1
0
mirror of https://github.com/Yours3lf/rpi-vk-driver.git synced 2024-12-13 01:08:53 +01:00
rpi-vk-driver/test/ETC/ETC.cpp

1683 lines
57 KiB
C++
Raw Normal View History

2020-02-20 22:38:14 +01:00
#include <iostream>
#include <vector>
#include <algorithm>
#include <string.h>
#include "driver/CustomAssert.h"
#include <vulkan/vulkan.h>
#include "driver/vkExt.h"
#include "QPUassembler/qpu_assembler.h"
2020-02-20 22:38:14 +01:00
//#define GLFW_INCLUDE_VULKAN
//#define VK_USE_PLATFORM_WIN32_KHR
//#include <GLFW/glfw3.h>
//#define GLFW_EXPOSE_NATIVE_WIN32
//#include <GLFW/glfw3native.h>
//GLFWwindow * window;
//#define WINDOW_WIDTH 640
//#define WINDOW_HEIGHT 480
// Note: support swap chain recreation (not only required for resized windows!)
// Note: window resize may not result in Vulkan telling that the swap chain should be recreated, should be handled explicitly!
void run();
void setupVulkan();
void mainLoop();
void cleanup();
void createInstance();
void createWindowSurface();
void findPhysicalDevice();
void checkSwapChainSupport();
void findQueueFamilies();
void createLogicalDevice();
void createSemaphores();
void createSwapChain();
void createCommandQueues();
void draw();
void CreateRenderPass();
void CreateFramebuffer();
void CreateShaders();
void CreatePipeline();
void CreateDescriptorSet();
void CreateVertexBuffer();
void CreateTexture();
void recordCommandBuffers();
VkSurfaceFormatKHR chooseSurfaceFormat(const std::vector<VkSurfaceFormatKHR>& availableFormats);
VkExtent2D chooseSwapExtent(const VkSurfaceCapabilitiesKHR& surfaceCapabilities);
VkPresentModeKHR choosePresentMode(const std::vector<VkPresentModeKHR> presentModes);
VkInstance instance; //
VkSurfaceKHR windowSurface; //
VkPhysicalDevice physicalDevice;
VkDevice device; //
VkSemaphore imageAvailableSemaphore; //
VkSemaphore renderingFinishedSemaphore; //
VkSwapchainKHR swapChain; //
VkCommandPool commandPool; //
std::vector<VkCommandBuffer> presentCommandBuffers; //
std::vector<VkImage> swapChainImages; //
VkRenderPass renderPass; //
std::vector<VkFramebuffer> fbs; //
VkShaderModule sampleShaderModule; //
VkPipeline samplePipeline; //
VkQueue graphicsQueue;
VkQueue presentQueue;
VkBuffer triangleVertexBuffer;
VkDeviceMemory triangleVertexBufferMemory;
VkPhysicalDeviceMemoryProperties pdmp;
std::vector<VkImageView> views; //?
VkSurfaceFormatKHR swapchainFormat;
VkExtent2D swapChainExtent;
VkDescriptorPool descriptorPool;
VkDescriptorSet sampleDescriptorSet;
VkDescriptorSetLayout sampleDsl;
VkPipelineLayout samplePipelineLayout;
VkImage textureImage;
VkDeviceMemory textureMemory;
VkSampler textureSampler;
VkImageView textureView;
uint32_t graphicsQueueFamily;
uint32_t presentQueueFamily;
uint16_t getBigEndian(uint16_t num)
{
return ((num & 0x00ff) << 8) | ((num & 0xff00) >> 8);
}
char* readPKM(const char* fileName)
{
uint32_t pkm_magic;
((uint8_t*)&pkm_magic)[0] = 'P';
((uint8_t*)&pkm_magic)[1] = 'K';
((uint8_t*)&pkm_magic)[2] = 'M';
((uint8_t*)&pkm_magic)[3] = ' ';
FILE* fd = fopen(fileName, "rb");
assert(fd);
fseek (fd , 0 , SEEK_END);
uint32_t fsize = ftell(fd);
rewind(fd);
char* buf = (char*)malloc(fsize);
if(!buf)
{
return 0;
}
fread(buf, 1, fsize, fd);
fclose(fd);
uint32_t magic_number = ((uint32_t*)buf)[0];
if(magic_number != pkm_magic)
{
fprintf(stderr, "PKM magic number not found: %u\n", magic_number);
return 0;
}
uint16_t version = ((uint16_t*)buf)[2];
char versionStr[] = { 0, 0, 0 };
memcpy(versionStr, &version, 2);
printf("PKM Version: %s\n", versionStr);
if(versionStr[0] != '2' && versionStr[1] != '0')
{
return 0; //Unsupported
}
const char* dataTypeStr[] = {
"ETC1_RGB_NO_MIPMAPS",
"ETC2PACKAGE_RGB_NO_MIPMAPS",
"ETC2PACKAGE_RGBA_NO_MIPMAPS_OLD",
"ETC2PACKAGE_RGBA_NO_MIPMAPS",
"ETC2PACKAGE_RGBA1_NO_MIPMAPS",
"ETC2PACKAGE_R_NO_MIPMAPS",
"ETC2PACKAGE_RG_NO_MIPMAPS",
"ETC2PACKAGE_R_SIGNED_NO_MIPMAPS",
"ETC2PACKAGE_RG_SIGNED_NO_MIPMAPS"
};
uint16_t dataType = getBigEndian(((uint16_t*)buf)[3]);
printf("PKM data type: %s (%u)\n", dataTypeStr[dataType], dataType);
uint16_t extendedWidth = getBigEndian(((uint16_t*)buf)[4]);
uint16_t extendedHeight = getBigEndian(((uint16_t*)buf)[5]);
uint16_t originalWidth = getBigEndian(((uint16_t*)buf)[6]);
uint16_t originalHeight = getBigEndian(((uint16_t*)buf)[7]);
printf("Extended Image size: %i x %i\n", extendedWidth, extendedHeight);
printf("Original Image size: %i x %i\n", originalWidth, originalHeight);
char* imageBuf = buf + 8 * 2;
//image is subdivided into 4x4 blocks, each block is 64bits
uint32_t bytesNeeded = (extendedWidth >> 2) * (extendedHeight >> 2) * 8;
char* retBuf = (char*)malloc(bytesNeeded);
memcpy(retBuf, imageBuf, bytesNeeded);
free(buf);
return retBuf;
}
char* readPPM(const char* fileName)
{
uint16_t ppm_magic;
((uint8_t*)&ppm_magic)[0] = 'P';
((uint8_t*)&ppm_magic)[1] = '6';
FILE* fd = fopen(fileName, "rb");
assert(fd);
fseek (fd , 0 , SEEK_END);
uint32_t fsize = ftell(fd);
rewind(fd);
char* buf = (char*)malloc(fsize);
if(!buf)
{
return 0;
}
fread(buf, 1, fsize, fd);
fclose(fd);
uint16_t magic_number = ((uint16_t*)buf)[0];
if(magic_number != ppm_magic)
{
fprintf(stderr, "PPM magic number not found: %u\n", magic_number);
return 0;
}
char* widthStr = strtok(buf+3, " ");
char* heightStr = strtok(0, "\n");
char* maxValStr = strtok(0, "\n");
int width = atoi(widthStr);
int height = atoi(heightStr);
int maxVal = atoi(maxValStr);
printf("Image size: %i x %i\n", width, height);
printf("Max value: %i\n", maxVal);
char* imageBuf = maxValStr + strlen(maxValStr) + 1;
//convert to BGRA (A=1)
char* retBuf = (char*)malloc(width * height * 4);
for(int y = 0; y < height; ++y)
{
for(int x = 0; x < width; ++x)
{
retBuf[(y*width+x)*4+0] = imageBuf[(y*width+x)*3+2];
retBuf[(y*width+x)*4+1] = imageBuf[(y*width+x)*3+1];
retBuf[(y*width+x)*4+2] = imageBuf[(y*width+x)*3+0];
retBuf[(y*width+x)*4+3] = 0xff;
}
}
free(buf);
return retBuf;
}
void cleanup() {
vkDeviceWaitIdle(device);
// Note: this is done implicitly when the command pool is freed, but nice to know about
vkFreeCommandBuffers(device, commandPool, presentCommandBuffers.size(), presentCommandBuffers.data());
vkDestroyCommandPool(device, commandPool, nullptr);
vkDestroySemaphore(device, imageAvailableSemaphore, nullptr);
vkDestroySemaphore(device, renderingFinishedSemaphore, nullptr);
for(int c = 0; c < views.size(); ++c)
