2022-10-10 23:59:24 +02:00
|
|
|
/*******************************************************************************
|
2023-02-28 20:12:44 +01:00
|
|
|
Copyright (c) 2020-2022 NVIDIA Corporation
|
2022-10-10 23:59:24 +02:00
|
|
|
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
|
|
of this software and associated documentation files (the "Software"), to
|
|
|
|
deal in the Software without restriction, including without limitation the
|
|
|
|
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
|
|
sell copies of the Software, and to permit persons to whom the Software is
|
|
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
|
|
|
|
The above copyright notice and this permission notice shall be
|
|
|
|
included in all copies or substantial portions of the Software.
|
|
|
|
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
|
|
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
|
|
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
|
|
DEALINGS IN THE SOFTWARE.
|
|
|
|
|
|
|
|
*******************************************************************************/
|
|
|
|
|
|
|
|
#include "uvm_hal.h"
|
|
|
|
#include "uvm_push.h"
|
2023-02-28 20:12:44 +01:00
|
|
|
#include "uvm_mem.h"
|
2023-05-30 19:11:36 +02:00
|
|
|
#include "uvm_conf_computing.h"
|
2022-10-10 23:59:24 +02:00
|
|
|
#include "clc8b5.h"
|
|
|
|
|
|
|
|
static NvU32 ce_aperture(uvm_aperture_t aperture)
|
|
|
|
{
|
|
|
|
BUILD_BUG_ON(HWCONST(C8B5, SET_SRC_PHYS_MODE, TARGET, LOCAL_FB) !=
|
|
|
|
HWCONST(C8B5, SET_DST_PHYS_MODE, TARGET, LOCAL_FB));
|
|
|
|
BUILD_BUG_ON(HWCONST(C8B5, SET_SRC_PHYS_MODE, TARGET, COHERENT_SYSMEM) !=
|
|
|
|
HWCONST(C8B5, SET_DST_PHYS_MODE, TARGET, COHERENT_SYSMEM));
|
|
|
|
BUILD_BUG_ON(HWCONST(C8B5, SET_SRC_PHYS_MODE, TARGET, PEERMEM) !=
|
|
|
|
HWCONST(C8B5, SET_DST_PHYS_MODE, TARGET, PEERMEM));
|
|
|
|
|
|
|
|
if (aperture == UVM_APERTURE_SYS) {
|
|
|
|
return HWCONST(C8B5, SET_SRC_PHYS_MODE, TARGET, COHERENT_SYSMEM);
|
|
|
|
}
|
|
|
|
else if (aperture == UVM_APERTURE_VID) {
|
|
|
|
return HWCONST(C8B5, SET_SRC_PHYS_MODE, TARGET, LOCAL_FB);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
return HWCONST(C8B5, SET_SRC_PHYS_MODE, TARGET, PEERMEM) |
|
|
|
|
HWVALUE(C8B5, SET_SRC_PHYS_MODE, FLA, 0) |
|
|
|
|
HWVALUE(C8B5, SET_SRC_PHYS_MODE, PEER_ID, UVM_APERTURE_PEER_ID(aperture));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void uvm_hal_hopper_ce_offset_out(uvm_push_t *push, NvU64 offset_out)
|
|
|
|
{
|
|
|
|
NV_PUSH_2U(C8B5, OFFSET_OUT_UPPER, HWVALUE(C8B5, OFFSET_OUT_UPPER, UPPER, NvOffset_HI32(offset_out)),
|
|
|
|
OFFSET_OUT_LOWER, HWVALUE(C8B5, OFFSET_OUT_LOWER, VALUE, NvOffset_LO32(offset_out)));
|
|
|
|
}
|
|
|
|
|
|
|
|
void uvm_hal_hopper_ce_offset_in_out(uvm_push_t *push, NvU64 offset_in, NvU64 offset_out)
|
|
|
|
{
|
|
|
|
NV_PUSH_4U(C8B5, OFFSET_IN_UPPER, HWVALUE(C8B5, OFFSET_IN_UPPER, UPPER, NvOffset_HI32(offset_in)),
|
|
|
|
OFFSET_IN_LOWER, HWVALUE(C8B5, OFFSET_IN_LOWER, VALUE, NvOffset_LO32(offset_in)),
|
|
|
|
OFFSET_OUT_UPPER, HWVALUE(C8B5, OFFSET_OUT_UPPER, UPPER, NvOffset_HI32(offset_out)),
|
|
|
|
OFFSET_OUT_LOWER, HWVALUE(C8B5, OFFSET_OUT_LOWER, VALUE, NvOffset_LO32(offset_out)));
|
|
|
|
}
|
|
|
|
|
2023-02-28 20:12:44 +01:00
|
|
|
// Return the flush type and the flush enablement.
|
|
|
|
static NvU32 hopper_get_flush_value(uvm_push_t *push)
|
2022-10-10 23:59:24 +02:00
|
|
|
{
|
2023-02-28 20:12:44 +01:00
|
|
|
NvU32 flush_value;
|
|
|
|
uvm_membar_t membar = uvm_push_get_and_reset_membar_flag(push);
|
2022-10-10 23:59:24 +02:00
|
|
|
|
2023-02-28 20:12:44 +01:00
|
|
|
if (membar == UVM_MEMBAR_NONE) {
|
2022-10-10 23:59:24 +02:00
|
|
|
// No MEMBAR requested, don't use a flush.
