1
0
mirror of https://github.com/Yours3lf/rpi-vk-driver.git synced 2024-12-03 15:24:13 +01:00
rpi-vk-driver/driver/common.c

329 lines
7.4 KiB
C
Raw Normal View History

2018-08-26 15:11:43 +02:00
#include "common.h"
#include "kernel/vc4_packet.h"
void createImageBO(_image* i)
{
assert(i);
assert(i->format);
assert(i->width);
assert(i->height);
uint32_t bpp = getFormatBpp(i->format);
uint32_t pixelSizeBytes = bpp / 8;
uint32_t nonPaddedSize = i->width * i->height * pixelSizeBytes;
i->paddedWidth = i->width;
i->paddedHeight = i->height;
//need to pad to T format, as HW automatically chooses that
if(nonPaddedSize > 4096)
{
getPaddedTextureDimensionsT(i->width, i->height, bpp, &i->paddedWidth, &i->paddedHeight);
}
i->size = i->paddedWidth * i->paddedHeight * pixelSizeBytes;
i->stride = i->paddedWidth * pixelSizeBytes;
i->handle = vc4_bo_alloc(controlFd, i->size, "swapchain image"); assert(i->handle);
//set tiling to T if size > 4KB
if(nonPaddedSize > 4096)
{
int ret = vc4_bo_set_tiling(controlFd, i->handle, DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED); assert(ret);
i->tiling = VC4_TILING_FORMAT_T;
}
else
{
int ret = vc4_bo_set_tiling(controlFd, i->handle, DRM_FORMAT_MOD_LINEAR); assert(ret);
i->tiling = VC4_TILING_FORMAT_LT;
}
}
/*
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkCmdClearColorImage
* Color and depth/stencil images can be cleared outside a render pass instance using vkCmdClearColorImage or vkCmdClearDepthStencilImage, respectively.
* These commands are only allowed outside of a render pass instance.
*/
VKAPI_ATTR void VKAPI_CALL vkCmdClearColorImage(
VkCommandBuffer commandBuffer,
VkImage image,
VkImageLayout imageLayout,
const VkClearColorValue* pColor,
uint32_t rangeCount,
const VkImageSubresourceRange* pRanges)
{
assert(commandBuffer);
assert(image);
assert(pColor);
//TODO this should only flag an image for clearing. This can only be called outside a renderpass
//actual clearing would only happen:
// -if image is rendered to (insert clear before first draw call)
// -if the image is bound for sampling (submit a CL with a clear)
// -if a command buffer is submitted without any rendering (insert clear)
// -etc.
//we shouldn't clear an image if noone uses it
//TODO ranges support
assert(imageLayout == VK_IMAGE_LAYOUT_GENERAL ||
imageLayout == VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR ||
imageLayout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
assert(commandBuffer->state == CMDBUF_STATE_RECORDING);
assert(_queueFamilyProperties[commandBuffer->cp->queueFamilyIndex].queueFlags & VK_QUEUE_GRAPHICS_BIT || _queueFamilyProperties[commandBuffer->cp->queueFamilyIndex].queueFlags & VK_QUEUE_COMPUTE_BIT);
_image* i = image;
assert(i->usageBits & VK_IMAGE_USAGE_TRANSFER_DST_BIT);
//TODO externally sync cmdbuf, cmdpool
i->needToClear = 1;
i->clearColor[0] = i->clearColor[1] = packVec4IntoABGR8(pColor->float32);
}
int findInstanceExtension(char* name)
{
for(int c = 0; c < numInstanceExtensions; ++c)
{
if(strcmp(instanceExtensions[c].extensionName, name) == 0)
{
return c;
}
}
return -1;
}
int findDeviceExtension(char* name)
{
for(int c = 0; c < numDeviceExtensions; ++c)
{
if(strcmp(deviceExtensions[c].extensionName, name) == 0)
{
return c;
}
}
return -1;
}
//Textures in T format:
//formed out of 4KB tiles, which have 1KB subtiles (see page 105 in VC4 arch guide)
//1KB subtiles have 512b microtiles.