vkDestroyImageView(device, views[c], 0);
for (int c = 0; c < fbs.size(); ++c)
vkDestroyFramebuffer(device, fbs[c], 0);
vkDestroyRenderPass(device, renderPass, 0);
//vkDestroyShaderModule(device, shaderModule, 0);
//vkDestroyPipeline(device, pipeline, 0);
// Note: implicitly destroys images (in fact, we're not allowed to do that explicitly)
vkDestroySwapchainKHR(device, swapChain, nullptr);
vkDestroyDevice(device, nullptr);
vkDestroySurfaceKHR(instance, windowSurface, nullptr);
vkDestroyInstance(instance, nullptr);
}
void run() {
// Note: dynamically loading loader may be a better idea to fail gracefully when Vulkan is not supported
// Create window for Vulkan
//glfwInit();
//glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);
//glfwWindowHint(GLFW_RESIZABLE, GLFW_FALSE);
//window = glfwCreateWindow(WINDOW_WIDTH, WINDOW_HEIGHT, "The 630 line cornflower blue window", nullptr, nullptr);
// Use Vulkan
setupVulkan();
mainLoop();
cleanup();
}
void setupVulkan() {
createInstance();
findPhysicalDevice();
createWindowSurface();
checkSwapChainSupport();
findQueueFamilies();
createLogicalDevice();
createSemaphores();
createSwapChain();
createCommandQueues();
CreateRenderPass();
CreateFramebuffer();
CreateVertexBuffer();
CreateShaders();
CreateTexture();
CreateDescriptorSet();
CreatePipeline();
recordCommandBuffers();
}
void mainLoop() {
//while (!glfwWindowShouldClose(window)) {
for(int c = 0; c < 300; ++c){
draw();
//glfwPollEvents();
}
}
void createInstance() {
VkApplicationInfo appInfo = {};
appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
appInfo.pApplicationName = "VulkanTriangle";
appInfo.applicationVersion = VK_MAKE_VERSION(1, 0, 0);
appInfo.pEngineName = "TriangleEngine";
appInfo.engineVersion = VK_MAKE_VERSION(1, 0, 0);
appInfo.apiVersion = VK_API_VERSION_1_0;
// Get instance extensions required by GLFW to draw to window
//unsigned int glfwExtensionCount;
//const char** glfwExtensions;
//glfwExtensions = glfwGetRequiredInstanceExtensions(&glfwExtensionCount);
// Check for extensions
uint32_t extensionCount = 0;
vkEnumerateInstanceExtensionProperties(nullptr, &extensionCount, nullptr);
if (extensionCount == 0) {
std::cerr << "no extensions supported!" << std::endl;
assert(0);
}
std::vector<VkExtensionProperties> availableExtensions(extensionCount);
vkEnumerateInstanceExtensionProperties(nullptr, &extensionCount, availableExtensions.data());
std::cout << "supported extensions:" << std::endl;
for (const auto& extension : availableExtensions) {
std::cout << "\t" << extension.extensionName << std::endl;
}
const char* enabledExtensions[] = {
"VK_KHR_surface",
"VK_KHR_display"
};
VkInstanceCreateInfo createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
createInfo.pNext = 0;
createInfo.pApplicationInfo = &appInfo;
createInfo.enabledExtensionCount = sizeof(enabledExtensions) / sizeof(const char*);
createInfo.ppEnabledExtensionNames = enabledExtensions;
createInfo.enabledLayerCount = 0;
createInfo.ppEnabledLayerNames = 0;
// Initialize Vulkan instance
if (vkCreateInstance(&createInfo, nullptr, &instance) != VK_SUCCESS) {
std::cerr << "failed to create instance!" << std::endl;
assert(0);
}
else {
std::cout << "created vulkan instance" << std::endl;
}
}
void createWindowSurface() {
windowSurface = 0;
2020-04-16 19:07:45 +02:00
uint32_t displayCount;
vkGetPhysicalDeviceDisplayPropertiesKHR(physicalDevice, &displayCount, 0);
VkDisplayPropertiesKHR* displayProperties = (VkDisplayPropertiesKHR*)malloc(sizeof(VkDisplayPropertiesKHR)*displayCount);
vkGetPhysicalDeviceDisplayPropertiesKHR(physicalDevice, &displayCount, displayProperties);
2020-02-20 22:38:14 +01:00
2020-04-16 19:07:45 +02:00
printf("Enumerated displays\n");
for(uint32_t c = 0; c < displayCount; ++c)
{
printf("Display ID %i\n", displayProperties[c].display);
printf("Display name %s\n", displayProperties[c].displayName);
printf("Display width %i\n", displayProperties[c].physicalDimensions.width);
printf("Display height %i\n", displayProperties[c].physicalDimensions.height);
printf("Display horizontal resolution %i\n", displayProperties[c].physicalResolution.width);
printf("Display vertical resolution %i\n", displayProperties[c].physicalResolution.height);
}
2020-02-20 22:38:14 +01:00
2020-04-16 19:07:45 +02:00
uint32_t modeCount;
vkGetDisplayModePropertiesKHR(physicalDevice, displayProperties[0].display, &modeCount, 0);
VkDisplayModePropertiesKHR* displayModeProperties = (VkDisplayModePropertiesKHR*)malloc(sizeof(VkDisplayModePropertiesKHR)*modeCount);
vkGetDisplayModePropertiesKHR(physicalDevice, displayProperties[0].display, &modeCount, displayModeProperties);
// printf("\nEnumerated modes\n");
// for(uint32_t c = 0; c < modeCount; ++c)
// {
// printf("Mode refresh rate %i\n", displayModeProperties[c].parameters.refreshRate);
// printf("Mode width %i\n", displayModeProperties[c].parameters.visibleRegion.width);
// printf("Mode height %i\n\n", displayModeProperties[c].parameters.visibleRegion.height);
// }
VkDisplaySurfaceCreateInfoKHR dsci = {};
dsci.sType = VK_STRUCTURE_TYPE_DISPLAY_SURFACE_CREATE_INFO_KHR;
dsci.displayMode = displayModeProperties[0].displayMode;
2020-04-16 19:07:45 +02:00
dsci.transform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
dsci.alphaMode = VK_DISPLAY_PLANE_ALPHA_OPAQUE_BIT_KHR;
dsci.imageExtent = displayModeProperties[0].parameters.visibleRegion;
vkCreateDisplayPlaneSurfaceKHR(instance, &dsci, 0, &windowSurface);
2020-02-20 22:38:14 +01:00
std::cout << "created window surface" << std::endl;
}
void findPhysicalDevice() {
// Try to find 1 Vulkan supported device
// Note: perhaps refactor to loop through devices and find first one that supports all required features and extensions
uint32_t deviceCount = 1;
VkResult res = vkEnumeratePhysicalDevices(instance, &deviceCount, &physicalDevice);
if (res != VK_SUCCESS && res != VK_INCOMPLETE) {
std::cerr << "enumerating physical devices failed!" << std::endl;
assert(0);
}
if (deviceCount == 0) {
std::cerr << "no physical devices that support vulkan!" << std::endl;
assert(0);
}
std::cout << "physical device with vulkan support found" << std::endl;
vkGetPhysicalDeviceMemoryProperties(physicalDevice, &pdmp);
// Check device features
// Note: will apiVersion >= appInfo.apiVersion? Probably yes, but spec is unclear.
