open-gpu-kernel-modules/kernel-open/nvidia/nv-dmabuf.c
2022-11-22 10:04:21 -08:00

961 lines
23 KiB
C

/*
* SPDX-FileCopyrightText: Copyright (c) 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <linux/dma-buf.h>
#include "nv-dmabuf.h"
#if defined(CONFIG_DMA_SHARED_BUFFER)
//
// The Linux kernel's dma_length in struct scatterlist is unsigned int
// which limits the maximum sg length to 4GB - 1.
// To get around this limitation, the BAR1 scatterlist returned by RM
// is split into (4GB - PAGE_SIZE) sized chunks to build the sg_table.
//
#define NV_DMA_BUF_SG_MAX_LEN ((NvU32)(NVBIT64(32) - PAGE_SIZE))
typedef struct nv_dma_buf_mem_handle
{
NvHandle h_memory;
NvU64 offset;
NvU64 size;
NvU64 bar1_va;
} nv_dma_buf_mem_handle_t;
typedef struct nv_dma_buf_file_private
{
nv_state_t *nv;
NvHandle h_client;
NvHandle h_device;
NvHandle h_subdevice;
NvU32 total_objects;
NvU32 num_objects;
NvU64 total_size;
NvU64 attached_size;
struct mutex lock;
nv_dma_buf_mem_handle_t *handles;
NvU64 bar1_va_ref_count;
void *mig_info;
NvBool can_mmap;
} nv_dma_buf_file_private_t;
static void
nv_dma_buf_free_file_private(
nv_dma_buf_file_private_t *priv
)
{
if (priv == NULL)
{
return;
}
if (priv->handles != NULL)
{
NV_KFREE(priv->handles, priv->total_objects * sizeof(priv->handles[0]));
priv->handles = NULL;
}
mutex_destroy(&priv->lock);
NV_KFREE(priv, sizeof(nv_dma_buf_file_private_t));
}
static nv_dma_buf_file_private_t*
nv_dma_buf_alloc_file_private(
NvU32 num_handles
)
{
nv_dma_buf_file_private_t *priv = NULL;
NV_KMALLOC(priv, sizeof(nv_dma_buf_file_private_t));
if (priv == NULL)
{
return NULL;
}
memset(priv, 0, sizeof(nv_dma_buf_file_private_t));
mutex_init(&priv->lock);
NV_KMALLOC(priv->handles, num_handles * sizeof(priv->handles[0]));
if (priv->handles == NULL)
{
goto failed;
}
memset(priv->handles, 0, num_handles * sizeof(priv->handles[0]));
return priv;
failed:
nv_dma_buf_free_file_private(priv);
return NULL;
}
// Must be called with RMAPI lock and GPU lock taken
static void
nv_dma_buf_undup_mem_handles_unlocked(
nvidia_stack_t *sp,
NvU32 index,
NvU32 num_objects,
nv_dma_buf_file_private_t *priv
)
{
NvU32 i = 0;
for (i = index; i < num_objects; i++)
{
if (priv->handles[i].h_memory == 0)
{
continue;
}
rm_dma_buf_undup_mem_handle(sp, priv->nv, priv->h_client,
priv->handles[i].h_memory);
priv->attached_size -= priv->handles[i].size;
priv->handles[i].h_memory = 0;
priv->handles[i].offset = 0;
priv->handles[i].size = 0;
priv->num_objects--;
}
}
static void
nv_dma_buf_undup_mem_handles(
nvidia_stack_t *sp,
NvU32 index,
NvU32 num_objects,
nv_dma_buf_file_private_t *priv
)
{
NV_STATUS status;
status = rm_acquire_api_lock(sp);
if (WARN_ON(status != NV_OK))
{
return;
}
status = rm_acquire_all_gpus_lock(sp);
if (WARN_ON(status != NV_OK))
{
goto unlock_api_lock;
}
nv_dma_buf_undup_mem_handles_unlocked(sp, index, num_objects, priv);
rm_release_all_gpus_lock(sp);
unlock_api_lock:
rm_release_api_lock(sp);
}
static NV_STATUS
nv_dma_buf_dup_mem_handles(
nvidia_stack_t *sp,
nv_dma_buf_file_private_t *priv,
nv_ioctl_export_to_dma_buf_fd_t *params
)
{
NV_STATUS status = NV_OK;