|
2023-02-28 20:12:44 +01:00
|
|
|
flush_value = HWCONST(C8B5, LAUNCH_DMA, FLUSH_ENABLE, FALSE);
|
2022-10-10 23:59:24 +02:00
|
|
|
}
|
2023-02-28 20:12:44 +01:00
|
|
|
else {
|
|
|
|
flush_value = HWCONST(C8B5, LAUNCH_DMA, FLUSH_ENABLE, TRUE);
|
2022-10-10 23:59:24 +02:00
|
|
|
|
2023-02-28 20:12:44 +01:00
|
|
|
if (membar == UVM_MEMBAR_GPU)
|
|
|
|
flush_value |= HWCONST(C8B5, LAUNCH_DMA, FLUSH_TYPE, GL);
|
|
|
|
else
|
|
|
|
flush_value |= HWCONST(C8B5, LAUNCH_DMA, FLUSH_TYPE, SYS);
|
2022-10-10 23:59:24 +02:00
|
|
|
}
|
|
|
|
|
2023-02-28 20:12:44 +01:00
|
|
|
return flush_value;
|
2022-10-10 23:59:24 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
void uvm_hal_hopper_ce_semaphore_release(uvm_push_t *push, NvU64 gpu_va, NvU32 payload)
|
|
|
|
{
|
|
|
|
uvm_gpu_t *gpu = uvm_push_get_gpu(push);
|
|
|
|
NvU32 launch_dma_plc_mode;
|
|
|
|
|
|
|
|
NV_PUSH_3U(C8B5, SET_SEMAPHORE_A, HWVALUE(C8B5, SET_SEMAPHORE_A, UPPER, NvOffset_HI32(gpu_va)),
|
|
|
|
SET_SEMAPHORE_B, HWVALUE(C8B5, SET_SEMAPHORE_B, LOWER, NvOffset_LO32(gpu_va)),
|
|
|
|
SET_SEMAPHORE_PAYLOAD, payload);
|
|
|
|
|
|
|
|
launch_dma_plc_mode = gpu->parent->ce_hal->plc_mode();
|
|
|
|
|
2023-02-28 20:12:44 +01:00
|
|
|
NV_PUSH_1U(C8B5, LAUNCH_DMA, hopper_get_flush_value(push) |
|
2022-10-10 23:59:24 +02:00
|
|
|
HWCONST(C8B5, LAUNCH_DMA, DATA_TRANSFER_TYPE, NONE) |
|
2023-05-30 19:11:36 +02:00
|
|
|
HWCONST(C8B5, LAUNCH_DMA, SEMAPHORE_PAYLOAD_SIZE, ONE_WORD) |
|
|
|
|
HWCONST(C8B5, LAUNCH_DMA, SEMAPHORE_TYPE, RELEASE_SEMAPHORE_NO_TIMESTAMP) |
|
2022-10-10 23:59:24 +02:00
|
|
|
launch_dma_plc_mode);
|
|
|
|
}
|
|
|
|
|
|
|
|
void uvm_hal_hopper_ce_semaphore_reduction_inc(uvm_push_t *push, NvU64 gpu_va, NvU32 payload)
|
|
|
|
{
|
|
|
|
uvm_gpu_t *gpu = uvm_push_get_gpu(push);
|
|
|
|
NvU32 launch_dma_plc_mode;
|
|
|
|
|
|
|
|
NV_PUSH_3U(C8B5, SET_SEMAPHORE_A, HWVALUE(C8B5, SET_SEMAPHORE_A, UPPER, NvOffset_HI32(gpu_va)),
|
|
|
|
SET_SEMAPHORE_B, HWVALUE(C8B5, SET_SEMAPHORE_B, LOWER, NvOffset_LO32(gpu_va)),
|
|
|
|
SET_SEMAPHORE_PAYLOAD, payload);
|
|
|
|
|
|
|
|
launch_dma_plc_mode = gpu->parent->ce_hal->plc_mode();
|
|
|
|
|
2023-02-28 20:12:44 +01:00
|
|
|
NV_PUSH_1U(C8B5, LAUNCH_DMA, hopper_get_flush_value(push) |
|
2022-10-10 23:59:24 +02:00
|
|
|
HWCONST(C8B5, LAUNCH_DMA, DATA_TRANSFER_TYPE, NONE) |
|
2023-05-30 19:11:36 +02:00
|
|
|
HWCONST(C8B5, LAUNCH_DMA, SEMAPHORE_PAYLOAD_SIZE, ONE_WORD) |
|
|
|
|
HWCONST(C8B5, LAUNCH_DMA, SEMAPHORE_TYPE, RELEASE_SEMAPHORE_NO_TIMESTAMP) |
|
2022-10-10 23:59:24 +02:00
|
|
|
HWCONST(C8B5, LAUNCH_DMA, SEMAPHORE_REDUCTION, INC) |
|
|
|
|
HWCONST(C8B5, LAUNCH_DMA, SEMAPHORE_REDUCTION_SIGN, UNSIGNED) |
|
|
|
|
HWCONST(C8B5, LAUNCH_DMA, SEMAPHORE_REDUCTION_ENABLE, TRUE) |
|
|
|
|
launch_dma_plc_mode);
|
|
|
|
}
|
|
|
|
|
|
|
|
void uvm_hal_hopper_ce_semaphore_timestamp(uvm_push_t *push, NvU64 gpu_va)
|
|
|
|
{
|
|
|
|
uvm_gpu_t *gpu;
|
|
|
|
NvU32 launch_dma_plc_mode;
|
|
|
|
|
|
|
|
NV_PUSH_3U(C8B5, SET_SEMAPHORE_A, HWVALUE(C8B5, SET_SEMAPHORE_A, UPPER, NvOffset_HI32(gpu_va)),
|
|
|
|
SET_SEMAPHORE_B, HWVALUE(C8B5, SET_SEMAPHORE_B, LOWER, NvOffset_LO32(gpu_va)),
|
|
|
|
SET_SEMAPHORE_PAYLOAD, 0xdeadbeef);
|
|
|
|
|
|
|
|
gpu = uvm_push_get_gpu(push);
|
|
|
|
launch_dma_plc_mode = gpu->parent->ce_hal->plc_mode();
|
|
|
|
|
2023-02-28 20:12:44 +01:00
|
|
|
NV_PUSH_1U(C8B5, LAUNCH_DMA, hopper_get_flush_value(push) |
|
2022-10-10 23:59:24 +02:00