VkPhysicalDeviceProperties deviceProperties;
VkPhysicalDeviceFeatures deviceFeatures;
vkGetPhysicalDeviceProperties(physicalDevice, &deviceProperties);
vkGetPhysicalDeviceFeatures(physicalDevice, &deviceFeatures);
uint32_t supportedVersion[] = {
VK_VERSION_MAJOR(deviceProperties.apiVersion),
VK_VERSION_MINOR(deviceProperties.apiVersion),
VK_VERSION_PATCH(deviceProperties.apiVersion)
};
std::cout << "physical device supports version " << supportedVersion[0] << "." << supportedVersion[1] << "." << supportedVersion[2] << std::endl;
}
void checkSwapChainSupport() {
uint32_t extensionCount = 0;
vkEnumerateDeviceExtensionProperties(physicalDevice, nullptr, &extensionCount, nullptr);
if (extensionCount == 0) {
std::cerr << "physical device doesn't support any extensions" << std::endl;
assert(0);
}
std::vector<VkExtensionProperties> deviceExtensions(extensionCount);
vkEnumerateDeviceExtensionProperties(physicalDevice, nullptr, &extensionCount, deviceExtensions.data());
for (const auto& extension : deviceExtensions) {
if (strcmp(extension.extensionName, VK_KHR_SWAPCHAIN_EXTENSION_NAME) == 0) {
std::cout << "physical device supports swap chains" << std::endl;
return;
}
}
std::cerr << "physical device doesn't support swap chains" << std::endl;
assert(0);
}
void findQueueFamilies() {
// Check queue families
uint32_t queueFamilyCount = 0;
vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueFamilyCount, nullptr);
if (queueFamilyCount == 0) {
std::cout << "physical device has no queue families!" << std::endl;
assert(0);
}
// Find queue family with graphics support
// Note: is a transfer queue necessary to copy vertices to the gpu or can a graphics queue handle that?
std::vector<VkQueueFamilyProperties> queueFamilies(queueFamilyCount);
vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueFamilyCount, queueFamilies.data());
std::cout << "physical device has " << queueFamilyCount << " queue families" << std::endl;
bool foundGraphicsQueueFamily = false;
bool foundPresentQueueFamily = false;
for (uint32_t i = 0; i < queueFamilyCount; i++) {
VkBool32 presentSupport = false;
vkGetPhysicalDeviceSurfaceSupportKHR(physicalDevice, i, windowSurface, &presentSupport);
if (queueFamilies[i].queueCount > 0 && queueFamilies[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) {
graphicsQueueFamily = i;
foundGraphicsQueueFamily = true;
if (presentSupport) {
presentQueueFamily = i;
foundPresentQueueFamily = true;
break;
}
}
if (!foundPresentQueueFamily && presentSupport) {
presentQueueFamily = i;
foundPresentQueueFamily = true;
}
}
if (foundGraphicsQueueFamily) {
std::cout << "queue family #" << graphicsQueueFamily << " supports graphics" << std::endl;
if (foundPresentQueueFamily) {
std::cout << "queue family #" << presentQueueFamily << " supports presentation" << std::endl;
}
else {
std::cerr << "could not find a valid queue family with present support" << std::endl;
assert(0);
}
}
else {
std::cerr << "could not find a valid queue family with graphics support" << std::endl;
assert(0);
}
}
void createLogicalDevice() {
// Greate one graphics queue and optionally a separate presentation queue
float queuePriority = 1.0f;
VkDeviceQueueCreateInfo queueCreateInfo[2] = {};
queueCreateInfo[0].sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queueCreateInfo[0].queueFamilyIndex = graphicsQueueFamily;
queueCreateInfo[0].queueCount = 1;
queueCreateInfo[0].pQueuePriorities = &queuePriority;
queueCreateInfo[0].sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queueCreateInfo[0].queueFamilyIndex = presentQueueFamily;
queueCreateInfo[0].queueCount = 1;
queueCreateInfo[0].pQueuePriorities = &queuePriority;
// Create logical device from physical device
// Note: there are separate instance and device extensions!
VkDeviceCreateInfo deviceCreateInfo = {};
deviceCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
deviceCreateInfo.pQueueCreateInfos = queueCreateInfo;
if (graphicsQueueFamily == presentQueueFamily) {
deviceCreateInfo.queueCreateInfoCount = 1;
}
else {
deviceCreateInfo.queueCreateInfoCount = 2;
}
const char* deviceExtensions = VK_KHR_SWAPCHAIN_EXTENSION_NAME;
deviceCreateInfo.enabledExtensionCount = 1;
deviceCreateInfo.ppEnabledExtensionNames = &deviceExtensions;
if (vkCreateDevice(physicalDevice, &deviceCreateInfo, nullptr, &device) != VK_SUCCESS) {
std::cerr << "failed to create logical device" << std::endl;
assert(0);
}
std::cout << "created logical device" << std::endl;
// Get graphics and presentation queues (which may be the same)
vkGetDeviceQueue(device, graphicsQueueFamily, 0, &graphicsQueue);
vkGetDeviceQueue(device, presentQueueFamily, 0, &presentQueue);
std::cout << "acquired graphics and presentation queues" << std::endl;
}
void createSemaphores() {
VkSemaphoreCreateInfo createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
if (vkCreateSemaphore(device, &createInfo, nullptr, &imageAvailableSemaphore) != VK_SUCCESS ||
vkCreateSemaphore(device, &createInfo, nullptr, &renderingFinishedSemaphore) != VK_SUCCESS) {
std::cerr << "failed to create semaphores" << std::endl;
assert(0);
}
else {
std::cout << "created semaphores" << std::endl;
}
}
void createSwapChain() {
// Find surface capabilities
VkSurfaceCapabilitiesKHR surfaceCapabilities;
if (vkGetPhysicalDeviceSurfaceCapabilitiesKHR(physicalDevice, windowSurface, &surfaceCapabilities) != VK_SUCCESS) {
std::cerr << "failed to acquire presentation surface capabilities" << std::endl;
assert(0);
}
// Find supported surface formats
uint32_t formatCount;
if (vkGetPhysicalDeviceSurfaceFormatsKHR(physicalDevice, windowSurface, &formatCount, nullptr) != VK_SUCCESS || formatCount == 0) {
std::cerr << "failed to get number of supported surface formats" << std::endl;
assert(0);
}
std::vector<VkSurfaceFormatKHR> surfaceFormats(formatCount);
if (vkGetPhysicalDeviceSurfaceFormatsKHR(physicalDevice, windowSurface, &formatCount, surfaceFormats.data()) != VK_SUCCESS) {
std::cerr << "failed to get supported surface formats" << std::endl;
assert(0);
}
// Find supported present modes
uint32_t presentModeCount;
if (vkGetPhysicalDeviceSurfacePresentModesKHR(physicalDevice, windowSurface, &presentModeCount, nullptr) != VK_SUCCESS || presentModeCount == 0) {
std::cerr << "failed to get number of supported presentation modes" << std::endl;
assert(0);
}
std::vector<VkPresentModeKHR> presentModes(presentModeCount);
if (vkGetPhysicalDeviceSurfacePresentModesKHR(physicalDevice, windowSurface, &presentModeCount, presentModes.data()) != VK_SUCCESS) {
std::cerr << "failed to get supported presentation modes" << std::endl;
assert(0);
}
// Determine number of images for swap chain
uint32_t imageCount = surfaceCapabilities.minImageCount + 1;
if (surfaceCapabilities.maxImageCount != 0 && imageCount > surfaceCapabilities.maxImageCount) {
imageCount = surfaceCapabilities.maxImageCount;
}
std::cout << "using " << imageCount << " images for swap chain" << std::endl;
// Select a surface format
swapchainFormat = chooseSurfaceFormat(surfaceFormats);
// Select swap chain size
swapChainExtent = chooseSwapExtent(surfaceCapabilities);
// Check if swap chain supports being the destination of an image transfer