NvU32 index = params->index;
NvU32 count = 0;
NvU32 i = 0;
status = rm_acquire_api_lock(sp);
if (status != NV_OK)
{
return status;
}
status = rm_acquire_gpu_lock(sp, priv->nv);
if (status != NV_OK)
{
goto unlock_api_lock;
}
for (i = 0; i < params->numObjects; i++)
{
NvHandle h_memory_duped = 0;
if (priv->handles[index].h_memory != 0)
{
status = NV_ERR_IN_USE;
goto failed;
}
if (params->sizes[i] > priv->total_size - priv->attached_size)
{
status = NV_ERR_INVALID_ARGUMENT;
goto failed;
}
status = rm_dma_buf_dup_mem_handle(sp, priv->nv,
params->hClient,
priv->h_client,
priv->h_device,
priv->h_subdevice,
priv->mig_info,
params->handles[i],
params->offsets[i],
params->sizes[i],
&h_memory_duped);
if (status != NV_OK)
{
goto failed;
}
priv->attached_size += params->sizes[i];
priv->handles[index].h_memory = h_memory_duped;
priv->handles[index].offset = params->offsets[i];
priv->handles[index].size = params->sizes[i];
priv->num_objects++;
index++;
count++;
}
if ((priv->num_objects == priv->total_objects) &&
(priv->attached_size != priv->total_size))
{
status = NV_ERR_INVALID_ARGUMENT;
goto failed;
}
rm_release_gpu_lock(sp, priv->nv);
rm_release_api_lock(sp);
return NV_OK;
failed:
nv_dma_buf_undup_mem_handles_unlocked(sp, params->index, count, priv);
rm_release_gpu_lock(sp, priv->nv);
unlock_api_lock:
rm_release_api_lock(sp);
return status;
}
// Must be called with RMAPI lock and GPU lock taken
static void
nv_dma_buf_unmap_unlocked(
nvidia_stack_t *sp,
nv_dma_device_t *peer_dma_dev,
nv_dma_buf_file_private_t *priv,
struct sg_table *sgt,
NvU32 mapped_handle_count
)
{
NV_STATUS status;
NvU32 i;
NvU64 dma_len;
NvU64 dma_addr;
NvBool bar1_unmap_needed;
struct scatterlist *sg = NULL;
bar1_unmap_needed = (priv->bar1_va_ref_count == 0);
sg = sgt->sgl;
for (i = 0; i < mapped_handle_count; i++)
{
NvU64 handle_size = priv->handles[i].size;
dma_addr = sg_dma_address(sg);
dma_len = 0;
//
// Seek ahead in the scatterlist until the handle size is covered.
// IOVA unmap can then be done all at once instead of doing it
// one sg at a time.
//
while(handle_size != dma_len)
{
dma_len += sg_dma_len(sg);
sg = sg_next(sg);
}
nv_dma_unmap_peer(peer_dma_dev, (dma_len / os_page_size), dma_addr);
if (bar1_unmap_needed)
{
status = rm_dma_buf_unmap_mem_handle(sp, priv->nv, priv->h_client,
priv->handles[i].h_memory,
priv->handles[i].size,
priv->handles[i].bar1_va);
WARN_ON(status != NV_OK);
}
}
}
static struct sg_table*
nv_dma_buf_map(
struct dma_buf_attachment *attachment,
enum dma_data_direction direction
)
{
NV_STATUS status;
nvidia_stack_t *sp = NULL;
struct scatterlist *sg = NULL;
struct sg_table *sgt = NULL;
struct dma_buf *buf = attachment->dmabuf;
struct device *dev = attachment->dev;
nv_dma_buf_file_private_t *priv = buf->priv;
nv_dma_device_t peer_dma_dev = {{ 0 }};
NvBool bar1_map_needed;
NvBool bar1_unmap_needed;
NvU32 mapped_handle_count = 0;
NvU32 num_sg_entries = 0;
NvU32 i = 0;
int rc = 0;
//
// We support importers that are able to handle MMIO resources
// not backed by struct page. This will need to be revisited
// when dma-buf support for P9 will be added.
