/* * SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include "internal_crypt_lib.h" #include "nvspdm_cryptlib_extensions.h" #ifdef USE_LKCA #define BUFFER_SIZE (2 * 1024 * 1024) #define AUTH_TAG_SIZE 16 struct lkca_aead_ctx { struct crypto_aead *aead; struct aead_request *req; char *a_data_buffer; char *in_buffer; char *out_buffer; char tag[AUTH_TAG_SIZE]; }; #endif int libspdm_aead_prealloc(void **context, char const *alg) { #ifndef USE_LKCA return -ENODEV; #else struct lkca_aead_ctx *ctx; ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); if (ctx == NULL) { return -ENOMEM; } memset(ctx, 0, sizeof(*ctx)); ctx->aead = crypto_alloc_aead(alg, CRYPTO_ALG_TYPE_AEAD, 0); if (IS_ERR(ctx->aead)) { pr_notice("could not allocate AEAD algorithm\n"); kfree(ctx); return -ENODEV; } ctx->req = aead_request_alloc(ctx->aead, GFP_KERNEL); if (ctx->req == NULL) { pr_info("could not allocate skcipher request\n"); crypto_free_aead(ctx->aead); kfree(ctx); return -ENOMEM; } ctx->a_data_buffer = kmalloc(BUFFER_SIZE, GFP_KERNEL); if (ctx->a_data_buffer == NULL) { aead_request_free(ctx->req); crypto_free_aead(ctx->aead); kfree(ctx); return -ENOMEM; } ctx->in_buffer = kmalloc(BUFFER_SIZE, GFP_KERNEL); if (ctx->in_buffer == NULL) { kfree(ctx->a_data_buffer); aead_request_free(ctx->req); crypto_free_aead(ctx->aead); kfree(ctx); return -ENOMEM; } ctx->out_buffer = kmalloc(BUFFER_SIZE, GFP_KERNEL); if (ctx->out_buffer == NULL) { kfree(ctx->a_data_buffer); kfree(ctx->in_buffer); aead_request_free(ctx->req); crypto_free_aead(ctx->aead); kfree(ctx); return -ENOMEM; } *context = ctx; return 0; #endif } void libspdm_aead_free(void *context) { #ifdef USE_LKCA struct lkca_aead_ctx *ctx = context; crypto_free_aead(ctx->aead); aead_request_free(ctx->req); kfree(ctx->a_data_buffer); kfree(ctx->in_buffer); kfree(ctx->out_buffer); kfree(ctx); #endif } #define SG_AEAD_AAD 0 #define SG_AEAD_TEXT 1 #define SG_AEAD_SIG 2 // Number of fields in AEAD scatterlist #define SG_AEAD_LEN 3 #ifdef USE_LKCA // This function doesn't do any allocs, it uses temp buffers instead static int lkca_aead_internal(struct crypto_aead *aead, struct aead_request *req, const uint8_t *key, size_t key_size, const uint8_t *iv, size_t iv_size, struct scatterlist sg_in[], struct scatterlist sg_out[], size_t a_data_size, size_t data_in_size, size_t *data_out_size, size_t tag_size, bool enc) { DECLARE_CRYPTO_WAIT(wait); int rc = 0; if (crypto_aead_setkey(aead, key, key_size)) { pr_info("key could not be set\n"); return -EINVAL; } if (crypto_aead_ivsize(aead) != iv_size) { pr_info("iv could not be set\n"); return -EINVAL; } aead_request_set_ad(req, a_data_size); aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, crypto_req_done, &wait); if (enc) { aead_request_set_crypt(req, sg_in, sg_out, data_in_size, (u8 *) iv); rc = crypto_wait_req(crypto_aead_encrypt(req), &wait); } else { aead_request_set_crypt(req, sg_in, sg_out, data_in_size + tag_size, (u8 *) iv); rc = crypto_wait_req(crypto_aead_decrypt(req), &wait); } if (rc != 0) { pr_info("Encryption FAILED\n"); } *data_out_size = data_in_size; return rc; } #endif int libspdm_aead_prealloced(void *context, const uint8_t *key, size_t key_size, const uint8_t *iv, size_t iv_size, const uint8_t *a_data, size_t a_data_size, const uint8_t *data_in, size_t data_in_size, uint8_t *tag, size_t