// Note: AMD driver bug, though it would be nice to implement a workaround that doesn't use transfering
//if (!(surfaceCapabilities.supportedUsageFlags & VK_IMAGE_USAGE_TRANSFER_DST_BIT)) {
// std::cerr << "swap chain image does not support VK_IMAGE_TRANSFER_DST usage" << std::endl;
//assert(0);
//}
// Determine transformation to use (preferring no transform)
VkSurfaceTransformFlagBitsKHR surfaceTransform;
if (surfaceCapabilities.supportedTransforms & VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR) {
surfaceTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
}
else {
surfaceTransform = surfaceCapabilities.currentTransform;
}
// Choose presentation mode (preferring MAILBOX ~= triple buffering)
VkPresentModeKHR presentMode = choosePresentMode(presentModes);
// Finally, create the swap chain
VkSwapchainCreateInfoKHR createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
createInfo.surface = windowSurface;
createInfo.minImageCount = imageCount;
createInfo.imageFormat = swapchainFormat.format;
createInfo.imageColorSpace = swapchainFormat.colorSpace;
createInfo.imageExtent = swapChainExtent;
createInfo.imageArrayLayers = 1;
createInfo.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
createInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
createInfo.queueFamilyIndexCount = 0;
createInfo.pQueueFamilyIndices = nullptr;
createInfo.preTransform = surfaceTransform;
createInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
createInfo.presentMode = presentMode;
createInfo.clipped = VK_TRUE;
createInfo.oldSwapchain = VK_NULL_HANDLE;
if (vkCreateSwapchainKHR(device, &createInfo, nullptr, &swapChain) != VK_SUCCESS) {
std::cerr << "failed to create swap chain" << std::endl;
assert(0);
}
else {
std::cout << "created swap chain" << std::endl;
}
// Store the images used by the swap chain
// Note: these are the images that swap chain image indices refer to
// Note: actual number of images may differ from requested number, since it's a lower bound
uint32_t actualImageCount = 0;
if (vkGetSwapchainImagesKHR(device, swapChain, &actualImageCount, nullptr) != VK_SUCCESS || actualImageCount == 0) {
std::cerr << "failed to acquire number of swap chain images" << std::endl;
assert(0);
}
swapChainImages.resize(actualImageCount);
views.resize(actualImageCount);
if (vkGetSwapchainImagesKHR(device, swapChain, &actualImageCount, swapChainImages.data()) != VK_SUCCESS) {
std::cerr << "failed to acquire swap chain images" << std::endl;
assert(0);
}
std::cout << "acquired swap chain images" << std::endl;
}
VkSurfaceFormatKHR chooseSurfaceFormat(const std::vector<VkSurfaceFormatKHR>& availableFormats) {
// We can either choose any format
if (availableFormats.size() == 1 && availableFormats[0].format == VK_FORMAT_UNDEFINED) {
return { VK_FORMAT_R8G8B8A8_UNORM, VK_COLORSPACE_SRGB_NONLINEAR_KHR };
}
// Or go with the standard format - if available
for (const auto& availableSurfaceFormat : availableFormats) {
if (availableSurfaceFormat.format == VK_FORMAT_R8G8B8A8_UNORM) {
return availableSurfaceFormat;
}
}
// Or fall back to the first available one
return availableFormats[0];
}
VkExtent2D chooseSwapExtent(const VkSurfaceCapabilitiesKHR& surfaceCapabilities) {
if (surfaceCapabilities.currentExtent.width == -1) {
VkExtent2D swapChainExtent = {};
#define min(a, b) (a < b ? a : b)
#define max(a, b) (a > b ? a : b)
swapChainExtent.width = min(max(640, surfaceCapabilities.minImageExtent.width), surfaceCapabilities.maxImageExtent.width);
swapChainExtent.height = min(max(480, surfaceCapabilities.minImageExtent.height), surfaceCapabilities.maxImageExtent.height);
return swapChainExtent;
}
else {
return surfaceCapabilities.currentExtent;
}
}
VkPresentModeKHR choosePresentMode(const std::vector<VkPresentModeKHR> presentModes) {
for (const auto& presentMode : presentModes) {
if (presentMode == VK_PRESENT_MODE_MAILBOX_KHR) {
return presentMode;
}
}
// If mailbox is unavailable, fall back to FIFO (guaranteed to be available)
return VK_PRESENT_MODE_FIFO_KHR;
}
void createCommandQueues() {
// Create presentation command pool
// Note: only command buffers for a single queue family can be created from this pool
VkCommandPoolCreateInfo poolCreateInfo = {};
poolCreateInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
poolCreateInfo.queueFamilyIndex = presentQueueFamily;
if (vkCreateCommandPool(device, &poolCreateInfo, nullptr, &commandPool) != VK_SUCCESS) {
std::cerr << "failed to create command queue for presentation queue family" << std::endl;
assert(0);
}
else {
std::cout << "created command pool for presentation queue family" << std::endl;
}
// Get number of swap chain images and create vector to hold command queue for each one
presentCommandBuffers.resize(swapChainImages.size());
// Allocate presentation command buffers
// Note: secondary command buffers are only for nesting in primary command buffers
VkCommandBufferAllocateInfo allocInfo = {};
allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
allocInfo.commandPool = commandPool;
allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
allocInfo.commandBufferCount = (uint32_t)swapChainImages.size();
if (vkAllocateCommandBuffers(device, &allocInfo, presentCommandBuffers.data()) != VK_SUCCESS) {
std::cerr << "failed to allocate presentation command buffers" << std::endl;
assert(0);
}
else {
std::cout << "allocated presentation command buffers" << std::endl;
}
}
void recordCommandBuffers()
{
// Prepare data for recording command buffers
VkCommandBufferBeginInfo beginInfo = {};
beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
beginInfo.flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT;
// Note: contains value for each subresource range
VkClearColorValue clearColor = {
{ 0.4f, 0.6f, 0.9f, 1.0f } // R, G, B, A
};
VkClearValue clearValue = {};
clearValue.color = clearColor;
VkImageSubresourceRange subResourceRange = {};
subResourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subResourceRange.baseMipLevel = 0;
subResourceRange.levelCount = 1;
subResourceRange.baseArrayLayer = 0;
subResourceRange.layerCount = 1;
VkRenderPassBeginInfo renderPassInfo = {};
renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
renderPassInfo.renderPass = renderPass;
renderPassInfo.renderArea.offset.x = 0;
renderPassInfo.renderArea.offset.y = 0;
renderPassInfo.renderArea.extent.width = swapChainExtent.width;
renderPassInfo.renderArea.extent.height = swapChainExtent.height;
renderPassInfo.clearValueCount = 1;
renderPassInfo.pClearValues = &clearValue;
VkViewport viewport = { 0 };
viewport.height = (float)swapChainExtent.width;
viewport.width = (float)swapChainExtent.height;
viewport.minDepth = (float)0.0f;
viewport.maxDepth = (float)1.0f;
VkRect2D scissor = { 0 };
scissor.extent.width = swapChainExtent.width;
scissor.extent.height = swapChainExtent.height;
scissor.offset.x = 0;
scissor.offset.y = 0;
// Record the command buffer for every swap chain image
for (uint32_t i = 0; i < swapChainImages.size(); i++) {
// Record command buffer
vkBeginCommandBuffer(presentCommandBuffers[i], &beginInfo);
{ //render to screen
renderPassInfo.framebuffer = fbs[i];
renderPassInfo.renderPass = renderPass;
renderPassInfo.clearValueCount = 1;
renderPassInfo.pClearValues = &clearValue;