|
|
|
HWCONST(C8B5, LAUNCH_DMA, DATA_TRANSFER_TYPE, NONE) |
|
2023-05-30 19:11:36 +02:00
|
|
|
HWCONST(C8B5, LAUNCH_DMA, SEMAPHORE_PAYLOAD_SIZE, ONE_WORD) |
|
|
|
|
HWCONST(C8B5, LAUNCH_DMA, SEMAPHORE_TYPE, RELEASE_SEMAPHORE_WITH_TIMESTAMP) |
|
2022-10-10 23:59:24 +02:00
|
|
|
launch_dma_plc_mode);
|
|
|
|
}
|
|
|
|
|
|
|
|
static NvU32 hopper_memset_push_phys_mode(uvm_push_t *push, uvm_gpu_address_t dst)
|
|
|
|
{
|
|
|
|
if (dst.is_virtual)
|
|
|
|
return HWCONST(C8B5, LAUNCH_DMA, DST_TYPE, VIRTUAL);
|
|
|
|
|
|
|
|
NV_PUSH_1U(C8B5, SET_DST_PHYS_MODE, ce_aperture(dst.aperture));
|
|
|
|
return HWCONST(C8B5, LAUNCH_DMA, DST_TYPE, PHYSICAL);
|
|
|
|
}
|
|
|
|
|
2023-05-30 19:11:36 +02:00
|
|
|
static bool va_is_flat_vidmem(uvm_gpu_t *gpu, NvU64 va)
|
2022-10-10 23:59:24 +02:00
|
|
|
{
|
2023-05-30 19:11:36 +02:00
|
|
|
return (uvm_mmu_gpu_needs_static_vidmem_mapping(gpu) || uvm_mmu_gpu_needs_dynamic_vidmem_mapping(gpu)) &&
|
|
|
|
va >= gpu->parent->flat_vidmem_va_base &&
|
|
|
|
va < gpu->parent->flat_vidmem_va_base + UVM_GPU_MAX_PHYS_MEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Return whether a memset should use the fast scrubber. If so, convert dst to
|
|
|
|
// the address needed by the fast scrubber.
|
|
|
|
static bool hopper_scrub_enable(uvm_gpu_t *gpu, uvm_gpu_address_t *dst, size_t size)
|
|
|
|
{
|
|
|
|
if (!IS_ALIGNED(dst->address, UVM_PAGE_SIZE_4K) || !IS_ALIGNED(size, UVM_PAGE_SIZE_4K))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// When CE physical writes are disallowed, higher layers will convert
|
|
|
|
// physical memsets to virtual using the flat mapping. Those layers are
|
|
|
|
// unaware of the fast scrubber, which is safe to use specifically when CE
|
|
|
|
// physical access is disallowed. Detect such memsets within the flat vidmem
|
|
|
|
// region and convert them back to physical, since the fast scrubber only
|
|
|
|
// works with physical addressing.
|
|
|
|
if (dst->is_virtual && !gpu->parent->ce_phys_vidmem_write_supported && va_is_flat_vidmem(gpu, dst->address)) {
|
|
|
|
*dst = uvm_gpu_address_physical(UVM_APERTURE_VID, dst->address - gpu->parent->flat_vidmem_va_base);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
return !dst->is_virtual && dst->aperture == UVM_APERTURE_VID;
|
|
|
|
}
|
|
|
|
|
|
|
|
static NvU32 hopper_memset_copy_type(uvm_push_t *push, uvm_gpu_address_t dst)
|
|
|
|
{
|
|
|
|
if (uvm_conf_computing_mode_enabled(uvm_push_get_gpu(push)) && dst.is_unprotected)
|
|
|
|
return HWCONST(C8B5, LAUNCH_DMA, COPY_TYPE, NONPROT2NONPROT);
|
|
|
|
return HWCONST(C8B5, LAUNCH_DMA, COPY_TYPE, DEFAULT);
|
|
|
|
}
|
|
|
|
|
|
|
|
NvU32 uvm_hal_hopper_ce_memcopy_copy_type(uvm_push_t *push, uvm_gpu_address_t dst, uvm_gpu_address_t src)
|
|
|
|
{
|
|
|
|
if (uvm_conf_computing_mode_enabled(uvm_push_get_gpu(push)) && dst.is_unprotected && src.is_unprotected)
|
|
|
|
return HWCONST(C8B5, LAUNCH_DMA, COPY_TYPE, NONPROT2NONPROT);
|
|
|
|
return HWCONST(C8B5, LAUNCH_DMA, COPY_TYPE, DEFAULT);
|
2022-10-10 23:59:24 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
static void hopper_memset_common(uvm_push_t *push,
|
|
|
|
uvm_gpu_address_t dst,
|
|
|
|
size_t num_elements,
|
|
|
|
size_t memset_element_size)
|
|
|
|
{
|
|
|
|
// If >4GB memsets ever become an important use case, this function should
|
|
|
|
// use multi-line transfers so we don't have to iterate (bug 1766588).
