open-gpu-kernel-modules/kernel-open/nvidia-modeset/nvidia-modeset-linux.c
2022-10-10 14:59:24 -07:00

1642 lines
42 KiB
C

/*
* SPDX-FileCopyrightText: Copyright (c) 2015-21 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/vmalloc.h>
#include <asm/div64.h> /* do_div() */
#include <linux/sched.h>
#include <linux/wait.h>
#include <linux/random.h>
#include <linux/file.h>
#include <linux/list.h>
#include <linux/rwsem.h>
#include "nvstatus.h"
#include "nv-register-module.h"
#include "nv-modeset-interface.h"
#include "nv-kref.h"
#include "nvidia-modeset-os-interface.h"
#include "nvkms.h"
#include "nvkms-ioctl.h"
#include "conftest.h"
#include "nv-procfs.h"
#include "nv-kthread-q.h"
#include "nv-time.h"
#include "nv-lock.h"
#if !defined(CONFIG_RETPOLINE)
#include "nv-retpoline.h"
#endif
#include <linux/backlight.h>
#define NVKMS_LOG_PREFIX "nvidia-modeset: "
static bool output_rounding_fix = true;
module_param_named(output_rounding_fix, output_rounding_fix, bool, 0400);
/* These parameters are used for fault injection tests. Normally the defaults
* should be used. */
MODULE_PARM_DESC(fail_malloc, "Fail the Nth call to nvkms_alloc");
static int fail_malloc_num = -1;
module_param_named(fail_malloc, fail_malloc_num, int, 0400);
MODULE_PARM_DESC(malloc_verbose, "Report information about malloc calls on module unload");
static bool malloc_verbose = false;
module_param_named(malloc_verbose, malloc_verbose, bool, 0400);
static atomic_t nvkms_alloc_called_count;
NvBool nvkms_output_rounding_fix(void)
{
return output_rounding_fix;
}
#define NVKMS_SYNCPT_STUBS_NEEDED
/*************************************************************************
* NVKMS interface for nvhost unit for sync point APIs.
*************************************************************************/
#ifdef NVKMS_SYNCPT_STUBS_NEEDED
/* Unsupported STUB for nvkms_syncpt APIs */
NvBool nvkms_syncpt_op(
enum NvKmsSyncPtOp op,
NvKmsSyncPtOpParams *params)
{
return NV_FALSE;
}
#endif
#define NVKMS_MAJOR_DEVICE_NUMBER 195
#define NVKMS_MINOR_DEVICE_NUMBER 254
/*
* Convert from microseconds to jiffies. The conversion is:
* ((usec) * HZ / 1000000)
*
* Use do_div() to avoid gcc-generated references to __udivdi3().
* Note that the do_div() macro divides the first argument in place.
*/
static inline unsigned long NVKMS_USECS_TO_JIFFIES(NvU64 usec)
{
unsigned long result = usec * HZ;
do_div(result, 1000000);
return result;
}
/*************************************************************************
* NVKMS uses a global lock, nvkms_lock. The lock is taken in the
* file operation callback functions when calling into core NVKMS.
*************************************************************************/
static struct semaphore nvkms_lock;
/*************************************************************************
* User clients of NVKMS may need to be synchronized with suspend/resume
* operations. This depends on the state of the system when the NVKMS
* suspend/resume callbacks are invoked. NVKMS uses a single
* RW lock, nvkms_pm_lock, for this synchronization.
*************************************************************************/
static struct rw_semaphore nvkms_pm_lock;
/*************************************************************************
* NVKMS executes almost all of its queued work items on a single
* kthread. The exception are deferred close() handlers, which typically
* block for long periods of time and stall their queue.
*************************************************************************/
static struct nv_kthread_q nvkms_kthread_q;
static struct nv_kthread_q nvkms_deferred_close_kthread_q;
/*************************************************************************
* The nvkms_per_open structure tracks data that is specific to a
* single open.
*************************************************************************/
struct nvkms_per_open {
void *data;
enum NvKmsClientType type;
union {
struct {
struct {
atomic_t available;
wait_queue_head_t wait_queue;
} events;
} user;
struct {
struct {
nv_kthread_q_item_t nv_kthread_q_item;
} events;
} kernel;
} u;
nv_kthread_q_item_t deferred_close_q_item;
};
/*************************************************************************
* nvkms_pm_lock helper functions. Since no down_read_interruptible()
* or equivalent interface is available, it needs to be approximated with
* down_read_trylock() to enable the kernel's freezer to round up user
* threads going into suspend.
*************************************************************************/
static inline int nvkms_read_trylock_pm_lock(void)
{
return !down_read_trylock(&nvkms_pm_lock);
}
static inline void nvkms_read_lock_pm_lock(void)
{
down_read(&nvkms_pm_lock);
}
static inline void nvkms_read_unlock_pm_lock(void)
{
up_read(&nvkms_pm_lock);
}
static inline void nvkms_write_lock_pm_lock(void)
{
down_write(&nvkms_pm_lock);
}
static inline void nvkms_write_unlock_pm_lock(void)
{
up_write(&nvkms_pm_lock);
}
/*************************************************************************
* nvidia-modeset-os-interface.h functions. It is assumed that these
* are called while nvkms_lock is held.