vkCmdBeginRenderPass(presentCommandBuffers[i], &renderPassInfo, VK_SUBPASS_CONTENTS_INLINE);
vkCmdBindPipeline(presentCommandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, samplePipeline);
VkDeviceSize offsets = 0;
vkCmdBindVertexBuffers(presentCommandBuffers[i], 0, 1, &triangleVertexBuffer, &offsets );
vkCmdBindDescriptorSets(presentCommandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, samplePipelineLayout, 0, 1, &sampleDescriptorSet, 0, 0);
float Wcoeff = 1.0f; //1.0f / Wc = 2.0 - Wcoeff
float viewportScaleX = (float)(swapChainExtent.width) * 0.5f * 16.0f;
float viewportScaleY = -1.0f * (float)(swapChainExtent.height) * 0.5f * 16.0f;
float Zs = 0.5f;
uint32_t pushConstants[4];
pushConstants[0] = *(uint32_t*)&Wcoeff;
pushConstants[1] = *(uint32_t*)&viewportScaleX;
pushConstants[2] = *(uint32_t*)&viewportScaleY;
pushConstants[3] = *(uint32_t*)&Zs;
vkCmdPushConstants(presentCommandBuffers[i], samplePipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(pushConstants), &pushConstants);
vkCmdDraw(presentCommandBuffers[i], 3, 1, 0, 0);
vkCmdEndRenderPass(presentCommandBuffers[i]);
}
if (vkEndCommandBuffer(presentCommandBuffers[i]) != VK_SUCCESS) {
std::cerr << "failed to record command buffer" << std::endl;
assert(0);
}
else {
std::cout << "recorded command buffer for image " << i << std::endl;
}
}
}
void draw() {
// Acquire image
uint32_t imageIndex;
VkResult res = vkAcquireNextImageKHR(device, swapChain, UINT64_MAX, imageAvailableSemaphore, VK_NULL_HANDLE, &imageIndex);
if (res != VK_SUCCESS && res != VK_SUBOPTIMAL_KHR) {
std::cerr << "failed to acquire image" << std::endl;
assert(0);
}
std::cout << "acquired image" << std::endl;
// Wait for image to be available and draw
VkSubmitInfo submitInfo = {};
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.waitSemaphoreCount = 1;
submitInfo.pWaitSemaphores = &imageAvailableSemaphore;
submitInfo.signalSemaphoreCount = 1;
submitInfo.pSignalSemaphores = &renderingFinishedSemaphore;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &presentCommandBuffers[imageIndex];
if (vkQueueSubmit(presentQueue, 1, &submitInfo, VK_NULL_HANDLE) != VK_SUCCESS) {
std::cerr << "failed to submit draw command buffer" << std::endl;
assert(0);
}
std::cout << "submitted draw command buffer" << std::endl;
// Present drawn image
// Note: semaphore here is not strictly necessary, because commands are processed in submission order within a single queue
VkPresentInfoKHR presentInfo = {};
presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
presentInfo.waitSemaphoreCount = 1;
presentInfo.pWaitSemaphores = &renderingFinishedSemaphore;
presentInfo.swapchainCount = 1;
presentInfo.pSwapchains = &swapChain;
presentInfo.pImageIndices = &imageIndex;
res = vkQueuePresentKHR(presentQueue, &presentInfo);
if (res != VK_SUCCESS) {
std::cerr << "failed to submit present command buffer" << std::endl;
assert(0);
}
std::cout << "submitted presentation command buffer" << std::endl;
}
void CreateRenderPass()
{
VkAttachmentReference attachRef = {};
attachRef.attachment = 0;
attachRef.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkSubpassDescription subpassDesc = {};
subpassDesc.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpassDesc.colorAttachmentCount = 1;
subpassDesc.pColorAttachments = &attachRef;
VkAttachmentDescription attachDesc = {};
2020-04-26 21:21:18 +02:00
attachDesc.format = swapchainFormat.format; //
2020-02-20 22:38:14 +01:00
attachDesc.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachDesc.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachDesc.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachDesc.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachDesc.initialLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
attachDesc.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
attachDesc.samples = VK_SAMPLE_COUNT_1_BIT;
VkRenderPassCreateInfo renderPassCreateInfo = {};
renderPassCreateInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
renderPassCreateInfo.attachmentCount = 1;
renderPassCreateInfo.pAttachments = &attachDesc;
renderPassCreateInfo.subpassCount = 1;
renderPassCreateInfo.pSubpasses = &subpassDesc;
VkResult res = vkCreateRenderPass(device, &renderPassCreateInfo, NULL, &renderPass);
printf("Created a render pass\n");
}
void CreateFramebuffer()
{
fbs.resize(swapChainImages.size());
VkResult res;
for (uint32_t i = 0; i < swapChainImages.size(); i++) {
VkImageViewCreateInfo ViewCreateInfo = {};
ViewCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
ViewCreateInfo.image = swapChainImages[i];
2020-04-26 21:21:18 +02:00
ViewCreateInfo.format = swapchainFormat.format; //
2020-02-20 22:38:14 +01:00
ViewCreateInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
ViewCreateInfo.components.r = VK_COMPONENT_SWIZZLE_IDENTITY;
ViewCreateInfo.components.g = VK_COMPONENT_SWIZZLE_IDENTITY;
ViewCreateInfo.components.b = VK_COMPONENT_SWIZZLE_IDENTITY;
ViewCreateInfo.components.a = VK_COMPONENT_SWIZZLE_IDENTITY;
ViewCreateInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
ViewCreateInfo.subresourceRange.baseMipLevel = 0;
ViewCreateInfo.subresourceRange.levelCount = 1;
ViewCreateInfo.subresourceRange.baseArrayLayer = 0;
ViewCreateInfo.subresourceRange.layerCount = 1;
res = vkCreateImageView(device, &ViewCreateInfo, NULL, &views[i]);
VkFramebufferCreateInfo fbCreateInfo = {};
fbCreateInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
fbCreateInfo.renderPass = renderPass;
fbCreateInfo.attachmentCount = 1;
fbCreateInfo.pAttachments = &views[i];
fbCreateInfo.width = swapChainExtent.width;
fbCreateInfo.height = swapChainExtent.height;
fbCreateInfo.layers = 1;
res = vkCreateFramebuffer(device, &fbCreateInfo, NULL, &fbs[i]);
}
printf("Frame buffers created\n");
}
void CreateShaders()
{
char vs_asm_code[] =
///0x40000000 = 2.0
///uni = 1.0
///rb0 = 2 - 1 = 1
"sig_small_imm ; rx0 = fsub.ws.always(b, a, uni, 0x40000000) ; nop = nop(r0, r0) ;\n"
///set up VPM read for subsequent reads
///0x00201a00: 0000 0000 0010 0000 0001 1010 0000 0000
///addr: 0
///size: 32bit
///packed
///horizontal
///stride=1
///vectors to read = 2 (how many components)
"sig_load_imm ; vr_setup = load32.always(0x00201a00) ; nop = load32.always() ;\n"
///uni = viewportXScale
///r0 = vpm * uni
"sig_none ; nop = nop(r0, r0, vpm_read, uni) ; r0 = fmul.always(a, b) ;\n"
///r1 = r0 * rb0 (1)
"sig_none ; nop = nop(r0, r0, nop, rb0) ; r1 = fmul.always(r0, b) ;\n"
///uni = viewportYScale
///ra0.16a = int(r1), r2 = vpm * uni
"sig_none ; rx0.16a = ftoi.always(r1, r1, vpm_read, uni) ; r2 = fmul.always(a, b) ;\n"
///r3 = r2 * rb0
"sig_none ; nop = nop(r0, r0, nop, rb0) ; r3 = fmul.always(r2, b) ;\n"
///ra0.16b = int(r3)
"sig_none ; rx0.16b = ftoi.always(r3, r3) ; nop = nop(r0, r0) ;\n"
///set up VPM write for subsequent writes
///0x00001a00: 0000 0000 0000 0000 0001 1010 0000 0000
///addr: 0
///size: 32bit
///horizontal
///stride = 1
"sig_load_imm ; vw_setup = load32.always.ws(0x00001a00) ; nop = load32.always() ;\n"
///shaded vertex format for PSE
/// Ys and Xs
///vpm = ra0
"sig_none ; vpm = or.always(a, a, ra0, nop) ; nop = nop(r0, r0);\n"
/// Zs
///uni = 0.5
///vpm = uni