|
|
|
|
static const size_t max_single_memset = 0xFFFFFFFF;
|
|
|
|
|
|
|
|
uvm_gpu_t *gpu = uvm_push_get_gpu(push);
|
|
|
|
NvU32 pipelined_value;
|
|
|
|
NvU32 launch_dma_dst_type;
|
|
|
|
NvU32 launch_dma_plc_mode;
|
|
|
|
NvU32 launch_dma_remap_enable;
|
|
|
|
NvU32 launch_dma_scrub_enable;
|
2023-02-28 20:12:44 +01:00
|
|
|
NvU32 flush_value = HWCONST(C8B5, LAUNCH_DMA, FLUSH_ENABLE, FALSE);
|
2023-05-30 19:11:36 +02:00
|
|
|
NvU32 copy_type_value = hopper_memset_copy_type(push, dst);
|
|
|
|
bool is_scrub = hopper_scrub_enable(gpu, &dst, num_elements * memset_element_size);
|
2022-10-10 23:59:24 +02:00
|
|
|
|
2023-05-30 19:11:36 +02:00
|
|
|
UVM_ASSERT_MSG(gpu->parent->ce_hal->memset_is_valid(push, dst, num_elements, memset_element_size),
|
2022-10-10 23:59:24 +02:00
|
|
|
"Memset validation failed in channel %s, GPU %s",
|
|
|
|
push->channel->name,
|
|
|
|
uvm_gpu_name(gpu));
|
|
|
|
|
|
|
|
launch_dma_dst_type = hopper_memset_push_phys_mode(push, dst);
|
|
|
|
launch_dma_plc_mode = gpu->parent->ce_hal->plc_mode();
|
|
|
|
|
|
|
|
if (uvm_push_get_and_reset_flag(push, UVM_PUSH_FLAG_CE_NEXT_PIPELINED))
|
|
|
|
pipelined_value = HWCONST(C8B5, LAUNCH_DMA, DATA_TRANSFER_TYPE, PIPELINED);
|
|
|
|
else
|
|
|
|
pipelined_value = HWCONST(C8B5, LAUNCH_DMA, DATA_TRANSFER_TYPE, NON_PIPELINED);
|
|
|
|
|
2023-05-30 19:11:36 +02:00
|
|
|
if (memset_element_size == 8 && is_scrub) {
|
2022-10-10 23:59:24 +02:00
|
|
|
launch_dma_remap_enable = HWCONST(C8B5, LAUNCH_DMA, REMAP_ENABLE, FALSE);
|
|
|
|
launch_dma_scrub_enable = HWCONST(C8B5, LAUNCH_DMA, MEMORY_SCRUB_ENABLE, TRUE);
|
|
|
|
|
|
|
|
NV_PUSH_1U(C8B5, SET_MEMORY_SCRUB_PARAMETERS,
|
|
|
|
HWCONST(C8B5, SET_MEMORY_SCRUB_PARAMETERS, DISCARDABLE, FALSE));
|
|
|
|
|
|
|
|
// Scrub requires disabling remap, and with remap disabled the element
|
|
|
|
// size is 1.
|
|
|
|
num_elements *= memset_element_size;
|
|
|
|
memset_element_size = 1;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
launch_dma_remap_enable = HWCONST(C8B5, LAUNCH_DMA, REMAP_ENABLE, TRUE);
|
|
|
|
launch_dma_scrub_enable = HWCONST(C8B5, LAUNCH_DMA, MEMORY_SCRUB_ENABLE, FALSE);
|
|
|
|
}
|
|
|
|
|
|
|
|
do {
|
|
|
|
NvU32 memset_this_time = (NvU32)min(num_elements, max_single_memset);
|
|
|
|
|
2023-02-28 20:12:44 +01:00
|
|
|
// In the last operation, a flush/membar may be issued after the memset.
