open-gpu-kernel-modules/kernel-open/nvidia-uvm/uvm_processors.h
2023-02-28 11:12:44 -08:00

589 lines
34 KiB
C

/*******************************************************************************
Copyright (c) 2016-2019 NVIDIA Corporation
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
*******************************************************************************/
#ifndef __UVM_PROCESSORS_H__
#define __UVM_PROCESSORS_H__
#include "uvm_linux.h"
#include "uvm_common.h"
#define UVM_MAX_UNIQUE_GPU_PAIRS SUM_FROM_0_TO_N(UVM_MAX_GPUS - 1)
// Processor identifiers
// =====================
//
// UVM uses its own identifiers to refer to the processors in the system. For
// simplicity (and performance), integers are used. However, in order to
// provide type safety, they are wrapped within the uvm_processor_id_t struct.
// The range of valid identifiers needs to cover the maximum number of
// supported GPUs on a system plus the CPU. CPU is assigned value 0, and GPUs
// range: [1, UVM_ID_MAX_GPUS].
//
// There are some functions that only expect GPU identifiers and, in order to
// make it clearer, the uvm_gpu_id_t alias type is provided. However, as this
// type is just a typedef of uvm_processor_id_t, there is no type checking
// performed by the compiler.
//
// Identifier value vs index
// -------------------------
//
// Although we can rely on helpers for most of the operations related to
// processor ids, there are some scenarios in which we need to obtain their
// numerical value. Notably:
// - Logging
// - Array indexing
//
// Therefore, a helper is provided to obtain this value. However, there is a
// special case for array indexing, as there are some arrays that only contain
// entries for GPUs. In that case, the array cannot be directly indexed with
// the identifier's value. Instead, we use a helper that provides the index of
// the GPU within the GPU id space (basically id - 1).
//
// In the diagram below, MAX_SUB is used to abbreviate
// UVM_ID_MAX_SUB_PROCESSORS.
//
// |-------------------------- uvm_processor_id_t ----------------------|
// | |
// | |----------------------- uvm_gpu_id_t ------------------------||
// | | ||
// Proc type | CPU | GPU ... GPU ... GPU ||
// | | ||
// ID values | 0 | 1 ... i+1 ... UVM_ID_MAX_PROCESSORS-1 ||
//
// GPU index 0 ... i ... UVM_ID_MAX_GPUS-1
// | | | |
// | | | |
// | |-------------| | |-----------------------------|
// | | | |
// | | | |
// GPU index 0 ... MAX_SUB-1 ... i*MAX_SUB ... (i+1)*MAX_SUB-1 ... UVM_GLOBAL_ID_MAX_GPUS-1
//
// ID values | 0 | 1 ... MAX_SUB ... (i*MAX_SUB)+1 ... (i+1)*MAX_SUB ... UVM_GLOBAL_ID_MAX_PROCESSORS-1 ||
// | | ||
// Proc type | CPU | GPU ... GPU ... GPU ... GPU ... GPU ||
// | | ||
// | |-------------------------------------- uvm_global_gpu_id_t ---------------------------------------||
// | |
// |----------------------------------------- uvm_global_processor_id_t -------------------------------------|
//
// When SMC is enabled, each GPU partition gets its own uvm_gpu_t object.
// However, there can only be a single partition per GPU in a VA space, so
// uvm_processor_id_t/uvm_processor_mask_t can still be used when operating
// in the context of a VA space. In the global context, types that can refer
// to all individual partitions need to be used, though. Therefore, we
// provide the uvm_global_gpu_id_t/uvm_global_processor_mask_t types and the
// corresponding uvm_global_gpu_id*/uvm_global_processor_mask* helpers.