*************************************************************************/
/* Don't use kmalloc for allocations larger than one page */
#define KMALLOC_LIMIT PAGE_SIZE
void* nvkms_alloc(size_t size, NvBool zero)
{
void *p;
if (malloc_verbose || fail_malloc_num >= 0) {
int this_alloc = atomic_inc_return(&nvkms_alloc_called_count) - 1;
if (fail_malloc_num >= 0 && fail_malloc_num == this_alloc) {
printk(KERN_WARNING NVKMS_LOG_PREFIX "Failing alloc %d\n",
fail_malloc_num);
return NULL;
}
}
if (size <= KMALLOC_LIMIT) {
p = kmalloc(size, GFP_KERNEL);
} else {
p = vmalloc(size);
}
if (zero && (p != NULL)) {
memset(p, 0, size);
}
return p;
}
void nvkms_free(void *ptr, size_t size)
{
if (size <= KMALLOC_LIMIT) {
kfree(ptr);
} else {
vfree(ptr);
}
}
void* nvkms_memset(void *ptr, NvU8 c, size_t size)
{
return memset(ptr, c, size);
}
void* nvkms_memcpy(void *dest, const void *src, size_t n)
{
return memcpy(dest, src, n);
}
void* nvkms_memmove(void *dest, const void *src, size_t n)
{
return memmove(dest, src, n);
}
int nvkms_memcmp(const void *s1, const void *s2, size_t n)
{
return memcmp(s1, s2, n);
}
size_t nvkms_strlen(const char *s)
{
return strlen(s);
}
int nvkms_strcmp(const char *s1, const char *s2)
{
return strcmp(s1, s2);
}
char* nvkms_strncpy(char *dest, const char *src, size_t n)
{
return strncpy(dest, src, n);
}
void nvkms_usleep(NvU64 usec)
{
if (usec < 1000) {
/*
* If the period to wait is less than one millisecond, sleep
* using udelay(); note this is a busy wait.
*/
udelay(usec);
} else {
/*
* Otherwise, sleep with millisecond precision. Clamp the
* time to ~4 seconds (0xFFF/1000 => 4.09 seconds).
*
* Note that the do_div() macro divides the first argument in
* place.
*/
int msec;
NvU64 tmp = usec + 500;
do_div(tmp, 1000);
msec = (int) (tmp & 0xFFF);
/*
* XXX NVKMS TODO: this may need to be msleep_interruptible(),
* though the callers would need to be made to handle
* returning early.
*/
msleep(msec);
}
}
NvU64 nvkms_get_usec(void)
{
struct timespec64 ts;
NvU64 ns;
ktime_get_real_ts64(&ts);
ns = timespec64_to_ns(&ts);
return ns / 1000;
}
int nvkms_copyin(void *kptr, NvU64 uaddr, size_t n)
{
if (!nvKmsNvU64AddressIsSafe(uaddr)) {
return -EINVAL;
}
if (copy_from_user(kptr, nvKmsNvU64ToPointer(uaddr), n) != 0) {
return -EFAULT;
}
return 0;
}
int nvkms_copyout(NvU64 uaddr, const void *kptr, size_t n)
{
if (!nvKmsNvU64AddressIsSafe(uaddr)) {
return -EINVAL;
}
if (copy_to_user(nvKmsNvU64ToPointer(uaddr), kptr, n) != 0) {
return -EFAULT;
}
return 0;
}
void nvkms_yield(void)
{
schedule();
}
void nvkms_dump_stack(void)
{
dump_stack();
}
int nvkms_snprintf(char *str, size_t size, const char *format, ...)
{
int ret;
va_list ap;
va_start(ap, format);
ret = vsnprintf(str, size, format, ap);
va_end(ap);
return ret;
}
int nvkms_vsnprintf(char *str, size_t size, const char *format, va_list ap)
{
return vsnprintf(str, size, format, ap);
}
void nvkms_log(const int level, const char *gpuPrefix, const char *msg)
{
const char *levelString;
const char *levelPrefix;
switch (level) {
default:
case NVKMS_LOG_LEVEL_INFO:
levelPrefix = "";
levelString = KERN_INFO;
break;
case NVKMS_LOG_LEVEL_WARN:
levelPrefix = "WARNING: ";
levelString = KERN_WARNING;
break;
case NVKMS_LOG_LEVEL_ERROR:
levelPrefix = "ERROR: ";
levelString = KERN_ERR;
break;
}
printk("%s%s%s%s%s\n",
levelString, NVKMS_LOG_PREFIX, levelPrefix, gpuPrefix, msg);
}
void
nvkms_event_queue_changed(nvkms_per_open_handle_t *pOpenKernel,
NvBool eventsAvailable)
{
struct nvkms_per_open *popen = pOpenKernel;
switch (popen->type) {
case NVKMS_CLIENT_USER_SPACE:
/*
* Write popen->events.available atomically, to avoid any races or
* memory barrier issues interacting with nvkms_poll().
*/
atomic_set(&popen->u.user.events.available, eventsAvailable);
wake_up_interruptible(&popen->u.user.events.wait_queue);
break;
case NVKMS_CLIENT_KERNEL_SPACE:
if (eventsAvailable) {
nv_kthread_q_schedule_q_item(
&nvkms_kthread_q,
&popen->u.kernel.events.nv_kthread_q_item);
}
break;
}
}
static void nvkms_suspend(NvU32 gpuId)
{
if (gpuId == 0) {
nvkms_write_lock_pm_lock();
}
down(&nvkms_lock);
nvKmsSuspend(gpuId);
up(&nvkms_lock);
}
static void nvkms_resume(NvU32 gpuId)
{
down(&nvkms_lock);
nvKmsResume(gpuId);
up(&nvkms_lock);
if (gpuId == 0) {
nvkms_write_unlock_pm_lock();
}
}
/*************************************************************************
* Interface with resman.