"sig_none ; vpm = or.always(a, a, uni, nop) ; nop = nop(r0, r0);\n"
/// 1.0 / Wc
///vpm = rb0 (1)
"sig_none ; vpm = or.always(b, b, nop, rb0) ; nop = nop(r0, r0);\n"
///END
"sig_end ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;\n"
"sig_none ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;\n"
"sig_none ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;\n"
"\0";
char cs_asm_code[] =
///uni = 1.0
///r3 = 2.0 - uni
"sig_small_imm ; r3 = fsub.always(b, a, uni, 0x40000000) ; nop = nop(r0, r0);\n"
"sig_load_imm ; vr_setup = load32.always(0x00201a00) ; nop = load32.always() ;\n"
///r2 = vpm
"sig_none ; r2 = or.always(a, a, vpm_read, nop) ; nop = nop(r0, r0);\n"
"sig_load_imm ; vw_setup = load32.always.ws(0x00001a00) ; nop = load32.always() ;\n"
///shaded coordinates format for PTB
/// write Xc
///r1 = vpm, vpm = r2
"sig_none ; r1 = or.always(a, a, vpm_read, nop) ; vpm = v8min.always(r2, r2);\n"
/// write Yc
///uni = viewportXscale
///vpm = r1, r2 = r2 * uni
"sig_none ; vpm = or.always(r1, r1, uni, nop) ; r2 = fmul.always(r2, a);\n"
///uni = viewportYscale
///r1 = r1 * uni
"sig_none ; nop = nop(r0, r0, uni, nop) ; r1 = fmul.always(r1, a);\n"
///r0 = r2 * r3
"sig_none ; nop = nop(r0, r0) ; r0 = fmul.always(r2, r3);\n"
///ra0.16a = r0, r1 = r1 * r3
"sig_none ; rx0.16a = ftoi.always(r0, r0) ; r1 = fmul.always(r1, r3) ;\n"
///ra0.16b = r1
"sig_none ; rx0.16b = ftoi.always(r1, r1) ; nop = nop(r0, r0) ;\n"
///write Zc
///vpm = 0
"sig_small_imm ; vpm = or.always(b, b, nop, 0) ; nop = nop(r0, r0) ;\n"
///write Wc
///vpm = 1.0
"sig_small_imm ; vpm = or.always(b, b, nop, 0x3f800000) ; nop = nop(r0, r0) ;\n"
///write Ys and Xs
///vpm = ra0
"sig_none ; vpm = or.always(a, a, ra0, nop) ; nop = nop(r0, r0) ;\n"
///write Zs
///uni = 0.5
///vpm = uni
"sig_none ; vpm = or.always(a, a, uni, nop) ; nop = nop(r0, r0) ;\n"
///write 1/Wc
///vpm = r3
"sig_none ; vpm = or.always(r3, r3) ; nop = nop(r0, r0) ;\n"
///END
"sig_end ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;\n"
"sig_none ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;\n"
"sig_none ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;\n"
"\0";
//clever: use small immedate -1 interpreted as 0xffffffff (white) to set color to white
//"sig_small_imm ; tlb_color_all = or.always(b, b, nop, -1) ; nop = nop(r0, r0) ;"
//8bit access
//abcd
//BGRA
//sample texture
char sample_fs_asm_code[] =
"sig_none ; r0 = itof.always(b, b, x_pix, y_pix) ; nop = nop(r0, r0) ;"
"sig_load_imm ; r2 = load32.always(0x3a72b9d6) ; nop = load32() ;" //1/1080
"sig_none ; r0 = itof.always(a, a, x_pix, y_pix) ; r1 = fmul.always(r2, r0); ;" //r1 contains tex coord y
"sig_load_imm ; r2 = load32.always(0x3a088888) ; nop = load32() ;" //1/1920
///write texture addresses (x, y)
///writing tmu0_s signals that all coordinates are written
"sig_none ; tmu0_t = or.always(r1, r1) ; r0 = fmul.always(r2, r0) ;" //r0 contains tex coord x
"sig_none ; tmu0_s = or.always(r0, r0) ; nop = nop(r0, r0) ;"
///suspend thread (after 2 nops) to wait for TMU request to finish
"sig_thread_switch ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;"
"sig_none ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;"
"sig_none ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;"
///read TMU0 request result to R4
"sig_load_tmu0 ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;"
///when thread has been awakened, MOV from R4 to R0
"sig_none ; r0 = fmax.pm.always.8a(r4, r4) ; nop = nop(r0, r0) ;"
"sig_none ; r1 = fmax.pm.always.8b(r4, r4) ; r0.8a = v8min.always(r0, r0) ;"
"sig_none ; r2 = fmax.pm.always.8c(r4, r4) ; r0.8b = v8min.always(r1, r1) ;"
"sig_none ; r3 = fmax.pm.always.8d(r4, r4) ; r0.8c = v8min.always(r2, r2) ;"
"sig_none ; nop = nop.pm(r0, r0) ; r0.8d = v8min.always(r3, r3) ;"
"sig_none ; tlb_color_all = or.always(r0, r0) ; nop = nop(r0, r0) ;"
"sig_end ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;"
"sig_none ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;"
"sig_unlock_score ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;"
"\0";
char* sample_asm_strings[] =
{
(char*)cs_asm_code, (char*)vs_asm_code, (char*)sample_fs_asm_code, 0
};
VkRpiAssemblyMappingEXT vertexMappings[] = {
2020-02-20 22:38:14 +01:00
//vertex shader uniforms
{
VK_RPI_ASSEMBLY_MAPPING_TYPE_PUSH_CONSTANT,
VK_DESCRIPTOR_TYPE_MAX_ENUM, //descriptor type
0, //descriptor set #
0, //descriptor binding #
0, //descriptor array element #
0, //resource offset
},
{
VK_RPI_ASSEMBLY_MAPPING_TYPE_PUSH_CONSTANT,
VK_DESCRIPTOR_TYPE_MAX_ENUM, //descriptor type
0, //descriptor set #
0, //descriptor binding #
0, //descriptor array element #
4, //resource offset
},
{
VK_RPI_ASSEMBLY_MAPPING_TYPE_PUSH_CONSTANT,
VK_DESCRIPTOR_TYPE_MAX_ENUM, //descriptor type
0, //descriptor set #
0, //descriptor binding #
0, //descriptor array element #
8, //resource offset
},
{
VK_RPI_ASSEMBLY_MAPPING_TYPE_PUSH_CONSTANT,
VK_DESCRIPTOR_TYPE_MAX_ENUM, //descriptor type
0, //descriptor set #
0, //descriptor binding #
0, //descriptor array element #
12, //resource offset
},
};
VkRpiAssemblyMappingEXT fragmentMappings[] = {
2020-02-20 22:38:14 +01:00
//fragment shader uniforms
{
VK_RPI_ASSEMBLY_MAPPING_TYPE_DESCRIPTOR,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, //descriptor type
0, //descriptor set #
0, //descriptor binding #
0, //descriptor array element #
0, //resource offset
}
};
uint32_t spirv[6];
uint64_t* asm_ptrs[4] = {};
uint32_t asm_sizes[4] = {};
VkRpiAssemblyMappingEXT* asm_mappings[4] = {};
uint32_t asm_mappings_sizes[4] = {};
2020-02-20 22:38:14 +01:00
VkRpiShaderModuleAssemblyCreateInfoEXT shaderModuleCreateInfo = {};
shaderModuleCreateInfo.instructions = asm_ptrs;
shaderModuleCreateInfo.numInstructions = asm_sizes;
shaderModuleCreateInfo.mappings = asm_mappings;
shaderModuleCreateInfo.numMappings = asm_mappings_sizes;
asm_mappings[VK_RPI_ASSEMBLY_TYPE_VERTEX] = vertexMappings;
asm_mappings_sizes[VK_RPI_ASSEMBLY_TYPE_VERTEX] = sizeof(vertexMappings) / sizeof(VkRpiAssemblyMappingEXT);
asm_mappings[VK_RPI_ASSEMBLY_TYPE_FRAGMENT] = fragmentMappings;
asm_mappings_sizes[VK_RPI_ASSEMBLY_TYPE_FRAGMENT] = sizeof(fragmentMappings) / sizeof(VkRpiAssemblyMappingEXT);
2020-02-20 22:38:14 +01:00
{ //assemble cs code
asm_sizes[0] = get_num_instructions(cs_asm_code);
uint32_t size = sizeof(uint64_t)*asm_sizes[0];
asm_ptrs[0] = (uint64_t*)malloc(size);
assemble_qpu_asm(cs_asm_code, asm_ptrs[0]);
}
2020-02-20 22:38:14 +01:00
{ //assemble vs code
asm_sizes[1] = get_num_instructions(vs_asm_code);
uint32_t size = sizeof(uint64_t)*asm_sizes[1];
asm_ptrs[1] = (uint64_t*)malloc(size);
assemble_qpu_asm(vs_asm_code, asm_ptrs[1]);
}
2020-02-20 22:38:14 +01:00
{ //assemble fs code
asm_sizes[2] = get_num_instructions(sample_fs_asm_code);
uint32_t size = sizeof(uint64_t)*asm_sizes[2];
asm_ptrs[2] = (uint64_t*)malloc(size);
assemble_qpu_asm(sample_fs_asm_code, asm_ptrs[2]);
}
2020-02-20 22:38:14 +01:00
spirv[0] = 0x07230203;
spirv[1] = 0x00010000;
spirv[2] = 0x14E45250;
spirv[3] = 1;
spirv[4] = (uint32_t)&shaderModuleCreateInfo;
//words start here
spirv[5] = 1 << 16;
VkShaderModuleCreateInfo smci = {};
smci.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
smci.codeSize = sizeof(uint32_t)*6;
smci.pCode = spirv;