#define UVM_PROCESSOR_MASK(mask_t, \
prefix_fn_mask, \
maxval, \
proc_id_t, \
proc_id_ctor) \
\
typedef struct \
{ \
DECLARE_BITMAP(bitmap, maxval); \
} mask_t; \
\
static bool prefix_fn_mask##_test(const mask_t *mask, proc_id_t id) \
{ \
UVM_ASSERT_MSG(id.val < (maxval), "id %u\n", id.val); \
\
return test_bit(id.val, mask->bitmap); \
} \
\
static void prefix_fn_mask##_set_atomic(mask_t *mask, proc_id_t id) \
{ \
UVM_ASSERT_MSG(id.val < (maxval), "id %u\n", id.val); \
\
set_bit(id.val, mask->bitmap); \
} \
\
static void prefix_fn_mask##_set(mask_t *mask, proc_id_t id) \
{ \
UVM_ASSERT_MSG(id.val < (maxval), "id %u\n", id.val); \
\
__set_bit(id.val, mask->bitmap); \
} \
\
static void prefix_fn_mask##_clear_atomic(mask_t *mask, proc_id_t id) \
{ \
UVM_ASSERT_MSG(id.val < (maxval), "id %u\n", id.val); \
\
clear_bit(id.val, mask->bitmap); \
} \
\
static void prefix_fn_mask##_clear(mask_t *mask, proc_id_t id) \
{ \
UVM_ASSERT_MSG(id.val < (maxval), "id %u\n", id.val); \
\
__clear_bit(id.val, mask->bitmap); \
} \
\
static bool prefix_fn_mask##_test_and_set_atomic(mask_t *mask, proc_id_t id) \
{ \
UVM_ASSERT_MSG(id.val < (maxval), "id %u\n", id.val); \
\
return test_and_set_bit(id.val, mask->bitmap); \
} \
\
static bool prefix_fn_mask##_test_and_set(mask_t *mask, proc_id_t id) \
{ \
UVM_ASSERT_MSG(id.val < (maxval), "id %u\n", id.val); \
\
return __test_and_set_bit(id.val, mask->bitmap); \
} \
\
static bool prefix_fn_mask##_test_and_clear_atomic(mask_t *mask, proc_id_t id) \
{ \
UVM_ASSERT_MSG(id.val < (maxval), "id %u\n", id.val); \
\
return test_and_clear_bit(id.val, mask->bitmap); \
} \
\
static bool prefix_fn_mask##_test_and_clear(mask_t *mask, proc_id_t id) \
{ \
UVM_ASSERT_MSG(id.val < (maxval), "id %u\n", id.val); \
\
return __test_and_clear_bit(id.val, mask->bitmap); \
} \
\
static void prefix_fn_mask##_zero(mask_t *mask) \
{ \
bitmap_zero(mask->bitmap, (maxval)); \
} \
\
static bool prefix_fn_mask##_empty(const mask_t *mask) \
{ \
return bitmap_empty(mask->bitmap, (maxval)); \
} \
\
static void prefix_fn_mask##_copy(mask_t *dst, const mask_t *src) \
{ \
bitmap_copy(dst->bitmap, src->bitmap, (maxval)); \
} \
\
static bool prefix_fn_mask##_and(mask_t *dst, const mask_t *src1, const mask_t *src2) \
{ \
return bitmap_and(dst->bitmap, src1->bitmap, src2->bitmap, (maxval)) != 0; \
} \
\
static void prefix_fn_mask##_or(mask_t *dst, const mask_t *src1, const mask_t *src2) \
{ \
bitmap_or(dst->bitmap, src1->bitmap, src2->bitmap, (maxval)); \
} \
\
static bool prefix_fn_mask##_andnot(mask_t *dst, const mask_t *src1, const mask_t *src2) \
{ \
return bitmap_andnot(dst->bitmap, src1->bitmap, src2->bitmap, (maxval)); \
} \
\
static void prefix_fn_mask##_xor(mask_t *dst, const mask_t *src1, const mask_t *src2) \
{ \
bitmap_xor(dst->bitmap, src1->bitmap, src2->bitmap, (maxval)); \
} \
\
static proc_id_t prefix_fn_mask##_find_first_id(const mask_t *mask) \