*************************************************************************/
static nvidia_modeset_rm_ops_t __rm_ops = { 0 };
static nvidia_modeset_callbacks_t nvkms_rm_callbacks = {
.suspend = nvkms_suspend,
.resume = nvkms_resume
};
static int nvkms_alloc_rm(void)
{
NV_STATUS nvstatus;
int ret;
__rm_ops.version_string = NV_VERSION_STRING;
nvstatus = nvidia_get_rm_ops(&__rm_ops);
if (nvstatus != NV_OK) {
printk(KERN_ERR NVKMS_LOG_PREFIX "Version mismatch: "
"nvidia.ko(%s) nvidia-modeset.ko(%s)\n",
__rm_ops.version_string, NV_VERSION_STRING);
return -EINVAL;
}
ret = __rm_ops.set_callbacks(&nvkms_rm_callbacks);
if (ret < 0) {
printk(KERN_ERR NVKMS_LOG_PREFIX "Failed to register callbacks\n");
return ret;
}
return 0;
}
static void nvkms_free_rm(void)
{
__rm_ops.set_callbacks(NULL);
}
void nvkms_call_rm(void *ops)
{
nvidia_modeset_stack_ptr stack = NULL;
if (__rm_ops.alloc_stack(&stack) != 0) {
return;
}
__rm_ops.op(stack, ops);
__rm_ops.free_stack(stack);
}
/*************************************************************************
* ref_ptr implementation.
*************************************************************************/
struct nvkms_ref_ptr {
nv_kref_t refcnt;
// Access to ptr is guarded by the nvkms_lock.
void *ptr;
};
struct nvkms_ref_ptr* nvkms_alloc_ref_ptr(void *ptr)
{
struct nvkms_ref_ptr *ref_ptr = nvkms_alloc(sizeof(*ref_ptr), NV_FALSE);
if (ref_ptr) {
// The ref_ptr owner counts as a reference on the ref_ptr itself.
nv_kref_init(&ref_ptr->refcnt);
ref_ptr->ptr = ptr;
}
return ref_ptr;
}
void nvkms_free_ref_ptr(struct nvkms_ref_ptr *ref_ptr)
{
if (ref_ptr) {
ref_ptr->ptr = NULL;
// Release the owner's reference of the ref_ptr.
nvkms_dec_ref(ref_ptr);
}
}
void nvkms_inc_ref(struct nvkms_ref_ptr *ref_ptr)
{
nv_kref_get(&ref_ptr->refcnt);
}
static void ref_ptr_free(nv_kref_t *ref)
{
struct nvkms_ref_ptr *ref_ptr = container_of(ref, struct nvkms_ref_ptr,
refcnt);
nvkms_free(ref_ptr, sizeof(*ref_ptr));
}
void* nvkms_dec_ref(struct nvkms_ref_ptr *ref_ptr)
{
void *ptr = ref_ptr->ptr;
nv_kref_put(&ref_ptr->refcnt, ref_ptr_free);
return ptr;
}
/*************************************************************************
* Timer support
*
* Core NVKMS needs to be able to schedule work to execute in the
* future, within process context.
*
* To achieve this, use struct timer_list to schedule a timer
* callback, nvkms_timer_callback(). This will execute in softirq
* context, so from there schedule an nv_kthread_q item,
* nvkms_kthread_q_callback(), which will execute in process context.
*************************************************************************/
struct nvkms_timer_t {
nv_kthread_q_item_t nv_kthread_q_item;
struct timer_list kernel_timer;
NvBool cancel;
NvBool complete;
NvBool isRefPtr;
NvBool kernel_timer_created;
nvkms_timer_proc_t *proc;
void *dataPtr;
NvU32 dataU32;
struct list_head timers_list;
};
/*
* Global list with pending timers, any change requires acquiring lock
*/
static struct {
spinlock_t lock;
struct list_head list;
} nvkms_timers;
static void nvkms_kthread_q_callback(void *arg)
{
struct nvkms_timer_t *timer = arg;
void *dataPtr;
unsigned long flags = 0;
/*
* We can delete this timer from pending timers list - it's being
* processed now.
*/
spin_lock_irqsave(&nvkms_timers.lock, flags);
list_del(&timer->timers_list);
spin_unlock_irqrestore(&nvkms_timers.lock, flags);
/*
* After kthread_q_callback we want to be sure that timer_callback
* for this timer also have finished. It's important during module
* unload - this way we can safely unload this module by first deleting
* pending timers and than waiting for workqueue callbacks.
*/
if (timer->kernel_timer_created) {
del_timer_sync(&timer->kernel_timer);
}
/*
* Block the kthread during system suspend & resume in order to defer
* handling of events such as DP_IRQ and hotplugs until after resume.
*/
nvkms_read_lock_pm_lock();
down(&nvkms_lock);
if (timer->isRefPtr) {
// If the object this timer refers to was destroyed, treat the timer as
// canceled.
dataPtr = nvkms_dec_ref(timer->dataPtr);
if (!dataPtr) {
timer->cancel = NV_TRUE;
}
} else {
dataPtr = timer->dataPtr;
}
if (!timer->cancel) {
timer->proc(dataPtr, timer->dataU32);
timer->complete = NV_TRUE;
}
if (timer->isRefPtr) {
// ref_ptr-based timers are allocated with kmalloc(GFP_ATOMIC).
kfree(timer);
} else if (timer->cancel) {
nvkms_free(timer, sizeof(*timer));
}
up(&nvkms_lock);
nvkms_read_unlock_pm_lock();
}
static void nvkms_queue_work(nv_kthread_q_t *q, nv_kthread_q_item_t *q_item)
{
int ret = nv_kthread_q_schedule_q_item(q, q_item);
/*
* nv_kthread_q_schedule_q_item should only fail (which it indicates by
* returning false) if the item is already scheduled or the queue is
* stopped. Neither of those should happen in NVKMS.
