
__GFP_NORETRY | __GFP_NOWARN;
#if defined(__GFP_RECLAIM)
if (flag & NV_ALLOC_PAGES_NODE_SKIP_RECLAIM)
{
gfp_mask &= ~(__GFP_RECLAIM);
}
#endif // defined(__GFP_RECLAIM)
alloc_addr = alloc_pages_node(nid, gfp_mask, order);
if (alloc_addr == NULL)
{
nv_printf(NV_DBG_INFO,
"NVRM: alloc_pages_node(node = %d, order = %u) failed\n",
nid, order);
status = NV_ERR_NO_MEMORY;
}
else if (page_to_nid(alloc_addr) != nid)
{
//
// We can hit this case when a Linux kernel bug is not patched.
// The needed patch is https://patchwork.kernel.org/patch/10427387/
//
nv_printf(NV_DBG_ERRORS,
"NVRM: alloc_pages_node(node = %d, order = %u) wrong node ID.\n",
nid, order);
__free_pages(alloc_addr, order);
status = NV_ERR_NO_MEMORY;
}
else
{
*pAddress = (NvU64)page_to_phys(alloc_addr);
status = NV_OK;
}
#endif // GFP flags
return status;
}
NV_STATUS NV_API_CALL os_get_page
(
NvU64 address
)
{
get_page(NV_GET_PAGE_STRUCT(address));
return NV_OK;
}
NV_STATUS NV_API_CALL os_put_page
(
NvU64 address
)
{
put_page(NV_GET_PAGE_STRUCT(address));
return NV_OK;
}
NvU32 NV_API_CALL os_get_page_refcount
(
NvU64 address
)
{
return NV_PAGE_COUNT(NV_GET_PAGE_STRUCT(address));
}
NvU32 NV_API_CALL os_count_tail_pages
(
NvU64 address
)
{
NvU32 order = compound_order(compound_head(NV_GET_PAGE_STRUCT(address)));
return 1 << order;
}
void NV_API_CALL os_free_pages_phys
(
NvU64 address,
NvU32 size
)
{
__free_pages(NV_GET_PAGE_STRUCT(address), get_order(size));
}
NV_STATUS NV_API_CALL os_numa_memblock_size
(
NvU64 *memblock_size
)
{
if (nv_ctl_device.numa_memblock_size == 0)
return NV_ERR_INVALID_STATE;
*memblock_size = nv_ctl_device.numa_memblock_size;
return NV_OK;
}
NV_STATUS NV_API_CALL os_call_nv_vmbus(NvU32 vmbus_cmd, void *input)
{
return NV_ERR_NOT_SUPPORTED;
}
NV_STATUS NV_API_CALL os_open_temporary_file
(
void **ppFile
)
{
#if defined(O_TMPFILE)
struct file *file;
const char *default_path = "/tmp";
const int flags = O_TMPFILE | O_LARGEFILE | O_RDWR;
const char *path = NVreg_TemporaryFilePath;
/*
* The filp_open() call below depends on the current task's fs_struct
* (current->fs), which may already be NULL if this is called during
* process teardown.
*/
if (current->fs == NULL)
{
return NV_ERR_OPERATING_SYSTEM;
}
if (!path)
{
path = default_path;
}
file = filp_open(path, flags, 0);
if (IS_ERR(file))
{
if ((path != default_path) && (PTR_ERR(file) == -ENOENT))
{
nv_printf(NV_DBG_ERRORS,
"NVRM: The temporary file path specified via the NVreg_TemporaryFilePath\n"
"NVRM: module parameter does not exist. Defaulting to /tmp.\n");
file = filp_open(default_path, flags, 0);
}
}
if (IS_ERR(file))
{
return NV_ERR_OPERATING_SYSTEM;
}
*ppFile = (void *)file;
return NV_OK;
#else
return NV_ERR_NOT_SUPPORTED;
#endif
}
void NV_API_CALL os_close_file
(
void *pFile
)
{
filp_close(pFile, NULL);
}
#define NV_MAX_NUM_FILE_IO_RETRIES 10
NV_STATUS NV_API_CALL os_write_file
(
void *pFile,
NvU8 *pBuffer,
NvU64 size,
NvU64 offset
)
{
#if defined(NV_KERNEL_WRITE_PRESENT)
loff_t f_pos = offset;
ssize_t num_written;
int num_retries = NV_MAX_NUM_FILE_IO_RETRIES;
retry:
#if defined(NV_KERNEL_WRITE_HAS_POINTER_POS_ARG)
num_written = kernel_write(pFile, pBuffer, size, &f_pos);
#else
num_written = kernel_write(pFile, pBuffer, size, f_pos);
#endif
if (num_written < 0)
{
return NV_ERR_OPERATING_SYSTEM;
}