//
#if defined(NV_DMA_BUF_HAS_DYNAMIC_ATTACHMENT) && \
defined(NV_DMA_BUF_ATTACHMENT_HAS_PEER2PEER)
if (dma_buf_attachment_is_dynamic(attachment) &&
!attachment->peer2peer)
{
nv_printf(NV_DBG_ERRORS,
"NVRM: failed to map dynamic attachment with no P2P support\n");
return NULL;
}
#endif
mutex_lock(&priv->lock);
if (priv->num_objects != priv->total_objects)
{
goto unlock_priv;
}
rc = nv_kmem_cache_alloc_stack(&sp);
if (rc != 0)
{
goto unlock_priv;
}
status = rm_acquire_api_lock(sp);
if (status != NV_OK)
{
goto free_sp;
}
status = rm_acquire_gpu_lock(sp, priv->nv);
if (status != NV_OK)
{
goto unlock_api_lock;
}
NV_KMALLOC(sgt, sizeof(struct sg_table));
if (sgt == NULL)
{
goto unlock_gpu_lock;
}
memset(sgt, 0, sizeof(struct sg_table));
//
// Pre-calculate number of sg entries we need based on handle size.
// This is needed to allocate sg_table.
//
for (i = 0; i < priv->num_objects; i++)
{
NvU64 count = priv->handles[i].size + NV_DMA_BUF_SG_MAX_LEN - 1;
do_div(count, NV_DMA_BUF_SG_MAX_LEN);
num_sg_entries += count;
}
//
// RM currently returns contiguous BAR1, so we create as many
// sg entries as num_sg_entries calculated above.
// When RM can alloc discontiguous BAR1, this code will need to be revisited.
//
rc = sg_alloc_table(sgt, num_sg_entries, GFP_KERNEL);
if (rc != 0)
{
goto free_sgt;
}
peer_dma_dev.dev = dev;
peer_dma_dev.addressable_range.limit = (NvU64)dev->dma_mask;
bar1_map_needed = bar1_unmap_needed = (priv->bar1_va_ref_count == 0);
sg = sgt->sgl;
for (i = 0; i < priv->num_objects; i++)
{
NvU64 dma_addr;
NvU64 dma_len;
if (bar1_map_needed)
{
status = rm_dma_buf_map_mem_handle(sp, priv->nv, priv->h_client,
priv->handles[i].h_memory,
priv->handles[i].offset,
priv->handles[i].size,
&priv->handles[i].bar1_va);
if (status != NV_OK)
{
goto unmap_handles;
}
}
mapped_handle_count++;
dma_addr = priv->handles[i].bar1_va;
dma_len = priv->handles[i].size;
//
// IOVA map the full handle at once and then breakdown the range
// (dma_addr, dma_addr + dma_len) into smaller sg entries.
//
status = nv_dma_map_peer(&peer_dma_dev, priv->nv->dma_dev,
0x1, (dma_len / os_page_size), &dma_addr);
if (status != NV_OK)
{
if (bar1_unmap_needed)
{
// Unmap the recently mapped memory handle
(void) rm_dma_buf_unmap_mem_handle(sp, priv->nv, priv->h_client,
priv->handles[i].h_memory,
priv->handles[i].size,
priv->handles[i].bar1_va);
}
mapped_handle_count--;
// Unmap remaining memory handles
goto unmap_handles;
}
while(dma_len != 0)
{
NvU32 sg_len = NV_MIN(dma_len, NV_DMA_BUF_SG_MAX_LEN);
sg_set_page(sg, NULL, sg_len, 0);
sg_dma_address(sg) = (dma_addr_t)dma_addr;
sg_dma_len(sg) = sg_len;
dma_addr += sg_len;
dma_len -= sg_len;
sg = sg_next(sg);
}
}
priv->bar1_va_ref_count++;
rm_release_gpu_lock(sp, priv->nv);
rm_release_api_lock(sp);
nv_kmem_cache_free_stack(sp);
mutex_unlock(&priv->lock);
return sgt;
unmap_handles:
nv_dma_buf_unmap_unlocked(sp, &peer_dma_dev, priv, sgt, mapped_handle_count);