*/
WARN_ON(!ret);
}
static void _nvkms_timer_callback_internal(struct nvkms_timer_t *nvkms_timer)
{
/* In softirq context, so schedule nvkms_kthread_q_callback(). */
nvkms_queue_work(&nvkms_kthread_q, &nvkms_timer->nv_kthread_q_item);
}
/*
* Why the "inline" keyword? Because only one of these next two functions will
* be used, thus leading to a "defined but not used function" warning. The
* "inline" keyword is redefined in the Kbuild system
* (see: <kernel>/include/linux/compiler-gcc.h) so as to suppress that warning.
*/
inline static void nvkms_timer_callback_typed_data(struct timer_list *timer)
{
struct nvkms_timer_t *nvkms_timer =
container_of(timer, struct nvkms_timer_t, kernel_timer);
_nvkms_timer_callback_internal(nvkms_timer);
}
inline static void nvkms_timer_callback_anon_data(unsigned long arg)
{
struct nvkms_timer_t *nvkms_timer = (struct nvkms_timer_t *) arg;
_nvkms_timer_callback_internal(nvkms_timer);
}
static void
nvkms_init_timer(struct nvkms_timer_t *timer, nvkms_timer_proc_t *proc,
void *dataPtr, NvU32 dataU32, NvBool isRefPtr, NvU64 usec)
{
unsigned long flags = 0;
memset(timer, 0, sizeof(*timer));
timer->cancel = NV_FALSE;
timer->complete = NV_FALSE;
timer->isRefPtr = isRefPtr;
timer->proc = proc;
timer->dataPtr = dataPtr;
timer->dataU32 = dataU32;
nv_kthread_q_item_init(&timer->nv_kthread_q_item, nvkms_kthread_q_callback,
timer);
/*
* After adding timer to timers_list we need to finish referencing it
* (calling nvkms_queue_work() or mod_timer()) before releasing the lock.
* Otherwise, if the code to free the timer were ever updated to
* run in parallel with this, it could race against nvkms_init_timer()
* and free the timer before its initialization is complete.
*/
spin_lock_irqsave(&nvkms_timers.lock, flags);
list_add(&timer->timers_list, &nvkms_timers.list);
if (usec == 0) {
timer->kernel_timer_created = NV_FALSE;
nvkms_queue_work(&nvkms_kthread_q, &timer->nv_kthread_q_item);
} else {
#if defined(NV_TIMER_SETUP_PRESENT)
timer_setup(&timer->kernel_timer, nvkms_timer_callback_typed_data, 0);
#else
init_timer(&timer->kernel_timer);
timer->kernel_timer.function = nvkms_timer_callback_anon_data;
timer->kernel_timer.data = (unsigned long) timer;
#endif
timer->kernel_timer_created = NV_TRUE;
mod_timer(&timer->kernel_timer, jiffies + NVKMS_USECS_TO_JIFFIES(usec));
}
spin_unlock_irqrestore(&nvkms_timers.lock, flags);
}
nvkms_timer_handle_t*
nvkms_alloc_timer(nvkms_timer_proc_t *proc,
void *dataPtr, NvU32 dataU32,
NvU64 usec)
{
// nvkms_alloc_timer cannot be called from an interrupt context.
struct nvkms_timer_t *timer = nvkms_alloc(sizeof(*timer), NV_FALSE);
if (timer) {
nvkms_init_timer(timer, proc, dataPtr, dataU32, NV_FALSE, usec);
}
return timer;
}
NvBool
nvkms_alloc_timer_with_ref_ptr(nvkms_timer_proc_t *proc,
struct nvkms_ref_ptr *ref_ptr,
NvU32 dataU32, NvU64 usec)
{
// nvkms_alloc_timer_with_ref_ptr is called from an interrupt bottom half
// handler, which runs in a tasklet (i.e. atomic) context.
struct nvkms_timer_t *timer = kmalloc(sizeof(*timer), GFP_ATOMIC);
if (timer) {
// Reference the ref_ptr to make sure that it doesn't get freed before
// the timer fires.
nvkms_inc_ref(ref_ptr);
nvkms_init_timer(timer, proc, ref_ptr, dataU32, NV_TRUE, usec);
}
return timer != NULL;
}
void nvkms_free_timer(nvkms_timer_handle_t *handle)
{
struct nvkms_timer_t *timer = handle;
if (timer == NULL) {
return;
}
if (timer->complete) {
nvkms_free(timer, sizeof(*timer));
return;
}
timer->cancel = NV_TRUE;
}
void* nvkms_get_per_open_data(int fd)
{
struct file *filp = fget(fd);
struct nvkms_per_open *popen = NULL;
dev_t rdev = 0;
void *data = NULL;
if (filp == NULL) {
return NULL;
}
if (filp->f_inode == NULL) {
goto done;
}
rdev = filp->f_inode->i_rdev;
if ((MAJOR(rdev) != NVKMS_MAJOR_DEVICE_NUMBER) ||
(MINOR(rdev) != NVKMS_MINOR_DEVICE_NUMBER)) {
goto done;
}
popen = filp->private_data;
if (popen == NULL) {
goto done;
}
data = popen->data;
done:
/*
* fget() incremented the struct file's reference count, which
* needs to be balanced with a call to fput(). It is safe to
* decrement the reference count before returning
* filp->private_data because core NVKMS is currently holding the
* nvkms_lock, which prevents the nvkms_close() => nvKmsClose()
* call chain from freeing the file out from under the caller of
* nvkms_get_per_open_data().