|
|
|
|
if (num_elements == memset_this_time)
|
|
|
|
flush_value = hopper_get_flush_value(push);
|
|
|
|
|
2022-10-10 23:59:24 +02:00
|
|
|
gpu->parent->ce_hal->offset_out(push, dst.address);
|
|
|
|
|
|
|
|
NV_PUSH_1U(C8B5, LINE_LENGTH_IN, memset_this_time);
|
|
|
|
|
|
|
|
NV_PUSH_1U(C8B5, LAUNCH_DMA,
|
|
|
|
HWCONST(C8B5, LAUNCH_DMA, SRC_MEMORY_LAYOUT, PITCH) |
|
|
|
|
HWCONST(C8B5, LAUNCH_DMA, DST_MEMORY_LAYOUT, PITCH) |
|
|
|
|
HWCONST(C8B5, LAUNCH_DMA, MULTI_LINE_ENABLE, FALSE) |
|
2023-02-28 20:12:44 +01:00
|
|
|
flush_value |
|
2022-10-10 23:59:24 +02:00
|
|
|
launch_dma_remap_enable |
|
|
|
|
launch_dma_scrub_enable |
|
|
|
|
launch_dma_dst_type |
|
|
|
|
launch_dma_plc_mode |
|
2023-05-30 19:11:36 +02:00
|
|
|
copy_type_value |
|
2022-10-10 23:59:24 +02:00
|
|
|
pipelined_value);
|
|
|
|
|
|
|
|
dst.address += memset_this_time * memset_element_size;
|
|
|
|
num_elements -= memset_this_time;
|
2023-02-28 20:12:44 +01:00
|
|
|
pipelined_value = HWCONST(C8B5, LAUNCH_DMA, DATA_TRANSFER_TYPE, PIPELINED);
|
2022-10-10 23:59:24 +02:00
|
|
|
} while (num_elements > 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
void uvm_hal_hopper_ce_memset_8(uvm_push_t *push, uvm_gpu_address_t dst, NvU64 value, size_t size)
|
|
|
|
{
|
|
|
|
UVM_ASSERT_MSG(size % 8 == 0, "size: %zd\n", size);
|
|
|
|
|
|
|
|
size /= 8;
|
|
|
|
|
|
|
|
NV_PUSH_3U(C8B5, SET_REMAP_CONST_A, (NvU32)value,
|
|
|
|
SET_REMAP_CONST_B, (NvU32)(value >> 32),
|
|
|
|
SET_REMAP_COMPONENTS,
|
|
|
|
HWCONST(C8B5, SET_REMAP_COMPONENTS, DST_X, CONST_A) |
|
|
|
|
HWCONST(C8B5, SET_REMAP_COMPONENTS, DST_Y, CONST_B) |
|
|
|
|
HWCONST(C8B5, SET_REMAP_COMPONENTS, COMPONENT_SIZE, FOUR) |
|
|
|
|
HWCONST(C8B5, SET_REMAP_COMPONENTS, NUM_DST_COMPONENTS, TWO));
|
|
|
|
|
|
|
|
hopper_memset_common(push, dst, size, 8);
|
|
|
|
}
|
|
|
|
|
|
|
|
void uvm_hal_hopper_ce_memset_1(uvm_push_t *push, uvm_gpu_address_t dst, NvU8 value, size_t size)
|
|
|
|
{
|
2023-05-30 19:11:36 +02:00
|
|
|
if (hopper_scrub_enable(uvm_push_get_gpu(push), &dst, size)) {
|
2022-10-10 23:59:24 +02:00
|
|
|
NvU64 value64 = value;
|
|
|
|
|
|
|
|
value64 |= value64 << 8;
|
|
|
|
value64 |= value64 << 16;
|
|
|
|
value64 |= value64 << 32;
|
|
|
|
|
|
|
|
uvm_hal_hopper_ce_memset_8(push, dst, value64, size);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
NV_PUSH_2U(C8B5, SET_REMAP_CONST_B, (NvU32)value,
|
|
|
|
SET_REMAP_COMPONENTS,
|
|
|
|
HWCONST(C8B5, SET_REMAP_COMPONENTS, DST_X, CONST_B) |
|
|
|
|
HWCONST(C8B5, SET_REMAP_COMPONENTS, COMPONENT_SIZE, ONE) |
|
|
|
|
HWCONST(C8B5, SET_REMAP_COMPONENTS, NUM_DST_COMPONENTS, ONE));
|
|
|
|
|
|
|
|
hopper_memset_common(push, dst, size, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
void uvm_hal_hopper_ce_memset_4(uvm_push_t *push, uvm_gpu_address_t dst, NvU32 value, size_t size)
|
|
|
|
{
|
|
|
|
UVM_ASSERT_MSG(size % 4 == 0, "size: %zd\n", size);
|
|
|
|
|
2023-05-30 19:11:36 +02:00
|
|
|
if (hopper_scrub_enable(uvm_push_get_gpu(push), &dst, size)) {
|
2022-10-10 23:59:24 +02:00
|
|
|
NvU64 value64 = value;
|
|
|
|
|
|
|
|
value64 |= value64 << 32;
|
|
|
|
|
|
|
|
uvm_hal_hopper_ce_memset_8(push, dst, value64, size);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
size /= 4;
|
|
|
|
|
|
|
|
NV_PUSH_2U(C8B5, SET_REMAP_CONST_B, value,
|
|
|
|
SET_REMAP_COMPONENTS,
|
|
|
|
HWCONST(C8B5, SET_REMAP_COMPONENTS, DST_X, CONST_B) |
|
|
|
|
HWCONST(C8B5, SET_REMAP_COMPONENTS, COMPONENT_SIZE, FOUR) |
|
|
|
|
HWCONST(C8B5, SET_REMAP_COMPONENTS, NUM_DST_COMPONENTS, ONE));
|
|
|
|
|
|
|
|
hopper_memset_common(push, dst, size, 4);
|
|
|
|
}
|
2023-02-28 20:12:44 +01:00
|
|
|
|
2023-05-30 19:11:36 +02:00
|
|
|
bool uvm_hal_hopper_ce_memset_is_valid(uvm_push_t *push,
|
|
|
|
uvm_gpu_address_t dst,
|
|
|
|
size_t num_elements,
|
|
|
|
size_t element_size)
|
2023-02-28 20:12:44 +01:00
|
|
|
{
|
2023-05-30 19:11:36 +02:00
|
|
|
uvm_gpu_t *gpu = uvm_push_get_gpu(push);
|
|
|
|
|
|
|
|
// In HCC, if a memset uses physical addressing for the destination, then
|
|
|
|
// it must write to (protected) vidmem. If the memset uses virtual
|
|
|
|
// addressing, and the backing storage is not vidmem, the access is only
|
|
|
|
// legal if the copy type is NONPROT2NONPROT, and the destination is
|
|
|
|
// unprotected sysmem, but the validation does not detect it.