{ \
return proc_id_ctor(find_first_bit(mask->bitmap, (maxval))); \
} \
\
static proc_id_t prefix_fn_mask##_find_first_gpu_id(const mask_t *mask) \
{ \
return proc_id_ctor(find_next_bit(mask->bitmap, (maxval), UVM_ID_GPU0_VALUE)); \
} \
\
static proc_id_t prefix_fn_mask##_find_next_id(const mask_t *mask, proc_id_t min_id) \
{ \
return proc_id_ctor(find_next_bit(mask->bitmap, (maxval), min_id.val)); \
} \
\
static proc_id_t prefix_fn_mask##_find_next_gpu_id(const mask_t *mask, proc_id_t min_gpu_id) \
{ \
return proc_id_ctor(find_next_bit(mask->bitmap, (maxval), min_gpu_id.val)); \
} \
\
static proc_id_t prefix_fn_mask##_find_first_unset_id(const mask_t *mask) \
{ \
return proc_id_ctor(find_first_zero_bit(mask->bitmap, (maxval))); \
} \
\
static proc_id_t prefix_fn_mask##_find_next_unset_id(const mask_t *mask, proc_id_t min_id) \
{ \
return proc_id_ctor(find_next_zero_bit(mask->bitmap, (maxval), min_id.val)); \
} \
\
static bool prefix_fn_mask##_equal(const mask_t *mask_in1, const mask_t *mask_in2) \
{ \
return bitmap_equal(mask_in1->bitmap, mask_in2->bitmap, (maxval)) != 0; \
} \
\
static bool prefix_fn_mask##_subset(const mask_t *subset, const mask_t *mask) \
{ \
return bitmap_subset(subset->bitmap, mask->bitmap, (maxval)) != 0; \
} \
\
static NvU32 prefix_fn_mask##_get_count(const mask_t *mask) \
{ \
return bitmap_weight(mask->bitmap, (maxval)); \
} \
\
static NvU32 prefix_fn_mask##_get_gpu_count(const mask_t *mask) \
{ \
NvU32 gpu_count = prefix_fn_mask##_get_count(mask); \
\
if (prefix_fn_mask##_test(mask, proc_id_ctor(UVM_ID_CPU_VALUE))) \
--gpu_count; \
\
return gpu_count; \
}
typedef struct
{
NvU32 val;
} uvm_processor_id_t;
typedef struct
{
NvU32 val;
} uvm_global_processor_id_t;
typedef uvm_processor_id_t uvm_gpu_id_t;
typedef uvm_global_processor_id_t uvm_global_gpu_id_t;
// Static value assigned to the CPU
#define UVM_ID_CPU_VALUE 0
#define UVM_ID_GPU0_VALUE (UVM_ID_CPU_VALUE + 1)
// ID values for the CPU and first GPU, respectively; the values for both types
// of IDs must match to enable sharing of UVM_PROCESSOR_MASK().
#define UVM_GLOBAL_ID_CPU_VALUE UVM_ID_CPU_VALUE
#define UVM_GLOBAL_ID_GPU0_VALUE UVM_ID_GPU0_VALUE
// Maximum number of GPUs/processors that can be represented with the id types
#define UVM_ID_MAX_GPUS UVM_MAX_GPUS
#define UVM_ID_MAX_PROCESSORS UVM_MAX_PROCESSORS
#define UVM_ID_MAX_SUB_PROCESSORS 8
#define UVM_GLOBAL_ID_MAX_GPUS (UVM_MAX_GPUS * UVM_ID_MAX_SUB_PROCESSORS)
#define UVM_GLOBAL_ID_MAX_PROCESSORS (UVM_GLOBAL_ID_MAX_GPUS + 1)
#define UVM_ID_CPU ((uvm_processor_id_t) { .val = UVM_ID_CPU_VALUE })
#define UVM_ID_INVALID ((uvm_processor_id_t) { .val = UVM_ID_MAX_PROCESSORS })
#define UVM_GLOBAL_ID_CPU ((uvm_global_processor_id_t) { .val = UVM_GLOBAL_ID_CPU_VALUE })
#define UVM_GLOBAL_ID_INVALID ((uvm_global_processor_id_t) { .val = UVM_GLOBAL_ID_MAX_PROCESSORS })