*/
fput(filp);
return data;
}
NvBool nvkms_fd_is_nvidia_chardev(int fd)
{
struct file *filp = fget(fd);
dev_t rdev = 0;
NvBool ret = NV_FALSE;
if (filp == NULL) {
return ret;
}
if (filp->f_inode == NULL) {
goto done;
}
rdev = filp->f_inode->i_rdev;
if (MAJOR(rdev) == NVKMS_MAJOR_DEVICE_NUMBER) {
ret = NV_TRUE;
}
done:
fput(filp);
return ret;
}
NvBool nvkms_open_gpu(NvU32 gpuId)
{
nvidia_modeset_stack_ptr stack = NULL;
NvBool ret;
if (__rm_ops.alloc_stack(&stack) != 0) {
return NV_FALSE;
}
ret = __rm_ops.open_gpu(gpuId, stack) == 0;
__rm_ops.free_stack(stack);
return ret;
}
void nvkms_close_gpu(NvU32 gpuId)
{
nvidia_modeset_stack_ptr stack = NULL;
if (__rm_ops.alloc_stack(&stack) != 0) {
return;
}
__rm_ops.close_gpu(gpuId, stack);
__rm_ops.free_stack(stack);
}
NvU32 nvkms_enumerate_gpus(nv_gpu_info_t *gpu_info)
{
return __rm_ops.enumerate_gpus(gpu_info);
}
NvBool nvkms_allow_write_combining(void)
{
return __rm_ops.system_info.allow_write_combining;
}
#if IS_ENABLED(CONFIG_BACKLIGHT_CLASS_DEVICE)
/*************************************************************************
* Implementation of sysfs interface to control backlight
*************************************************************************/
struct nvkms_backlight_device {
NvU32 gpu_id;
NvU32 display_id;
void *drv_priv;
struct backlight_device * dev;
};
static int nvkms_update_backlight_status(struct backlight_device *bd)
{
struct nvkms_backlight_device *nvkms_bd = bl_get_data(bd);
NvBool status;
int ret;
ret = down_interruptible(&nvkms_lock);
if (ret != 0) {
return ret;
}
status = nvKmsSetBacklight(nvkms_bd->display_id, nvkms_bd->drv_priv,
bd->props.brightness);
up(&nvkms_lock);
return status ? 0 : -EINVAL;
}
static int nvkms_get_backlight_brightness(struct backlight_device *bd)
{
struct nvkms_backlight_device *nvkms_bd = bl_get_data(bd);
NvU32 brightness = 0;
NvBool status;
int ret;
ret = down_interruptible(&nvkms_lock);
if (ret != 0) {
return ret;
}
status = nvKmsGetBacklight(nvkms_bd->display_id, nvkms_bd->drv_priv,
&brightness);
up(&nvkms_lock);
return status ? brightness : -1;
}
static const struct backlight_ops nvkms_backlight_ops = {
.update_status = nvkms_update_backlight_status,
.get_brightness = nvkms_get_backlight_brightness,
};
#endif /* IS_ENABLED(CONFIG_BACKLIGHT_CLASS_DEVICE) */
struct nvkms_backlight_device*
nvkms_register_backlight(NvU32 gpu_id, NvU32 display_id, void *drv_priv,
NvU32 current_brightness)
{
#if IS_ENABLED(CONFIG_BACKLIGHT_CLASS_DEVICE)
char name[18];
struct backlight_properties props = {
.brightness = current_brightness,
.max_brightness = 100,
.type = BACKLIGHT_RAW,
};
nv_gpu_info_t *gpu_info = NULL;
NvU32 gpu_count = 0;
struct nvkms_backlight_device *nvkms_bd = NULL;
int i;
gpu_info = nvkms_alloc(NV_MAX_GPUS * sizeof(*gpu_info), NV_TRUE);
if (gpu_info == NULL) {
return NULL;
}
gpu_count = __rm_ops.enumerate_gpus(gpu_info);
if (gpu_count == 0) {
goto done;
}
for (i = 0; i < gpu_count; i++) {
if (gpu_info[i].gpu_id == gpu_id) {
break;
}
}
if (i == gpu_count) {
goto done;
}
nvkms_bd = nvkms_alloc(sizeof(*nvkms_bd), NV_TRUE);
if (nvkms_bd == NULL) {
goto done;
}
snprintf(name, sizeof(name), "nvidia_%d", i);
name[sizeof(name) - 1] = '\0';
nvkms_bd->gpu_id = gpu_id;
nvkms_bd->display_id = display_id;
nvkms_bd->drv_priv = drv_priv;
nvkms_bd->dev =
backlight_device_register(name,
gpu_info[i].os_device_ptr,
nvkms_bd,
&nvkms_backlight_ops,
&props);
done:
nvkms_free(gpu_info, NV_MAX_GPUS * sizeof(*gpu_info));
return nvkms_bd;
#else
return NULL;
#endif /* IS_ENABLED(CONFIG_BACKLIGHT_CLASS_DEVICE) */
}
void nvkms_unregister_backlight(struct nvkms_backlight_device *nvkms_bd)
{
#if IS_ENABLED(CONFIG_BACKLIGHT_CLASS_DEVICE)
if (nvkms_bd->dev) {
backlight_device_unregister(nvkms_bd->dev);
}
nvkms_free(nvkms_bd, sizeof(*nvkms_bd));
#endif /* IS_ENABLED(CONFIG_BACKLIGHT_CLASS_DEVICE) */
}
/*************************************************************************
* Common to both user-space and kapi NVKMS interfaces
*************************************************************************/
static void nvkms_kapi_event_kthread_q_callback(void *arg)
{
struct NvKmsKapiDevice *device = arg;
nvKmsKapiHandleEventQueueChange(device);
}
struct nvkms_per_open *nvkms_open_common(enum NvKmsClientType type,