vkCreateShaderModule(device, &smci, 0, &sampleShaderModule);
for(uint32_t c = 0; c < 4; ++c)
{
free(asm_ptrs[c]);
}
2020-02-20 22:38:14 +01:00
}
#define VERTEX_BUFFER_BIND_ID 0
void CreatePipeline()
{
VkVertexInputBindingDescription vertexInputBindingDescription =
{
0,
sizeof(float) * 2,
VK_VERTEX_INPUT_RATE_VERTEX
};
VkVertexInputAttributeDescription vertexInputAttributeDescription =
{
0,
0,
VK_FORMAT_R32G32_SFLOAT,
0
};
VkPipelineVertexInputStateCreateInfo vertexInputInfo = {};
vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
vertexInputInfo.vertexAttributeDescriptionCount = 1;
vertexInputInfo.pVertexAttributeDescriptions = &vertexInputAttributeDescription;
vertexInputInfo.vertexBindingDescriptionCount = 1;
vertexInputInfo.pVertexBindingDescriptions = &vertexInputBindingDescription;
VkPipelineInputAssemblyStateCreateInfo pipelineIACreateInfo = {};
pipelineIACreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
pipelineIACreateInfo.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
VkViewport vp = {};
vp.x = 0.0f;
vp.y = 0.0f;
vp.width = (float)swapChainExtent.width;
vp.height = (float)swapChainExtent.height;
vp.minDepth = 0.0f;
vp.maxDepth = 1.0f;
VkPipelineViewportStateCreateInfo vpCreateInfo = {};
vpCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
vpCreateInfo.viewportCount = 1;
vpCreateInfo.pViewports = &vp;
VkPipelineRasterizationStateCreateInfo rastCreateInfo = {};
rastCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
rastCreateInfo.polygonMode = VK_POLYGON_MODE_FILL;
rastCreateInfo.cullMode = VK_CULL_MODE_NONE;
rastCreateInfo.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
rastCreateInfo.lineWidth = 1.0f;
VkPipelineMultisampleStateCreateInfo pipelineMSCreateInfo = {};
pipelineMSCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
VkPipelineColorBlendAttachmentState blendAttachState = {};
blendAttachState.colorWriteMask = 0xf;
blendAttachState.blendEnable = false;
VkPipelineColorBlendStateCreateInfo blendCreateInfo = {};
blendCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
blendCreateInfo.attachmentCount = 1;
blendCreateInfo.pAttachments = &blendAttachState;
VkPipelineDepthStencilStateCreateInfo depthStencilState = {};
depthStencilState.depthTestEnable = false;
depthStencilState.stencilTestEnable = false;
{ //create sample pipeline
VkPushConstantRange pushConstantRanges[2];
pushConstantRanges[0].offset = 0;
pushConstantRanges[0].size = 4 * 4; //4 * 32bits
pushConstantRanges[0].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
pushConstantRanges[1].offset = 0;
pushConstantRanges[1].size = 1 * 4; //1 * 32bits
pushConstantRanges[1].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
VkPipelineShaderStageCreateInfo shaderStageCreateInfo[2] = {};
shaderStageCreateInfo[0].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
shaderStageCreateInfo[0].stage = VK_SHADER_STAGE_VERTEX_BIT;
shaderStageCreateInfo[0].module = sampleShaderModule;
shaderStageCreateInfo[0].pName = "main";
shaderStageCreateInfo[1].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
shaderStageCreateInfo[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT;
shaderStageCreateInfo[1].module = sampleShaderModule;
shaderStageCreateInfo[1].pName = "main";
VkPipelineLayoutCreateInfo pipelineLayoutCI = {};
pipelineLayoutCI.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
pipelineLayoutCI.setLayoutCount = 1;
pipelineLayoutCI.pSetLayouts = &sampleDsl;
pipelineLayoutCI.pushConstantRangeCount = 2;
pipelineLayoutCI.pPushConstantRanges = &pushConstantRanges[0];
vkCreatePipelineLayout(device, &pipelineLayoutCI, 0, &samplePipelineLayout);
VkGraphicsPipelineCreateInfo pipelineInfo = {};
pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
pipelineInfo.stageCount = 2;
pipelineInfo.pStages = &shaderStageCreateInfo[0];
pipelineInfo.pVertexInputState = &vertexInputInfo;
pipelineInfo.pInputAssemblyState = &pipelineIACreateInfo;
pipelineInfo.pViewportState = &vpCreateInfo;
pipelineInfo.pRasterizationState = &rastCreateInfo;
pipelineInfo.pMultisampleState = &pipelineMSCreateInfo;
pipelineInfo.pColorBlendState = &blendCreateInfo;
pipelineInfo.renderPass = renderPass;
pipelineInfo.basePipelineIndex = -1;
pipelineInfo.pDepthStencilState = &depthStencilState;
pipelineInfo.layout = samplePipelineLayout;
VkResult res = vkCreateGraphicsPipelines(device, VK_NULL_HANDLE, 1, &pipelineInfo, NULL, &samplePipeline);
}
printf("Graphics pipeline created\n");
}
uint32_t getMemoryTypeIndex(VkPhysicalDeviceMemoryProperties deviceMemoryProperties, uint32_t typeBits, VkMemoryPropertyFlags properties)
{
// Iterate over all memory types available for the device used in this example
for (uint32_t i = 0; i < deviceMemoryProperties.memoryTypeCount; i++)
{
if ((typeBits & 1) == 1)
{
if ((deviceMemoryProperties.memoryTypes[i].propertyFlags & properties) == properties)
{
return i;
}
}
typeBits >>= 1;
}
assert(0);
}
void CreateTexture()
{
VkFormat format = VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK;
2020-02-20 22:38:14 +01:00
uint32_t width = 128, height = 128;
2020-02-20 22:38:14 +01:00
uint32_t mipLevels = 1;
char* texData = readPKM("elina.pkm");
VkBuffer stagingBuffer;
VkDeviceMemory stagingMemory;
{ //create storage texel buffer for generic mem address TMU ops test
VkBufferCreateInfo bufferCreateInfo = {};
bufferCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufferCreateInfo.size = (width * height * 4) >> 3;
2020-02-20 22:38:14 +01:00
bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
vkCreateBuffer(device, &bufferCreateInfo, 0, &stagingBuffer);
VkMemoryRequirements mr;
vkGetBufferMemoryRequirements(device, stagingBuffer, &mr);
VkMemoryAllocateInfo mai = {};
mai.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
mai.allocationSize = mr.size;
mai.memoryTypeIndex = getMemoryTypeIndex(pdmp, mr.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
vkAllocateMemory(device, &mai, 0, &stagingMemory);
void* data;
vkMapMemory(device, stagingMemory, 0, mr.size, 0, &data);
memcpy(data, texData, bufferCreateInfo.size);
2020-02-20 22:38:14 +01:00
vkUnmapMemory(device, stagingMemory);
free(texData);
vkBindBufferMemory(device, stagingBuffer, stagingMemory, 0);
}
{ //create texture that we'll write to
VkImageCreateInfo imageCreateInfo = {};
imageCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.mipLevels = mipLevels;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageCreateInfo.extent = { width, height, 1 };
vkCreateImage(device, &imageCreateInfo, 0, &textureImage);
VkMemoryRequirements mr;
vkGetImageMemoryRequirements(device, textureImage, &mr);
VkMemoryAllocateInfo mai = {};
mai.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
mai.allocationSize = mr.size;
mai.memoryTypeIndex = getMemoryTypeIndex(pdmp, mr.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
vkAllocateMemory(device, &mai, 0, &textureMemory);
vkBindImageMemory(device, textureImage, textureMemory, 0);
}
{ // convert image to optimal texture format
VkCommandBufferAllocateInfo allocInfo = {};
allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
allocInfo.commandPool = commandPool;
allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
allocInfo.commandBufferCount = 1;