|
|
|
|
if (uvm_conf_computing_mode_is_hcc(gpu) && !dst.is_virtual && dst.aperture != UVM_APERTURE_VID)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (!gpu->parent->ce_phys_vidmem_write_supported) {
|
|
|
|
size_t size = num_elements * element_size;
|
|
|
|
uvm_gpu_address_t temp = dst;
|
|
|
|
|
|
|
|
// Physical vidmem writes are disallowed, unless using the scrubber
|
|
|
|
if (!dst.is_virtual && dst.aperture == UVM_APERTURE_VID && !hopper_scrub_enable(gpu, &temp, size)) {
|
|
|
|
UVM_ERR_PRINT("Destination address of vidmem memset must be virtual, not physical: {%s, 0x%llx} size %zu\n",
|
|
|
|
uvm_gpu_address_aperture_string(dst),
|
|
|
|
dst.address,
|
|
|
|
size);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
2023-02-28 20:12:44 +01:00
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool uvm_hal_hopper_ce_memcopy_is_valid(uvm_push_t *push, uvm_gpu_address_t dst, uvm_gpu_address_t src)
|
|
|
|
{
|
2023-05-30 19:11:36 +02:00
|
|
|
uvm_gpu_t *gpu = uvm_push_get_gpu(push);
|
|
|
|
|
|
|
|
if (uvm_conf_computing_mode_is_hcc(gpu)) {
|
|
|
|
// In HCC, if a memcopy uses physical addressing for either the
|
|
|
|
// destination or the source, then the corresponding aperture must be
|
|
|
|
// vidmem. If virtual addressing is used, and the backing storage is
|
|
|
|
// sysmem the access is only legal if the copy type is NONPROT2NONPROT,
|
|
|
|
// but the validation does not detect it. In other words the copy
|
|
|
|
// source and destination is unprotected sysmem.
|
|
|
|
if (!src.is_virtual && (src.aperture != UVM_APERTURE_VID))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (!dst.is_virtual && (dst.aperture != UVM_APERTURE_VID))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (dst.is_unprotected != src.is_unprotected)
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!gpu->parent->ce_phys_vidmem_write_supported && !dst.is_virtual && dst.aperture == UVM_APERTURE_VID) {
|
|
|
|
UVM_ERR_PRINT("Destination address of vidmem memcopy must be virtual, not physical: {%s, 0x%llx}\n",
|
|
|
|
uvm_gpu_address_aperture_string(dst),
|
|
|
|
dst.address);
|
|
|
|
return false;
|
|
|
|
}
|
2023-02-28 20:12:44 +01:00
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2023-05-30 19:11:36 +02:00
|
|
|
// Specialized version of uvm_hal_volta_ce_memcopy used for encryption and
|
|
|
|
// decryption. Pre-Hopper functionality, such as validation or address patching,
|
|
|
|
// has been removed.
|
|
|
|
static void encrypt_or_decrypt(uvm_push_t *push, uvm_gpu_address_t dst, uvm_gpu_address_t src, NvU32 size)
|
|
|
|
{
|
|
|
|
NvU32 pipelined_value;
|
|
|
|
NvU32 launch_dma_src_dst_type;
|
|
|
|
NvU32 launch_dma_plc_mode;
|
|
|
|
NvU32 flush_value;
|
|
|
|
uvm_gpu_t *gpu = uvm_push_get_gpu(push);
|
|
|
|
|
|
|
|
// HW allows unaligned operations only if the entire buffer is in one 32B
|
|
|
|
// sector. Operations on buffers larger than 32B have to be aligned.