struct NvKmsKapiDevice *device,
int *status)
{
struct nvkms_per_open *popen = NULL;
popen = nvkms_alloc(sizeof(*popen), NV_TRUE);
if (popen == NULL) {
*status = -ENOMEM;
goto failed;
}
popen->type = type;
*status = down_interruptible(&nvkms_lock);
if (*status != 0) {
goto failed;
}
popen->data = nvKmsOpen(current->tgid, type, popen);
up(&nvkms_lock);
if (popen->data == NULL) {
*status = -EPERM;
goto failed;
}
switch (popen->type) {
case NVKMS_CLIENT_USER_SPACE:
init_waitqueue_head(&popen->u.user.events.wait_queue);
break;
case NVKMS_CLIENT_KERNEL_SPACE:
nv_kthread_q_item_init(&popen->u.kernel.events.nv_kthread_q_item,
nvkms_kapi_event_kthread_q_callback,
device);
break;
}
*status = 0;
return popen;
failed:
nvkms_free(popen, sizeof(*popen));
return NULL;
}
void nvkms_close_common(struct nvkms_per_open *popen)
{
/*
* Don't use down_interruptible(): we need to free resources
* during close, so we have no choice but to wait to take the
* mutex.
*/
down(&nvkms_lock);
nvKmsClose(popen->data);
popen->data = NULL;
up(&nvkms_lock);
if (popen->type == NVKMS_CLIENT_KERNEL_SPACE) {
/*
* Flush any outstanding nvkms_kapi_event_kthread_q_callback() work
* items before freeing popen.
*
* Note that this must be done after the above nvKmsClose() call, to
* guarantee that no more nvkms_kapi_event_kthread_q_callback() work
* items get scheduled.
*
* Also, note that though popen->data is freed above, any subsequent
* nvkms_kapi_event_kthread_q_callback()'s for this popen should be
* safe: if any nvkms_kapi_event_kthread_q_callback()-initiated work
* attempts to call back into NVKMS, the popen->data==NULL check in
* nvkms_ioctl_common() should reject the request.
*/
nv_kthread_q_flush(&nvkms_kthread_q);
}
nvkms_free(popen, sizeof(*popen));
}
static void nvkms_close_deferred(void *data)
{
struct nvkms_per_open *popen = data;
nvkms_read_lock_pm_lock();
nvkms_close_common(popen);
nvkms_read_unlock_pm_lock();
}
static void nvkms_close_popen(struct nvkms_per_open *popen)
{
if (nvkms_read_trylock_pm_lock() == 0) {
nvkms_close_common(popen);
nvkms_read_unlock_pm_lock();
} else {
nv_kthread_q_item_init(&popen->deferred_close_q_item,
nvkms_close_deferred,
popen);
nvkms_queue_work(&nvkms_deferred_close_kthread_q,
&popen->deferred_close_q_item);
}
}
int nvkms_ioctl_common
(
struct nvkms_per_open *popen,
NvU32 cmd, NvU64 address, const size_t size
)
{
int status;
NvBool ret;
status = down_interruptible(&nvkms_lock);
if (status != 0) {
return status;
}
if (popen->data != NULL) {
ret = nvKmsIoctl(popen->data, cmd, address, size);
} else {
ret = NV_FALSE;
}
up(&nvkms_lock);
return ret ? 0 : -EPERM;
}
/*************************************************************************
* NVKMS interface for kernel space NVKMS clients like KAPI
*************************************************************************/
struct nvkms_per_open* nvkms_open_from_kapi
(
struct NvKmsKapiDevice *device
)
{
int status = 0;
struct nvkms_per_open *ret;
nvkms_read_lock_pm_lock();
ret = nvkms_open_common(NVKMS_CLIENT_KERNEL_SPACE, device, &status);
nvkms_read_unlock_pm_lock();
return ret;
}
void nvkms_close_from_kapi(struct nvkms_per_open *popen)
{
nvkms_close_popen(popen);
}
NvBool nvkms_ioctl_from_kapi
(
struct nvkms_per_open *popen,
NvU32 cmd, void *params_address, const size_t param_size
)
{
NvBool ret;
nvkms_read_lock_pm_lock();
ret = nvkms_ioctl_common(popen,
cmd,
(NvU64)(NvUPtr)params_address, param_size) == 0;
nvkms_read_unlock_pm_lock();
return ret;
}
/*************************************************************************
* APIs for locking.
*************************************************************************/
struct nvkms_sema_t {
struct semaphore os_sema;
};
nvkms_sema_handle_t* nvkms_sema_alloc(void)
{
nvkms_sema_handle_t *sema = nvkms_alloc(sizeof(*sema), NV_TRUE);
if (sema != NULL) {
sema_init(&sema->os_sema, 1);
}
return sema;
}
void nvkms_sema_free(nvkms_sema_handle_t *sema)
{
nvkms_free(sema, sizeof(*sema));
}
void nvkms_sema_down(nvkms_sema_handle_t *sema)
{
down(&sema->os_sema);
}
void nvkms_sema_up(nvkms_sema_handle_t *sema)
{
up(&sema->os_sema);
}
/*************************************************************************
* Procfs files support code.