VkCommandBuffer copyCommandBuffer;
vkAllocateCommandBuffers(device, &allocInfo, &copyCommandBuffer);
VkImageSubresourceRange subresourceRange = {};
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subresourceRange.baseMipLevel = 0;
subresourceRange.levelCount = 1;
subresourceRange.layerCount = 1;
VkImageMemoryBarrier imageMemoryBarrier = {};
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imageMemoryBarrier.srcAccessMask = 0;
imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
imageMemoryBarrier.image = textureImage;
imageMemoryBarrier.subresourceRange = subresourceRange;
VkCommandBufferBeginInfo beginInfo = {};
beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
beginInfo.flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT;
vkBeginCommandBuffer(copyCommandBuffer, &beginInfo);
vkCmdPipelineBarrier(copyCommandBuffer,
VK_PIPELINE_STAGE_HOST_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
0, 0, nullptr, 0, nullptr, 1, &imageMemoryBarrier);
VkBufferImageCopy bufferCopyRegion = {};
bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
bufferCopyRegion.imageSubresource.mipLevel = 1;
bufferCopyRegion.imageSubresource.baseArrayLayer = 0;
bufferCopyRegion.imageSubresource.layerCount = 1;
bufferCopyRegion.imageExtent.width = width;
bufferCopyRegion.imageExtent.height = height;
bufferCopyRegion.imageExtent.depth = 1;
bufferCopyRegion.bufferOffset = 0;
vkCmdCopyBufferToImage(
copyCommandBuffer,
stagingBuffer,
textureImage,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1,
&bufferCopyRegion);
imageMemoryBarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
imageMemoryBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
vkCmdPipelineBarrier(copyCommandBuffer,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
0, 0, nullptr, 0, nullptr, 1, &imageMemoryBarrier);
vkEndCommandBuffer(copyCommandBuffer);
VkFenceCreateInfo fenceInfo = {};
fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
fenceInfo.flags = 0;
VkFence fence;
vkCreateFence(device, &fenceInfo, 0, &fence);
VkSubmitInfo submitInfo = {};
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &copyCommandBuffer;
vkQueueSubmit(graphicsQueue, 1, &submitInfo, fence);
vkWaitForFences(device, 1, &fence, VK_TRUE, -1);
vkDestroyFence(device, fence, 0);
vkFreeCommandBuffers(device, commandPool, 1, &copyCommandBuffer);
vkFreeMemory(device, stagingMemory, 0);
vkDestroyBuffer(device, stagingBuffer, 0);
}
{ //create sampler for sampling texture
VkImageViewCreateInfo view = {};
view.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
view.viewType = VK_IMAGE_VIEW_TYPE_2D;
view.format = format;
view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A };
view.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
view.subresourceRange.baseMipLevel = 0;
view.subresourceRange.baseArrayLayer = 0;
view.subresourceRange.layerCount = 1;
view.subresourceRange.levelCount = 1;
view.image = textureImage;
vkCreateImageView(device, &view, nullptr, &textureView);
VkSamplerCreateInfo sampler = {};
sampler.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
sampler.magFilter = VK_FILTER_NEAREST;
sampler.minFilter = VK_FILTER_NEAREST;
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST;
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
sampler.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT;
sampler.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT;
sampler.mipLodBias = 0.0f;
sampler.compareOp = VK_COMPARE_OP_NEVER;
sampler.minLod = 0.0f;
sampler.maxLod = 0.0f;
sampler.borderColor = VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK;
vkCreateSampler(device, &sampler, 0, &textureSampler);
}
}
void CreateDescriptorSet()
{
{ //create sample dsl
VkDescriptorSetLayoutBinding setLayoutBinding = {};
setLayoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
setLayoutBinding.binding = 0;
setLayoutBinding.descriptorCount = 1;
setLayoutBinding.stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
VkDescriptorSetLayoutCreateInfo descriptorLayoutCI = {};
descriptorLayoutCI.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
descriptorLayoutCI.bindingCount = 1;
descriptorLayoutCI.pBindings = &setLayoutBinding;
vkCreateDescriptorSetLayout(device, &descriptorLayoutCI, 0, &sampleDsl);
}
VkDescriptorPoolSize descriptorPoolSizes[1]{};
descriptorPoolSizes[0] = {};
descriptorPoolSizes[0].descriptorCount = 1;
descriptorPoolSizes[0].type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
VkDescriptorPoolCreateInfo descriptorPoolCI = {};
descriptorPoolCI.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
descriptorPoolCI.poolSizeCount = 1;
descriptorPoolCI.pPoolSizes = descriptorPoolSizes;
descriptorPoolCI.maxSets = 1;
vkCreateDescriptorPool(device, &descriptorPoolCI, 0, &descriptorPool);
{ //create sample descriptor set
VkDescriptorSetAllocateInfo allocInfo = {};
allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
allocInfo.descriptorPool = descriptorPool;
allocInfo.descriptorSetCount = 1;
allocInfo.pSetLayouts = &sampleDsl;
vkAllocateDescriptorSets(device, &allocInfo, &sampleDescriptorSet);
VkDescriptorImageInfo imageInfo;
imageInfo.imageView = textureView;
imageInfo.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
imageInfo.sampler = textureSampler;
VkWriteDescriptorSet writeDescriptorSet = {};
writeDescriptorSet.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writeDescriptorSet.dstSet = sampleDescriptorSet;
writeDescriptorSet.dstBinding = 0;
writeDescriptorSet.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
writeDescriptorSet.pImageInfo = &imageInfo;
writeDescriptorSet.descriptorCount = 1;
vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, 0);
}
}
void CreateVertexBuffer()
{
VkMemoryRequirements mr;
{ //create triangle vertex buffer
unsigned vboSize = sizeof(float) * 1 * 3 * 2; //1 * 3 x vec2
VkBufferCreateInfo ci = {};
ci.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
ci.size = vboSize;
ci.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT;
VkResult res = vkCreateBuffer(device, &ci, 0, &triangleVertexBuffer);
vkGetBufferMemoryRequirements(device, triangleVertexBuffer, &mr);
VkMemoryAllocateInfo mai = {};
mai.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
mai.allocationSize = mr.size;
mai.memoryTypeIndex = getMemoryTypeIndex(pdmp, mr.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
res = vkAllocateMemory(device, &mai, 0, &triangleVertexBufferMemory);
float vertices[] =
{
-1, -1,
1, -1,
0, 1
};
void* data;
res = vkMapMemory(device, triangleVertexBufferMemory, 0, mr.size, 0, &data);
memcpy(data, vertices, vboSize);
vkUnmapMemory(device, triangleVertexBufferMemory);
res = vkBindBufferMemory(device, triangleVertexBuffer, triangleVertexBufferMemory, 0);
}
printf("Vertex buffer created\n");
}
int main() {
// Note: dynamically loading loader may be a better idea to fail gracefully when Vulkan is not supported
// Create window for Vulkan
//glfwInit();
//glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);
//glfwWindowHint(GLFW_RESIZABLE, GLFW_FALSE);
//window = glfwCreateWindow(WINDOW_WIDTH, WINDOW_HEIGHT, "The 630 line cornflower blue window", nullptr, nullptr);
// Use Vulkan
setupVulkan();
mainLoop();
cleanup();
return 0;
}