else if (num_written < size)
{
if (num_written > 0)
{
pBuffer += num_written;
size -= num_written;
}
if (--num_retries > 0)
{
cond_resched();
goto retry;
}
return NV_ERR_OPERATING_SYSTEM;
}
return NV_OK;
#else
return NV_ERR_NOT_SUPPORTED;
#endif
}
NV_STATUS NV_API_CALL os_read_file
(
void *pFile,
NvU8 *pBuffer,
NvU64 size,
NvU64 offset
)
{
loff_t f_pos = offset;
ssize_t num_read;
int num_retries = NV_MAX_NUM_FILE_IO_RETRIES;
retry:
#if defined(NV_KERNEL_READ_HAS_POINTER_POS_ARG)
num_read = kernel_read(pFile, pBuffer, size, &f_pos);
#else
num_read = kernel_read(pFile, f_pos, pBuffer, size);
#endif
if (num_read < 0)
{
return NV_ERR_OPERATING_SYSTEM;
}
else if (num_read < size)
{
if (num_read > 0)
{
pBuffer += num_read;
size -= num_read;
}
if (--num_retries > 0)
{
cond_resched();
goto retry;
}
return NV_ERR_OPERATING_SYSTEM;
}
return NV_OK;
}
NV_STATUS NV_API_CALL os_open_readonly_file
(
const char *filename,
void **ppFile
)
{
struct file *file;
/*
* The filp_open() call below depends on the current task's fs_struct
* (current->fs), which may already be NULL if this is called during
* process teardown.
*/
if (current->fs == NULL)
{
return NV_ERR_OPERATING_SYSTEM;
}
file = filp_open(filename, O_RDONLY, 0);
if (IS_ERR(file))
{
return NV_ERR_OPERATING_SYSTEM;
}
*ppFile = (void *)file;
return NV_OK;
}
NV_STATUS NV_API_CALL os_open_and_read_file
(
const char *filename,
NvU8 *buf,
NvU64 count
)
{
void *fileHandle;
NV_STATUS status;
status = os_open_readonly_file(filename, &fileHandle);
if (status != NV_OK)
{
return status;
}
status = os_read_file(fileHandle, buf, count, 0);
os_close_file(fileHandle);
return status;
}
NvBool NV_API_CALL os_is_nvswitch_present(void)
{
struct pci_device_id nvswitch_pci_table[] = {
{
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID),
.class = PCI_CLASS_BRIDGE_OTHER << 8,
.class_mask = PCI_ANY_ID
},
{0}
};
return !!pci_dev_present(nvswitch_pci_table);
}
void NV_API_CALL os_get_random_bytes
(
NvU8 *bytes,
NvU16 numBytes
)
{
get_random_bytes(bytes, numBytes);
}
NV_STATUS NV_API_CALL os_alloc_wait_queue
(
os_wait_queue **wq
)
{
NV_KMALLOC(*wq, sizeof(os_wait_queue));
if (*wq == NULL)
return NV_ERR_NO_MEMORY;
init_completion(&(*wq)->q);
return NV_OK;
}
void NV_API_CALL os_free_wait_queue
(
os_wait_queue *wq
)
{
NV_KFREE(wq, sizeof(os_wait_queue));
}
void NV_API_CALL os_wait_uninterruptible
(
os_wait_queue *wq
)
{
wait_for_completion(&wq->q);
}
void NV_API_CALL os_wait_interruptible
(
os_wait_queue *wq
)
{
wait_for_completion_interruptible(&wq->q);
}
void NV_API_CALL os_wake_up
(
os_wait_queue *wq
)
{
complete_all(&wq->q);
}
nv_cap_t* NV_API_CALL os_nv_cap_init
(
const char *path
)
{
return nv_cap_init(path);
}
nv_cap_t* NV_API_CALL os_nv_cap_create_dir_entry
(
nv_cap_t *parent_cap,
const char *name,
int mode
)
{
return nv_cap_create_dir_entry(parent_cap, name, mode);
}
nv_cap_t* NV_API_CALL os_nv_cap_create_file_entry
(
nv_cap_t *parent_cap,
const char *name,
int mode
)
{
return nv_cap_create_file_entry(parent_cap, name, mode);
}
void NV_API_CALL os_nv_cap_destroy_entry
(
nv_cap_t *cap
)
{
nv_cap_destroy_entry(cap);
}
int NV_API_CALL os_nv_cap_validate_and_dup_fd
(
const nv_cap_t *cap,
int fd
)
{
return nv_cap_validate_and_dup_fd(cap, fd);
}
void NV_API_CALL os_nv_cap_close_fd
(
int fd
)
{
nv_cap_close_fd(fd);
}