*************************************************************************/
#if defined(CONFIG_PROC_FS)
#define NV_DEFINE_SINGLE_NVKMS_PROCFS_FILE(name) \
NV_DEFINE_SINGLE_PROCFS_FILE_READ_ONLY(name, nvkms_pm_lock)
#define NVKMS_PROCFS_FOLDER "driver/nvidia-modeset"
struct proc_dir_entry *nvkms_proc_dir;
static void nv_procfs_out_string(void *data, const char *str)
{
struct seq_file *s = data;
seq_puts(s, str);
}
static int nv_procfs_read_nvkms_proc(struct seq_file *s, void *arg)
{
char *buffer;
nvkms_procfs_proc_t *func;
#define NVKMS_PROCFS_STRING_SIZE 8192
func = s->private;
if (func == NULL) {
return 0;
}
buffer = nvkms_alloc(NVKMS_PROCFS_STRING_SIZE, NV_TRUE);
if (buffer != NULL) {
int status = down_interruptible(&nvkms_lock);
if (status != 0) {
nvkms_free(buffer, NVKMS_PROCFS_STRING_SIZE);
return status;
}
func(s, buffer, NVKMS_PROCFS_STRING_SIZE, &nv_procfs_out_string);
up(&nvkms_lock);
nvkms_free(buffer, NVKMS_PROCFS_STRING_SIZE);
}
return 0;
}
NV_DEFINE_SINGLE_NVKMS_PROCFS_FILE(nvkms_proc);
static NvBool
nvkms_add_proc_file(const nvkms_procfs_file_t *file)
{
struct proc_dir_entry *new_proc_dir;
if (nvkms_proc_dir == NULL) {
return NV_FALSE;
}
new_proc_dir = proc_create_data(file->name, 0, nvkms_proc_dir,
&nv_procfs_nvkms_proc_fops, file->func);
return (new_proc_dir != NULL);
}
#endif /* defined(CONFIG_PROC_FS) */
static void nvkms_proc_init(void)
{
#if defined(CONFIG_PROC_FS)
const nvkms_procfs_file_t *file;
nvkms_proc_dir = NULL;
nvKmsGetProcFiles(&file);
if (file == NULL || file->name == NULL) {
return;
}
nvkms_proc_dir = NV_CREATE_PROC_DIR(NVKMS_PROCFS_FOLDER, NULL);
if (nvkms_proc_dir == NULL) {
return;
}
while (file->name != NULL) {
if (!nvkms_add_proc_file(file)) {
nvkms_log(NVKMS_LOG_LEVEL_WARN, NVKMS_LOG_PREFIX,
"Failed to create proc file");
break;
}
file++;
}
#endif
}
static void nvkms_proc_exit(void)
{
#if defined(CONFIG_PROC_FS)
if (nvkms_proc_dir == NULL) {
return;
}
#if defined(NV_PROC_REMOVE_PRESENT)
proc_remove(nvkms_proc_dir);
#else
/*
* On kernel versions without proc_remove(), we need to explicitly
* remove each proc file beneath nvkms_proc_dir.
* nvkms_proc_init() only creates files directly under
* nvkms_proc_dir, so those are the only files we need to remove
* here: warn if there is any deeper directory nesting.
*/
{
struct proc_dir_entry *entry = nvkms_proc_dir->subdir;
while (entry != NULL) {
struct proc_dir_entry *next = entry->next;
WARN_ON(entry->subdir != NULL);
remove_proc_entry(entry->name, entry->parent);
entry = next;
}
}
remove_proc_entry(nvkms_proc_dir->name, nvkms_proc_dir->parent);
#endif /* NV_PROC_REMOVE_PRESENT */
#endif /* CONFIG_PROC_FS */
}
/*************************************************************************
* NVKMS KAPI functions
************************************************************************/
NvBool nvKmsKapiGetFunctionsTable
(
struct NvKmsKapiFunctionsTable *funcsTable
)
{
return nvKmsKapiGetFunctionsTableInternal(funcsTable);
}
EXPORT_SYMBOL(nvKmsKapiGetFunctionsTable);
/*************************************************************************
* File operation callback functions.