#define UVM_ID_CHECK_BOUNDS(id) UVM_ASSERT_MSG(id.val <= UVM_ID_MAX_PROCESSORS, "id %u\n", id.val)
#define UVM_GLOBAL_ID_CHECK_BOUNDS(id) UVM_ASSERT_MSG(id.val <= UVM_GLOBAL_ID_MAX_PROCESSORS, "id %u\n", id.val)
static int uvm_id_cmp(uvm_processor_id_t id1, uvm_processor_id_t id2)
{
UVM_ID_CHECK_BOUNDS(id1);
UVM_ID_CHECK_BOUNDS(id2);
return UVM_CMP_DEFAULT(id1.val, id2.val);
}
static bool uvm_id_equal(uvm_processor_id_t id1, uvm_processor_id_t id2)
{
UVM_ID_CHECK_BOUNDS(id1);
UVM_ID_CHECK_BOUNDS(id2);
return id1.val == id2.val;
}
static int uvm_global_id_cmp(uvm_global_processor_id_t id1, uvm_global_processor_id_t id2)
{
UVM_GLOBAL_ID_CHECK_BOUNDS(id1);
UVM_GLOBAL_ID_CHECK_BOUNDS(id2);
return UVM_CMP_DEFAULT(id1.val, id2.val);
}
static bool uvm_global_id_equal(uvm_global_processor_id_t id1, uvm_global_processor_id_t id2)
{
UVM_GLOBAL_ID_CHECK_BOUNDS(id1);
UVM_GLOBAL_ID_CHECK_BOUNDS(id2);
return id1.val == id2.val;
}
#define UVM_ID_IS_CPU(id) uvm_id_equal(id, UVM_ID_CPU)
#define UVM_ID_IS_INVALID(id) uvm_id_equal(id, UVM_ID_INVALID)
#define UVM_ID_IS_VALID(id) (!UVM_ID_IS_INVALID(id))
#define UVM_ID_IS_GPU(id) (!UVM_ID_IS_CPU(id) && !UVM_ID_IS_INVALID(id))
#define UVM_GLOBAL_ID_IS_CPU(id) uvm_global_id_equal(id, UVM_GLOBAL_ID_CPU)
#define UVM_GLOBAL_ID_IS_INVALID(id) uvm_global_id_equal(id, UVM_GLOBAL_ID_INVALID)
#define UVM_GLOBAL_ID_IS_VALID(id) (!UVM_GLOBAL_ID_IS_INVALID(id))
#define UVM_GLOBAL_ID_IS_GPU(id) (!UVM_GLOBAL_ID_IS_CPU(id) && !UVM_GLOBAL_ID_IS_INVALID(id))
static uvm_processor_id_t uvm_id_from_value(NvU32 val)
{
uvm_processor_id_t ret = { .val = val };
UVM_ID_CHECK_BOUNDS(ret);
return ret;
}
static uvm_gpu_id_t uvm_gpu_id_from_value(NvU32 val)
{
uvm_gpu_id_t ret = uvm_id_from_value(val);
UVM_ASSERT(!UVM_ID_IS_CPU(ret));
return ret;
}
static uvm_global_processor_id_t uvm_global_id_from_value(NvU32 val)
{
uvm_global_processor_id_t ret = { .val = val };
UVM_GLOBAL_ID_CHECK_BOUNDS(ret);
return ret;
}
static uvm_global_gpu_id_t uvm_global_gpu_id_from_value(NvU32 val)
{
uvm_global_gpu_id_t ret = uvm_global_id_from_value(val);
UVM_ASSERT(!UVM_GLOBAL_ID_IS_CPU(ret));
return ret;
}
// Create a GPU id from the given GPU id index (previously obtained via
// uvm_id_gpu_index)
static uvm_gpu_id_t uvm_gpu_id_from_index(NvU32 index)
{
return uvm_gpu_id_from_value(index + UVM_ID_GPU0_VALUE);
}
static uvm_processor_id_t uvm_id_next(uvm_processor_id_t id)
{
++id.val;
UVM_ID_CHECK_BOUNDS(id);
return id;
}
static uvm_gpu_id_t uvm_gpu_id_next(uvm_gpu_id_t id)
{
UVM_ASSERT(UVM_ID_IS_GPU(id));
++id.val;
UVM_ID_CHECK_BOUNDS(id);
return id;
}
// Same as uvm_gpu_id_from_index but for uvm_global_processor_id_t
static uvm_global_gpu_id_t uvm_global_gpu_id_from_index(NvU32 index)
{
return uvm_global_gpu_id_from_value(index + UVM_GLOBAL_ID_GPU0_VALUE);
}
static uvm_global_processor_id_t uvm_global_id_next(uvm_global_processor_id_t id)
{
++id.val;
UVM_GLOBAL_ID_CHECK_BOUNDS(id);
return id;
}