sg_free_table(sgt);
free_sgt:
NV_KFREE(sgt, sizeof(struct sg_table));
unlock_gpu_lock:
rm_release_gpu_lock(sp, priv->nv);
unlock_api_lock:
rm_release_api_lock(sp);
free_sp:
nv_kmem_cache_free_stack(sp);
unlock_priv:
mutex_unlock(&priv->lock);
return NULL;
}
static void
nv_dma_buf_unmap(
struct dma_buf_attachment *attachment,
struct sg_table *sgt,
enum dma_data_direction direction
)
{
NV_STATUS status;
struct dma_buf *buf = attachment->dmabuf;
struct device *dev = attachment->dev;
nvidia_stack_t *sp = NULL;
nv_dma_buf_file_private_t *priv = buf->priv;
nv_dma_device_t peer_dma_dev = {{ 0 }};
int rc = 0;
mutex_lock(&priv->lock);
if (priv->num_objects != priv->total_objects)
{
goto unlock_priv;
}
rc = nv_kmem_cache_alloc_stack(&sp);
if (WARN_ON(rc != 0))
{
goto unlock_priv;
}
status = rm_acquire_api_lock(sp);
if (WARN_ON(status != NV_OK))
{
goto free_sp;
}
status = rm_acquire_gpu_lock(sp, priv->nv);
if (WARN_ON(status != NV_OK))
{
goto unlock_api_lock;
}
peer_dma_dev.dev = dev;
peer_dma_dev.addressable_range.limit = (NvU64)dev->dma_mask;
priv->bar1_va_ref_count--;
nv_dma_buf_unmap_unlocked(sp, &peer_dma_dev, priv, sgt, priv->num_objects);
sg_free_table(sgt);
NV_KFREE(sgt, sizeof(struct sg_table));
rm_release_gpu_lock(sp, priv->nv);
unlock_api_lock:
rm_release_api_lock(sp);
free_sp:
nv_kmem_cache_free_stack(sp);
unlock_priv:
mutex_unlock(&priv->lock);
}
static void
nv_dma_buf_release(
struct dma_buf *buf
)
{
int rc = 0;
nvidia_stack_t *sp = NULL;
nv_dma_buf_file_private_t *priv = buf->priv;
nv_state_t *nv;
if (priv == NULL)
{
return;
}
nv = priv->nv;
rc = nv_kmem_cache_alloc_stack(&sp);
if (WARN_ON(rc != 0))
{
return;
}
nv_dma_buf_undup_mem_handles(sp, 0, priv->num_objects, priv);
rm_dma_buf_put_client_and_device(sp, priv->nv, priv->h_client, priv->h_device,
priv->h_subdevice, priv->mig_info);
nv_dma_buf_free_file_private(priv);
buf->priv = NULL;
nvidia_dev_put(nv->gpu_id, sp);
nv_kmem_cache_free_stack(sp);
return;
}
static int
nv_dma_buf_mmap(
struct dma_buf *buf,
struct vm_area_struct *vma
)
{
// TODO: Check can_mmap flag
return -ENOTSUPP;
}
#if defined(NV_DMA_BUF_OPS_HAS_KMAP) || \
defined(NV_DMA_BUF_OPS_HAS_MAP)
static void*
nv_dma_buf_kmap_stub(
struct dma_buf *buf,
unsigned long page_num
)
{
return NULL;
}
static void
nv_dma_buf_kunmap_stub(
struct dma_buf *buf,
unsigned long page_num,
void *addr
)
{
return;
}
#endif
#if defined(NV_DMA_BUF_OPS_HAS_KMAP_ATOMIC) || \
defined(NV_DMA_BUF_OPS_HAS_MAP_ATOMIC)
static void*
nv_dma_buf_kmap_atomic_stub(
struct dma_buf *buf,
unsigned long page_num
)
{
return NULL;
}
static void
nv_dma_buf_kunmap_atomic_stub(
struct dma_buf *buf,
unsigned long page_num,
void *addr
)
{
return;
}
#endif
//
// Note: Some of the dma-buf operations are mandatory in some kernels.
// So stubs are added to prevent dma_buf_export() failure.
// The actual implementations of these interfaces is not really required
// for the export operation to work.