*************************************************************************/
static int nvkms_open(struct inode *inode, struct file *filp)
{
int status;
status = nv_down_read_interruptible(&nvkms_pm_lock);
if (status != 0) {
return status;
}
filp->private_data =
nvkms_open_common(NVKMS_CLIENT_USER_SPACE, NULL, &status);
nvkms_read_unlock_pm_lock();
return status;
}
static int nvkms_close(struct inode *inode, struct file *filp)
{
struct nvkms_per_open *popen = filp->private_data;
if (popen == NULL) {
return -EINVAL;
}
nvkms_close_popen(popen);
return 0;
}
static int nvkms_mmap(struct file *filp, struct vm_area_struct *vma)
{
return -EPERM;
}
static int nvkms_ioctl(struct inode *inode, struct file *filp,
unsigned int cmd, unsigned long arg)
{
size_t size;
unsigned int nr;
int status;
struct NvKmsIoctlParams params;
struct nvkms_per_open *popen = filp->private_data;
if ((popen == NULL) || (popen->data == NULL)) {
return -EINVAL;
}
size = _IOC_SIZE(cmd);
nr = _IOC_NR(cmd);
/* The only supported ioctl is NVKMS_IOCTL_CMD. */
if ((nr != NVKMS_IOCTL_CMD) || (size != sizeof(struct NvKmsIoctlParams))) {
return -ENOTTY;
}
status = copy_from_user(&params, (void *) arg, size);
if (status != 0) {
return -EFAULT;
}
status = nv_down_read_interruptible(&nvkms_pm_lock);
if (status != 0) {
return status;
}
status = nvkms_ioctl_common(popen,
params.cmd,
params.address,
params.size);
nvkms_read_unlock_pm_lock();
return status;
}
static unsigned int nvkms_poll(struct file *filp, poll_table *wait)
{
unsigned int mask = 0;
struct nvkms_per_open *popen = filp->private_data;
if ((popen == NULL) || (popen->data == NULL)) {
return mask;
}
BUG_ON(popen->type != NVKMS_CLIENT_USER_SPACE);
if ((filp->f_flags & O_NONBLOCK) == 0) {
poll_wait(filp, &popen->u.user.events.wait_queue, wait);
}
if (atomic_read(&popen->u.user.events.available)) {
mask = POLLPRI | POLLIN;
}
return mask;
}
/*************************************************************************
* Module loading support code.
*************************************************************************/
static nvidia_module_t nvidia_modeset_module = {
.owner = THIS_MODULE,
.module_name = "nvidia-modeset",
.instance = 1, /* minor number: 255-1=254 */
.open = nvkms_open,
.close = nvkms_close,
.mmap = nvkms_mmap,
.ioctl = nvkms_ioctl,
.poll = nvkms_poll,
};
static int __init nvkms_init(void)
{
int ret;
atomic_set(&nvkms_alloc_called_count, 0);
ret = nvkms_alloc_rm();
if (ret != 0) {
return ret;
}
sema_init(&nvkms_lock, 1);
init_rwsem(&nvkms_pm_lock);
ret = nv_kthread_q_init(&nvkms_kthread_q,
"nvidia-modeset/kthread_q");
if (ret != 0) {
goto fail_kthread;
}
ret = nv_kthread_q_init(&nvkms_deferred_close_kthread_q,
"nvidia-modeset/deferred_close_kthread_q");
if (ret != 0) {
goto fail_deferred_close_kthread;
}
INIT_LIST_HEAD(&nvkms_timers.list);
spin_lock_init(&nvkms_timers.lock);
ret = nvidia_register_module(&nvidia_modeset_module);
if (ret != 0) {
goto fail_register_module;
}
down(&nvkms_lock);
if (!nvKmsModuleLoad()) {
ret = -ENOMEM;
}
up(&nvkms_lock);
if (ret != 0) {
goto fail_module_load;
}
nvkms_proc_init();
return 0;
fail_module_load:
nvidia_unregister_module(&nvidia_modeset_module);
fail_register_module:
nv_kthread_q_stop(&nvkms_deferred_close_kthread_q);
fail_deferred_close_kthread:
nv_kthread_q_stop(&nvkms_kthread_q);
fail_kthread:
nvkms_free_rm();
return ret;
}
static void __exit nvkms_exit(void)
{
struct nvkms_timer_t *timer, *tmp_timer;
unsigned long flags = 0;
nvkms_proc_exit();
down(&nvkms_lock);
nvKmsModuleUnload();
up(&nvkms_lock);
/*
* At this point, any pending tasks should be marked canceled, but
* we still need to drain them, so that nvkms_kthread_q_callback() doesn't
* get called after the module is unloaded.
*/
restart:
spin_lock_irqsave(&nvkms_timers.lock, flags);
list_for_each_entry_safe(timer, tmp_timer, &nvkms_timers.list, timers_list) {
if (timer->kernel_timer_created) {
/*
* We delete pending timers and check whether it was being executed
* (returns 0) or we have deactivated it before execution (returns 1).
* If it began execution, the kthread_q callback will wait for timer
* completion, and we wait for queue completion with
* nv_kthread_q_stop below.
*/
if (del_timer_sync(&timer->kernel_timer) == 1) {
/* We've deactivated timer so we need to clean after it */
list_del(&timer->timers_list);
/* We need to unlock spinlock because we are freeing memory which
* may sleep */
spin_unlock_irqrestore(&nvkms_timers.lock, flags);
if (timer->isRefPtr) {
nvkms_dec_ref(timer->dataPtr);
kfree(timer);
} else {
nvkms_free(timer, sizeof(*timer));
}
/* List could change when we were freeing memory. */
goto restart;
}
}
}
spin_unlock_irqrestore(&nvkms_timers.lock, flags);
nv_kthread_q_stop(&nvkms_deferred_close_kthread_q);
nv_kthread_q_stop(&nvkms_kthread_q);
nvidia_unregister_module(&nvidia_modeset_module);
nvkms_free_rm();
if (malloc_verbose) {
printk(KERN_INFO NVKMS_LOG_PREFIX "Total allocations: %d\n",
atomic_read(&nvkms_alloc_called_count));
}
}
module_init(nvkms_init);
module_exit(nvkms_exit);
#if defined(MODULE_LICENSE)
MODULE_LICENSE("Dual MIT/GPL");
#endif
#if defined(MODULE_INFO)
MODULE_INFO(supported, "external");
#endif
#if defined(MODULE_VERSION)
MODULE_VERSION(NV_VERSION_STRING);
#endif