static uvm_global_gpu_id_t uvm_global_gpu_id_next(uvm_global_gpu_id_t id)
{
UVM_ASSERT(UVM_GLOBAL_ID_IS_GPU(id));
++id.val;
UVM_GLOBAL_ID_CHECK_BOUNDS(id);
return id;
}
// This function returns the numerical value within [0, UVM_ID_MAX_PROCESSORS)
// of the given processor id
static NvU32 uvm_id_value(uvm_processor_id_t id)
{
UVM_ASSERT(UVM_ID_IS_VALID(id));
return id.val;
}
// This function returns the numerical value within
// [0, UVM_GLOBAL_ID_MAX_PROCESSORS) of the given processor id
static NvU32 uvm_global_id_value(uvm_global_processor_id_t id)
{
UVM_ASSERT(UVM_GLOBAL_ID_IS_VALID(id));
return id.val;
}
// This function returns the index of the given GPU id within the GPU id space
// [0, UVM_ID_MAX_GPUS)
static NvU32 uvm_id_gpu_index(uvm_gpu_id_t id)
{
UVM_ASSERT(UVM_ID_IS_GPU(id));
return id.val - UVM_ID_GPU0_VALUE;
}
// This function returns the index of the given GPU id within the GPU id space
// [0, UVM_GLOBAL_ID_MAX_GPUS)
static NvU32 uvm_global_id_gpu_index(const uvm_global_gpu_id_t id)
{
UVM_ASSERT(UVM_GLOBAL_ID_IS_GPU(id));
return id.val - UVM_GLOBAL_ID_GPU0_VALUE;
}
static NvU32 uvm_global_id_gpu_index_from_gpu_id(const uvm_gpu_id_t id)
{
UVM_ASSERT(UVM_ID_IS_GPU(id));
return uvm_id_gpu_index(id) * UVM_ID_MAX_SUB_PROCESSORS;
}
static NvU32 uvm_id_gpu_index_from_global_gpu_id(const uvm_global_gpu_id_t id)
{
UVM_ASSERT(UVM_GLOBAL_ID_IS_GPU(id));
return uvm_global_id_gpu_index(id) / UVM_ID_MAX_SUB_PROCESSORS;
}
static uvm_global_gpu_id_t uvm_global_gpu_id_from_gpu_id(const uvm_gpu_id_t id)
{
UVM_ASSERT(UVM_ID_IS_GPU(id));
return uvm_global_gpu_id_from_index(uvm_global_id_gpu_index_from_gpu_id(id));
}
static uvm_global_gpu_id_t uvm_global_gpu_id_from_parent_index(NvU32 index)
{
UVM_ASSERT(index < UVM_MAX_GPUS);
return uvm_global_gpu_id_from_gpu_id(uvm_gpu_id_from_value(index + UVM_GLOBAL_ID_GPU0_VALUE));
}
static uvm_global_gpu_id_t uvm_global_gpu_id_from_sub_processor_index(const uvm_gpu_id_t id, NvU32 sub_index)
{
NvU32 index;
UVM_ASSERT(sub_index < UVM_ID_MAX_SUB_PROCESSORS);
index = uvm_global_id_gpu_index_from_gpu_id(id) + sub_index;
return uvm_global_gpu_id_from_index(index);
}
static uvm_gpu_id_t uvm_gpu_id_from_global_gpu_id(const uvm_global_gpu_id_t id)
{
UVM_ASSERT(UVM_GLOBAL_ID_IS_GPU(id));
return uvm_gpu_id_from_index(uvm_id_gpu_index_from_global_gpu_id(id));
}
static NvU32 uvm_global_id_sub_processor_index(const uvm_global_gpu_id_t id)
{
return uvm_global_id_gpu_index(id) % UVM_ID_MAX_SUB_PROCESSORS;
}
UVM_PROCESSOR_MASK(uvm_processor_mask_t, \
uvm_processor_mask, \
UVM_ID_MAX_PROCESSORS, \
uvm_processor_id_t, \
uvm_id_from_value)
UVM_PROCESSOR_MASK(uvm_global_processor_mask_t, \
uvm_global_processor_mask, \
UVM_GLOBAL_ID_MAX_PROCESSORS, \
uvm_global_processor_id_t, \
uvm_global_id_from_value)
// Like uvm_processor_mask_subset but ignores the CPU in both masks. Returns
// whether the GPUs in subset are a subset of the GPUs in mask.