//
// Same functions are used for kmap*/map* because of this commit:
// f9b67f0014cb: dma-buf: Rename dma-ops to prevent conflict with kunmap_atomic
//
static const struct dma_buf_ops nv_dma_buf_ops = {
.map_dma_buf = nv_dma_buf_map,
.unmap_dma_buf = nv_dma_buf_unmap,
.release = nv_dma_buf_release,
.mmap = nv_dma_buf_mmap,
#if defined(NV_DMA_BUF_OPS_HAS_KMAP)
.kmap = nv_dma_buf_kmap_stub,
.kunmap = nv_dma_buf_kunmap_stub,
#endif
#if defined(NV_DMA_BUF_OPS_HAS_KMAP_ATOMIC)
.kmap_atomic = nv_dma_buf_kmap_atomic_stub,
.kunmap_atomic = nv_dma_buf_kunmap_atomic_stub,
#endif
#if defined(NV_DMA_BUF_OPS_HAS_MAP)
.map = nv_dma_buf_kmap_stub,
.unmap = nv_dma_buf_kunmap_stub,
#endif
#if defined(NV_DMA_BUF_OPS_HAS_MAP_ATOMIC)
.map_atomic = nv_dma_buf_kmap_atomic_stub,
.unmap_atomic = nv_dma_buf_kunmap_atomic_stub,
#endif
};
static NV_STATUS
nv_dma_buf_create(
nv_state_t *nv,
nv_ioctl_export_to_dma_buf_fd_t *params
)
{
int rc = 0;
NV_STATUS status;
nvidia_stack_t *sp = NULL;
struct dma_buf *buf = NULL;
nv_dma_buf_file_private_t *priv = NULL;
NvU32 gpu_id = nv->gpu_id;
if (!nv->dma_buf_supported)
{
return NV_ERR_NOT_SUPPORTED;
}
if (params->index > (params->totalObjects - params->numObjects))
{
return NV_ERR_INVALID_ARGUMENT;
}
priv = nv_dma_buf_alloc_file_private(params->totalObjects);
if (priv == NULL)
{
nv_printf(NV_DBG_ERRORS, "NVRM: failed to allocate dma-buf private\n");
return NV_ERR_NO_MEMORY;
}
priv->total_objects = params->totalObjects;
priv->total_size = params->totalSize;
priv->nv = nv;
priv->can_mmap = NV_FALSE;
rc = nv_kmem_cache_alloc_stack(&sp);
if (rc != 0)
{
status = NV_ERR_NO_MEMORY;
goto cleanup_priv;
}
rc = nvidia_dev_get(gpu_id, sp);
if (rc != 0)
{
status = NV_ERR_OPERATING_SYSTEM;
goto cleanup_sp;
}
status = rm_dma_buf_get_client_and_device(sp, priv->nv,
params->hClient,
&priv->h_client,
&priv->h_device,
&priv->h_subdevice,
&priv->mig_info);
if (status != NV_OK)
{
goto cleanup_device;
}
status = nv_dma_buf_dup_mem_handles(sp, priv, params);
if (status != NV_OK)
{
goto cleanup_client_and_device;
}
#if (NV_DMA_BUF_EXPORT_ARGUMENT_COUNT == 1)
{
DEFINE_DMA_BUF_EXPORT_INFO(exp_info);
exp_info.ops = &nv_dma_buf_ops;
exp_info.size = params->totalSize;
exp_info.flags = O_RDWR | O_CLOEXEC;
exp_info.priv = priv;
buf = dma_buf_export(&exp_info);
}
#elif (NV_DMA_BUF_EXPORT_ARGUMENT_COUNT == 4)
buf = dma_buf_export(priv, &nv_dma_buf_ops,
params->totalSize, O_RDWR | O_CLOEXEC);
#elif (NV_DMA_BUF_EXPORT_ARGUMENT_COUNT == 5)
buf = dma_buf_export(priv, &nv_dma_buf_ops,
params->totalSize, O_RDWR | O_CLOEXEC, NULL);
#endif
if (IS_ERR(buf))
{
nv_printf(NV_DBG_ERRORS, "NVRM: failed to create dma-buf\n");
status = NV_ERR_OPERATING_SYSTEM;
goto cleanup_handles;
}
nv_kmem_cache_free_stack(sp);
rc = dma_buf_fd(buf, O_RDWR | O_CLOEXEC);
if (rc < 0)
{
nv_printf(NV_DBG_ERRORS, "NVRM: failed to get dma-buf file descriptor\n");
//
// If dma-buf is successfully created, the dup'd handles
// clean-up should be done by the release callback.