|
|
|
|
if (size > UVM_CONF_COMPUTING_BUF_ALIGNMENT) {
|
|
|
|
UVM_ASSERT(IS_ALIGNED(src.address, UVM_CONF_COMPUTING_BUF_ALIGNMENT));
|
|
|
|
UVM_ASSERT(IS_ALIGNED(dst.address, UVM_CONF_COMPUTING_BUF_ALIGNMENT));
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
UVM_ASSERT((dst.address >> UVM_CONF_COMPUTING_BUF_ALIGNMENT) ==
|
|
|
|
((dst.address + size - 1) >> UVM_CONF_COMPUTING_BUF_ALIGNMENT));
|
|
|
|
UVM_ASSERT((src.address >> UVM_CONF_COMPUTING_BUF_ALIGNMENT) ==
|
|
|
|
((src.address + size - 1) >> UVM_CONF_COMPUTING_BUF_ALIGNMENT));
|
|
|
|
}
|
|
|
|
|
|
|
|
launch_dma_src_dst_type = gpu->parent->ce_hal->phys_mode(push, dst, src);
|
|
|
|
launch_dma_plc_mode = gpu->parent->ce_hal->plc_mode();
|
|
|
|
|
|
|
|
if (uvm_push_get_and_reset_flag(push, UVM_PUSH_FLAG_CE_NEXT_PIPELINED))
|
|
|
|
pipelined_value = HWCONST(C8B5, LAUNCH_DMA, DATA_TRANSFER_TYPE, PIPELINED);
|
|
|
|
else
|
|
|
|
pipelined_value = HWCONST(C8B5, LAUNCH_DMA, DATA_TRANSFER_TYPE, NON_PIPELINED);
|
|
|
|
|
|
|
|
flush_value = hopper_get_flush_value(push);
|
|
|
|
|
|
|
|
gpu->parent->ce_hal->offset_in_out(push, src.address, dst.address);
|
|
|
|
|
|
|
|
NV_PUSH_1U(C8B5, LINE_LENGTH_IN, size);
|
|
|
|
|
|
|
|
NV_PUSH_1U(C8B5, LAUNCH_DMA, HWCONST(C8B5, LAUNCH_DMA, SRC_MEMORY_LAYOUT, PITCH) |
|
|
|
|
HWCONST(C8B5, LAUNCH_DMA, DST_MEMORY_LAYOUT, PITCH) |
|
|
|
|
HWCONST(C8B5, LAUNCH_DMA, MULTI_LINE_ENABLE, FALSE) |
|
|
|
|
HWCONST(C8B5, LAUNCH_DMA, REMAP_ENABLE, FALSE) |
|
|
|
|
HWCONST(C8B5, LAUNCH_DMA, COPY_TYPE, SECURE) |
|
|
|
|
flush_value |
|
|
|
|
launch_dma_src_dst_type |
|
|
|
|
launch_dma_plc_mode |
|
|
|
|
pipelined_value);
|
|
|
|
}
|
|
|
|
|
|
|
|
// The GPU CE encrypt operation requires clients to pass a valid
|
|
|
|
// address where the used IV will be written. But this requirement is
|
|
|
|
// unnecessary, because UVM should instead rely on the CSL
|
|
|
|
// nvUvmInterfaceCslLogDeviceEncryption API to independently track
|
|
|
|
// the expected IV.
|
|
|
|
//
|
|
|
|
// To satisfy the HW requirement the same unprotected sysmem address is
|
|
|
|
// passed to all GPU-side encryptions. This dummy buffer is allocated at
|
|
|
|
// GPU initialization time.
|
|
|
|
static NvU64 encrypt_iv_address(uvm_push_t *push, uvm_gpu_address_t dst)
|
|
|
|
{
|
|
|
|
NvU64 iv_address;
|
|
|
|
uvm_gpu_t *gpu = uvm_push_get_gpu(push);
|
|
|
|
|
|
|
|
// Match addressing mode of destination and IV
|
|
|
|
if (dst.is_virtual) {
|
|
|
|
iv_address = uvm_rm_mem_get_gpu_va(gpu->conf_computing.iv_rm_mem, gpu, false).address;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
iv_address = uvm_mem_gpu_physical(gpu->conf_computing.iv_mem,
|
|
|
|
gpu,
|
|
|
|
0,
|
|
|
|
gpu->conf_computing.iv_mem->size).address;
|
|
|
|
}
|
|
|
|
|
|
|
|
UVM_ASSERT(IS_ALIGNED(iv_address, UVM_CONF_COMPUTING_IV_ALIGNMENT));
|
|
|
|
|
|
|
|
return iv_address;
|
|
|
|
}
|
|
|
|
|
|
|
|
// TODO: Bug 3842953: adapt CE encrypt/decrypt for p2p encrypted transfers
|
|
|
|
void uvm_hal_hopper_ce_encrypt(uvm_push_t *push,
|
|
|
|
uvm_gpu_address_t dst,
|
|
|
|
uvm_gpu_address_t src,
|
|
|
|
NvU32 size,
|
|
|
|
uvm_gpu_address_t auth_tag)
|
|
|
|
{
|
|
|
|
|
|
|
|
NvU32 auth_tag_address_hi32, auth_tag_address_lo32;
|
|
|
|
NvU64 iv_address;
|
|
|
|
NvU32 iv_address_hi32, iv_address_lo32;
|
|
|
|
uvm_gpu_t *gpu = uvm_push_get_gpu(push);
|
|
|
|
|
|
|
|
UVM_ASSERT(uvm_conf_computing_mode_is_hcc(gpu));
|
|
|
|
UVM_ASSERT(IS_ALIGNED(auth_tag.address, UVM_CONF_COMPUTING_AUTH_TAG_ALIGNMENT));
|
|
|
|
|
|
|
|
if (!src.is_virtual)
|
|
|
|
UVM_ASSERT(src.aperture == UVM_APERTURE_VID);
|
|
|
|
|
|
|
|
// The addressing mode (and aperture, if applicable) of the destination
|
|
|
|
// pointer determines the addressing mode and aperture used by the
|
|
|
|
// encryption to reference the other two addresses written by it:
|
|
|
|
// authentication tag, and IV. If the client passes a sysmem physical
|
|
|
|
// address as destination, then the authentication tag must also be a sysmem
|
|
|
|
// physical address.