tag_size, uint8_t *data_out, size_t *data_out_size, bool enc) { #ifndef USE_LKCA return -ENODEV; #else int rc = 0; struct scatterlist sg_in[SG_AEAD_LEN]; struct scatterlist sg_out[SG_AEAD_LEN]; struct lkca_aead_ctx *ctx = context; sg_init_table(sg_in, SG_AEAD_LEN); sg_init_table(sg_out, SG_AEAD_LEN); if (!virt_addr_valid(a_data)) { if (a_data_size > BUFFER_SIZE) { return -ENOMEM; } sg_set_buf(&sg_in[SG_AEAD_AAD], ctx->a_data_buffer, a_data_size); sg_set_buf(&sg_out[SG_AEAD_AAD], ctx->a_data_buffer, a_data_size); memcpy(ctx->a_data_buffer, a_data, a_data_size); } else { sg_set_buf(&sg_in[SG_AEAD_AAD], a_data, a_data_size); sg_set_buf(&sg_out[SG_AEAD_AAD], a_data, a_data_size); } if (!virt_addr_valid(data_in)) { if (data_in_size > BUFFER_SIZE) { return -ENOMEM; } sg_set_buf(&sg_in[SG_AEAD_TEXT], ctx->in_buffer, data_in_size); memcpy(ctx->in_buffer, data_in, data_in_size); } else { sg_set_buf(&sg_in[SG_AEAD_TEXT], data_in, data_in_size); } if (!virt_addr_valid(data_out)) { if (data_in_size > BUFFER_SIZE) { return -ENOMEM; } sg_set_buf(&sg_out[SG_AEAD_TEXT], ctx->out_buffer, data_in_size); } else { sg_set_buf(&sg_out[SG_AEAD_TEXT], data_out, data_in_size); } // Tag is small enough that memcpy is cheaper than checking if page is virtual if(tag_size > AUTH_TAG_SIZE) { return -ENOMEM; } sg_set_buf(&sg_in[SG_AEAD_SIG], ctx->tag, tag_size); sg_set_buf(&sg_out[SG_AEAD_SIG], ctx->tag, tag_size); if(!enc) memcpy(ctx->tag, tag, tag_size); rc = lkca_aead_internal(ctx->aead, ctx->req, key, key_size, iv, iv_size, sg_in, sg_out, a_data_size, data_in_size, data_out_size, tag_size, enc); if (enc) { memcpy(tag, ctx->tag, tag_size); } if (!virt_addr_valid(data_out)) { memcpy(data_out, ctx->out_buffer, data_in_size); } return rc; #endif } int libspdm_aead(const uint8_t *key, size_t key_size, const uint8_t *iv, size_t iv_size, const uint8_t *a_data, size_t a_data_size, const uint8_t *data_in, size_t data_in_size, const uint8_t *tag, size_t tag_size, uint8_t *data_out, size_t *data_out_size, bool enc, char const *alg) { #ifndef USE_LKCA return -ENODEV; #else struct crypto_aead *aead = NULL; struct aead_request *req = NULL; struct scatterlist sg_in[SG_AEAD_LEN]; struct scatterlist sg_out[SG_AEAD_LEN]; uint8_t *a_data_shadow = NULL; uint8_t *data_in_shadow = NULL; uint8_t *data_out_shadow = NULL; uint8_t *tag_shadow = NULL; int rc = 0; aead = crypto_alloc_aead(alg, CRYPTO_ALG_TYPE_AEAD, 0); if (IS_ERR(aead)) { pr_notice("could not allocate AEAD algorithm\n"); return -ENODEV; } req = aead_request_alloc(aead, GFP_KERNEL); if (req == NULL) { pr_info("could not allocate skcipher request\n"); rc = -ENOMEM; goto out; } sg_init_table(sg_in, SG_AEAD_LEN); sg_init_table(sg_out, SG_AEAD_LEN); if (!virt_addr_valid(a_data)) { a_data_shadow = kmalloc(a_data_size, GFP_KERNEL); if (a_data_shadow == NULL) { rc = -ENOMEM; goto out; } sg_set_buf(&sg_in[SG_AEAD_AAD], a_data_shadow, a_data_size); sg_set_buf(&sg_out[SG_AEAD_AAD], a_data_shadow, a_data_size); memcpy(a_data_shadow, a_data, a_data_size); } else { sg_set_buf(&sg_in[SG_AEAD_AAD], a_data, a_data_size); sg_set_buf(&sg_out[SG_AEAD_AAD], a_data, a_data_size); } if (!virt_addr_valid(data_in)) { data_in_shadow = kmalloc(data_in_size, GFP_KERNEL); if (data_in_shadow == NULL) { rc = -ENOMEM; goto out; } sg_set_buf(&sg_in[SG_AEAD_TEXT], data_in_shadow, data_in_size); memcpy(data_in_shadow, data_in, data_in_size); } else { sg_set_buf(&sg_in[SG_AEAD_TEXT], data_in, data_in_size); } if (!virt_addr_valid(data_out)) { data_out_shadow = kmalloc(data_in_size, GFP_KERNEL); if (data_out_shadow == NULL) { rc = -ENOMEM; goto out; } sg_set_buf(&sg_out[SG_AEAD_TEXT], data_out_shadow, data_in_size); } else { sg_set_buf(&sg_out[SG_AEAD_TEXT], data_out, data_in_size); } if (!virt_addr_valid(tag)) { tag_shadow = kmalloc(tag_size, GFP_KERNEL); if (tag_shadow == NULL) { rc = -ENOMEM; goto out; } sg_set_buf(&sg_in[SG_AEAD_SIG], tag_shadow, tag_size); sg_set_buf(&sg_out[SG_AEAD_SIG], tag_shadow, tag_size); if(!enc) memcpy(tag_shadow, tag, tag_size); } else { sg_set_buf(&sg_in[SG_AEAD_SIG], tag, tag_size); sg_set_buf(&sg_out[SG_AEAD_SIG], tag, tag_size); } rc = lkca_aead_internal(aead, req, key, key_size, iv, iv_size, sg_in, sg_out, a_data_size, data_in_size, data_out_size, tag_size, enc); if (enc && (tag_shadow != NULL)) memcpy((uint8_t *) tag, tag_shadow, tag_size); if (data_out_shadow != NULL) memcpy(data_out, data_out_shadow, data_in_size); out: if (a_data_shadow != NULL) kfree(a_data_shadow); if (data_in_shadow != NULL) kfree(data_in_shadow); if (data_out != NULL) kfree(data_out_shadow); if (tag != NULL) kfree(tag_shadow); if (aead != NULL) crypto_free_aead(aead); if (req != NULL) aead_request_free(req); return rc; #endif } // Wrapper to make look like libspdm bool libspdm_aead_gcm_prealloc(void **context) { return libspdm_aead_prealloc(context, "gcm(aes)") == 0; } bool libspdm_aead_aes_gcm_encrypt_prealloc(void *context, const uint8_t *key, size_t key_size, const uint8_t *iv, size_t iv_size, const uint8_t *a_data, size_t a_data_size, const uint8_t *data_in, size_t data_in_size, uint8_t *tag_out, size_t tag_size, uint8_t *data_out, size_t *data_out_size) { int32_t ret; if (data_in_size > INT_MAX) { return false; } if (a_data_size > INT_MAX) { return false; } if (iv_size != 12) { return false; } switch (key_size) { case 16: case 24: case 32: break; default: return false; } if ((tag_size < 12) || (tag_size > 16)) { return false; } if (data_out_size != NULL) { if ((*data_out_size > INT_MAX) || (*data_out_size < data_in_size)) { return false; } } ret = libspdm_aead_prealloced(context, key, key_size, iv, iv_size, a_data, a_data_size, data_in, data_in_size, tag_out, tag_size, data_out, data_out_size, true); *data_out_size = data_in_size; return ret == 0; } bool libspdm_aead_aes_gcm_decrypt_prealloc(void *context, const uint8_t *key, size_t key_size, const uint8_t *iv, size_t iv_size, const uint8_t *a_data, size_t a_data_size, const uint8_t *data_in, size_t data_in_size, const uint8_t *tag, size_t tag_size, uint8_t *data_out, size_t *data_out_size) { int ret; if (data_in_size > INT_MAX) { return false; } if (a_data_size > INT_MAX) { return false; } if (iv_size != 12) { return false; } switch (key_size) { case 16: case 24: case 32: break; default: return false; } if ((tag_size < 12) || (tag_size > 16)) { return false; } if (data_out_size != NULL) { if ((*data_out_size > INT_MAX) || (*data_out_size < data_in_size)) { return false; } } ret = libspdm_aead_prealloced(context, key, key_size, iv, iv_size, a_data, a_data_size, data_in, data_in_size, (uint8_t *) tag, tag_size, data_out, data_out_size, false); *data_out_size = data_in_size; return ret == 0; }