//
dma_buf_put(buf);
return NV_ERR_OPERATING_SYSTEM;
}
params->fd = rc;
return NV_OK;
cleanup_handles:
nv_dma_buf_undup_mem_handles(sp, 0, priv->num_objects, priv);
cleanup_client_and_device:
rm_dma_buf_put_client_and_device(sp, priv->nv, priv->h_client, priv->h_device,
priv->h_subdevice, priv->mig_info);
cleanup_device:
nvidia_dev_put(gpu_id, sp);
cleanup_sp:
nv_kmem_cache_free_stack(sp);
cleanup_priv:
nv_dma_buf_free_file_private(priv);
return status;
}
static NV_STATUS
nv_dma_buf_reuse(
nv_state_t *nv,
nv_ioctl_export_to_dma_buf_fd_t *params
)
{
int rc = 0;
NV_STATUS status = NV_OK;
nvidia_stack_t *sp = NULL;
struct dma_buf *buf = NULL;
nv_dma_buf_file_private_t *priv = NULL;
buf = dma_buf_get(params->fd);
if (IS_ERR(buf))
{
nv_printf(NV_DBG_ERRORS, "NVRM: failed to get dma-buf\n");
return NV_ERR_OPERATING_SYSTEM;
}
if (buf->ops != &nv_dma_buf_ops)
{
nv_printf(NV_DBG_ERRORS, "NVRM: Invalid dma-buf fd\n");
status = NV_ERR_INVALID_ARGUMENT;
goto cleanup_dmabuf;
}
priv = buf->priv;
if (priv == NULL)
{
status = NV_ERR_OPERATING_SYSTEM;
goto cleanup_dmabuf;
}
rc = mutex_lock_interruptible(&priv->lock);
if (rc != 0)
{
status = NV_ERR_OPERATING_SYSTEM;
goto cleanup_dmabuf;
}
if ((priv->total_objects < params->numObjects) ||
(params->index > (priv->total_objects - params->numObjects)))
{
status = NV_ERR_INVALID_ARGUMENT;
goto unlock_priv;
}
rc = nv_kmem_cache_alloc_stack(&sp);
if (rc != 0)
{
status = NV_ERR_NO_MEMORY;
goto unlock_priv;
}
status = nv_dma_buf_dup_mem_handles(sp, priv, params);
if (status != NV_OK)
{
goto cleanup_sp;
}
cleanup_sp:
nv_kmem_cache_free_stack(sp);
unlock_priv:
mutex_unlock(&priv->lock);
cleanup_dmabuf:
dma_buf_put(buf);
return status;
}
#endif // CONFIG_DMA_SHARED_BUFFER
NV_STATUS
nv_dma_buf_export(
nv_state_t *nv,
nv_ioctl_export_to_dma_buf_fd_t *params
)
{
#if defined(CONFIG_DMA_SHARED_BUFFER)
NV_STATUS status;
if ((params == NULL) ||
(params->totalSize == 0) ||
(params->numObjects == 0) ||
(params->totalObjects == 0) ||
(params->numObjects > NV_DMABUF_EXPORT_MAX_HANDLES) ||
(params->numObjects > params->totalObjects))
{
return NV_ERR_INVALID_ARGUMENT;
}
//
// If fd >= 0, dma-buf already exists with this fd, so get dma-buf from fd.
// If fd == -1, dma-buf is not created yet, so create it and then store
// additional handles.
//
if (params->fd == -1)
{
status = nv_dma_buf_create(nv, params);
}
else if (params->fd >= 0)
{
status = nv_dma_buf_reuse(nv, params);
}
else
{
status = NV_ERR_INVALID_ARGUMENT;
}
return status;
#else
return NV_ERR_NOT_SUPPORTED;
#endif // CONFIG_DMA_SHARED_BUFFER
}