static bool uvm_processor_mask_gpu_subset(const uvm_processor_mask_t *subset, const uvm_processor_mask_t *mask)
{
uvm_processor_mask_t subset_gpus;
uvm_processor_mask_copy(&subset_gpus, subset);
uvm_processor_mask_clear(&subset_gpus, UVM_ID_CPU);
return uvm_processor_mask_subset(&subset_gpus, mask);
}
#define for_each_id_in_mask(id, mask) \
for ((id) = uvm_processor_mask_find_first_id(mask); \
UVM_ID_IS_VALID(id); \
(id) = uvm_processor_mask_find_next_id((mask), uvm_id_next(id)))
#define for_each_gpu_id_in_mask(gpu_id, mask) \
for ((gpu_id) = uvm_processor_mask_find_first_gpu_id((mask)); \
UVM_ID_IS_VALID(gpu_id); \
(gpu_id) = uvm_processor_mask_find_next_id((mask), uvm_gpu_id_next(gpu_id)))
#define for_each_global_id_in_mask(id, mask) \
for ((id) = uvm_global_processor_mask_find_first_id(mask); \
UVM_GLOBAL_ID_IS_VALID(id); \
(id) = uvm_global_processor_mask_find_next_id((mask), uvm_global_id_next(id)))
#define for_each_global_gpu_id_in_mask(gpu_id, mask) \
for ((gpu_id) = uvm_global_processor_mask_find_first_gpu_id((mask)); \
UVM_GLOBAL_ID_IS_VALID(gpu_id); \
(gpu_id) = uvm_global_processor_mask_find_next_id((mask), uvm_global_gpu_id_next(gpu_id)))
// Helper to iterate over all valid gpu ids
#define for_each_gpu_id(i) \
for (i = uvm_gpu_id_from_value(UVM_ID_GPU0_VALUE); UVM_ID_IS_VALID(i); i = uvm_gpu_id_next(i))
#define for_each_global_gpu_id(i) \
for (i = uvm_global_gpu_id_from_value(UVM_GLOBAL_ID_GPU0_VALUE); UVM_GLOBAL_ID_IS_VALID(i); i = uvm_global_gpu_id_next(i))
#define for_each_global_sub_processor_id_in_gpu(id, i) \
for (i = uvm_global_gpu_id_from_gpu_id(id); \
UVM_GLOBAL_ID_IS_VALID(i) && \
(uvm_global_id_value(i) < uvm_global_id_value(uvm_global_gpu_id_from_gpu_id(id)) + UVM_ID_MAX_SUB_PROCESSORS); \
i = uvm_global_gpu_id_next(i))
// Helper to iterate over all valid gpu ids
#define for_each_processor_id(i) for (i = UVM_ID_CPU; UVM_ID_IS_VALID(i); i = uvm_id_next(i))
#define for_each_global_id(i) for (i = UVM_GLOBAL_ID_CPU; UVM_GLOBAL_ID_IS_VALID(i); i = uvm_global_id_next(i))
static bool uvm_processor_uuid_eq(const NvProcessorUuid *uuid1, const NvProcessorUuid *uuid2)
{
return memcmp(uuid1, uuid2, sizeof(*uuid1)) == 0;
}
// Copies a UUID from source (src) to destination (dst).
static void uvm_processor_uuid_copy(NvProcessorUuid *dst, const NvProcessorUuid *src)
{
memcpy(dst, src, sizeof(*dst));
}
#endif