|
|
|
|
UVM_ASSERT(dst.is_virtual == auth_tag.is_virtual);
|
|
|
|
|
|
|
|
if (!dst.is_virtual) {
|
|
|
|
UVM_ASSERT(dst.aperture == UVM_APERTURE_SYS);
|
|
|
|
UVM_ASSERT(auth_tag.aperture == UVM_APERTURE_SYS);
|
|
|
|
}
|
|
|
|
|
|
|
|
NV_PUSH_1U(C8B5, SET_SECURE_COPY_MODE, HWCONST(C8B5, SET_SECURE_COPY_MODE, MODE, ENCRYPT));
|
|
|
|
|
|
|
|
auth_tag_address_hi32 = HWVALUE(C8B5, SET_ENCRYPT_AUTH_TAG_ADDR_UPPER, UPPER, NvU64_HI32(auth_tag.address));
|
|
|
|
auth_tag_address_lo32 = HWVALUE(C8B5, SET_ENCRYPT_AUTH_TAG_ADDR_LOWER, LOWER, NvU64_LO32(auth_tag.address));
|
|
|
|
|
|
|
|
iv_address = encrypt_iv_address(push, dst);
|
|
|
|
|
|
|
|
iv_address_hi32 = HWVALUE(C8B5, SET_ENCRYPT_IV_ADDR_UPPER, UPPER, NvU64_HI32(iv_address));
|
|
|
|
iv_address_lo32 = HWVALUE(C8B5, SET_ENCRYPT_IV_ADDR_LOWER, LOWER, NvU64_LO32(iv_address));
|
|
|
|
|
|
|
|
NV_PUSH_4U(C8B5, SET_ENCRYPT_AUTH_TAG_ADDR_UPPER, auth_tag_address_hi32,
|
|
|
|
SET_ENCRYPT_AUTH_TAG_ADDR_LOWER, auth_tag_address_lo32,
|
|
|
|
SET_ENCRYPT_IV_ADDR_UPPER, iv_address_hi32,
|
|
|
|
SET_ENCRYPT_IV_ADDR_LOWER, iv_address_lo32);
|
|
|
|
|
|
|
|
encrypt_or_decrypt(push, dst, src, size);
|
|
|
|
}
|
|
|
|
|
|
|
|
// TODO: Bug 3842953: adapt CE encrypt/decrypt for p2p encrypted transfers
|
|
|
|
void uvm_hal_hopper_ce_decrypt(uvm_push_t *push,
|
|
|
|
uvm_gpu_address_t dst,
|
|
|
|
uvm_gpu_address_t src,
|
|
|
|
NvU32 size,
|
|
|
|
uvm_gpu_address_t auth_tag)
|
|
|
|
{
|
|
|
|
|
|
|
|
NvU32 auth_tag_address_hi32, auth_tag_address_lo32;
|
|
|
|
uvm_gpu_t *gpu = uvm_push_get_gpu(push);
|
|
|
|
|
|
|
|
UVM_ASSERT(uvm_conf_computing_mode_is_hcc(gpu));
|
|
|
|
UVM_ASSERT(IS_ALIGNED(auth_tag.address, UVM_CONF_COMPUTING_AUTH_TAG_ALIGNMENT));
|
|
|
|
|
|
|
|
// The addressing mode (and aperture, if applicable) of the source and
|
|
|
|
// authentication pointers should match. But unlike in the encryption case,
|
|
|
|
// clients are not forced to pass a valid IV address.
|
|
|
|
UVM_ASSERT(src.is_virtual == auth_tag.is_virtual);
|
|
|
|
|
|
|
|
if (!src.is_virtual) {
|
|
|
|
UVM_ASSERT(src.aperture == UVM_APERTURE_SYS);
|
|
|
|
UVM_ASSERT(auth_tag.aperture == UVM_APERTURE_SYS);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!dst.is_virtual)
|
|
|
|
UVM_ASSERT(dst.aperture == UVM_APERTURE_VID);
|
|
|
|
|
|
|
|
NV_PUSH_1U(C8B5, SET_SECURE_COPY_MODE, HWCONST(C8B5, SET_SECURE_COPY_MODE, MODE, DECRYPT));
|
|
|
|
|
|
|
|
auth_tag_address_hi32 = HWVALUE(C8B5, SET_DECRYPT_AUTH_TAG_COMPARE_ADDR_UPPER, UPPER, NvU64_HI32(auth_tag.address));
|
|
|
|
auth_tag_address_lo32 = HWVALUE(C8B5, SET_DECRYPT_AUTH_TAG_COMPARE_ADDR_LOWER, LOWER, NvU64_LO32(auth_tag.address));
|
|
|
|
|
|
|
|
NV_PUSH_2U(C8B5, SET_DECRYPT_AUTH_TAG_COMPARE_ADDR_UPPER, auth_tag_address_hi32,
|
|
|
|
SET_DECRYPT_AUTH_TAG_COMPARE_ADDR_LOWER, auth_tag_address_lo32);
|
|
|
|
|
|
|
|
encrypt_or_decrypt(push, dst, src, size);
|
|
|
|
}
|
|
|
|
|