//Width/height of the 512b microtiles is the following:
// 64bpp: 2x4
// 32bpp: 4x4
// 16bpp: 8x4
// 8bpp: 8x8
// 4bpp: 16x8
// 1bpp: 32x16
//Therefore width/height of 1KB subtiles is the following:
// 64bpp: 8x16
// 32bpp: 16x16
// 16bpp: 32x16
// 8bpp: 32x32
// 4bpp: 64x32
// 1bpp: 128x64
//Finally width/height of the 4KB tiles:
// 64bpp: 16x32
// 32bpp: 32x32
// 16bpp: 64x32
// 8bpp: 64x64
// 4bpp: 128x64
// 1bpp: 256x128
void getPaddedTextureDimensionsT(uint32_t width, uint32_t height, uint32_t bpp, uint32_t* paddedWidth, uint32_t* paddedHeight)
{
assert(paddedWidth);
assert(paddedHeight);
uint32_t tileW = 0;
uint32_t tileH = 0;
switch(bpp)
{
case 64:
{
tileW = 16;
tileH = 32;
break;
}
case 32:
{
tileW = 32;
tileH = 32;
break;
}
case 16:
{
tileW = 64;
tileH = 32;
break;
}
case 8:
{
tileW = 64;
tileH = 64;
break;
}
case 4:
{
tileW = 128;
tileH = 64;
break;
}
case 1:
{
tileW = 256;
tileH = 128;
break;
}
default:
{
assert(0); //unsupported
}
}
*paddedWidth = ((tileW - (width % tileW)) % tileW) + width;
*paddedHeight = ((tileH - (height % tileH)) % tileH) + height;
}
uint32_t getFormatBpp(VkFormat f)
{
switch(f)
{
case VK_FORMAT_R16G16B16A16_SFLOAT:
return 64;
case VK_FORMAT_R8G8B8_UNORM: //padded to 32
case VK_FORMAT_R8G8B8A8_UNORM:
return 32;
return 32;
case VK_FORMAT_R5G5B5A1_UNORM_PACK16:
case VK_FORMAT_R4G4B4A4_UNORM_PACK16:
case VK_FORMAT_R5G6B5_UNORM_PACK16:
case VK_FORMAT_R8G8_UNORM:
case VK_FORMAT_R16_SFLOAT:
case VK_FORMAT_R16_SINT:
return 16;
case VK_FORMAT_R8_UNORM:
case VK_FORMAT_R8_SINT:
return 8;
default:
assert(0);
return 0;
}
}
uint32_t packVec4IntoABGR8(const float rgba[4])
{
uint8_t r, g, b, a;
r = rgba[0] * 255.0;
g = rgba[1] * 255.0;
b = rgba[2] * 255.0;
a = rgba[3] * 255.0;
uint32_t res = 0 |
(a << 24) |
(b << 16) |
(g << 8) |
(r << 0);
return res;
}
/*static inline void util_pack_color(const float rgba[4], enum pipe_format format, union util_color *uc)
{
ubyte r = 0;
ubyte g = 0;
ubyte b = 0;
ubyte a = 0;
if (util_format_get_component_bits(format, UTIL_FORMAT_COLORSPACE_RGB, 0) <= 8) {
r = float_to_ubyte(rgba[0]);
g = float_to_ubyte(rgba[1]);
b = float_to_ubyte(rgba[2]);
a = float_to_ubyte(rgba[3]);
}
switch (format) {
case PIPE_FORMAT_ABGR8888_UNORM:
{
uc->ui[0] = (r << 24) | (g << 16) | (b << 8) | a;
}
return;
case PIPE_FORMAT_XBGR8888_UNORM:
{
uc->ui[0] = (r << 24) | (g << 16) | (b << 8) | 0xff;
}
return;
case PIPE_FORMAT_BGRA8888_UNORM:
{
uc->ui[0] = (a << 24) | (r << 16) | (g << 8) | b;
}
return;
case PIPE_FORMAT_BGRX8888_UNORM:
{
uc->ui[0] = (0xffu << 24) | (r << 16) | (g << 8) | b;
}
return;
case PIPE_FORMAT_ARGB8888_UNORM:
{
uc->ui[0] = (b << 24) | (g << 16) | (r << 8) | a;
}
return;
case PIPE_FORMAT_XRGB8888_UNORM:
{
uc->ui[0] = (b << 24) | (g << 16) | (r << 8) | 0xff;
}
return;
case PIPE_FORMAT_B5G6R5_UNORM:
{
uc->us = ((r & 0xf8) << 8) | ((g & 0xfc) << 3) | (b >> 3);
}
return;
case PIPE_FORMAT_B5G5R5X1_UNORM:
{
uc->us = ((0x80) << 8) | ((r & 0xf8) << 7) | ((g & 0xf8) << 2) | (b >> 3);
}
return;
case PIPE_FORMAT_B5G5R5A1_UNORM:
{
uc->us = ((a & 0x80) << 8) | ((r & 0xf8) << 7) | ((g & 0xf8) << 2) | (b >> 3);
}
return;
case PIPE_FORMAT_B4G4R4A4_UNORM:
{
uc->us = ((a & 0xf0) << 8) | ((r & 0xf0) << 4) | ((g & 0xf0) << 0) | (b >> 4);
}
return;
case PIPE_FORMAT_A8_UNORM:
{
uc->ub = a;
}
return;
case PIPE_FORMAT_L8_UNORM:
case PIPE_FORMAT_I8_UNORM:
{
uc->ub = r;
}
return;
case PIPE_FORMAT_R32G32B32A32_FLOAT:
{
uc->f[0] = rgba[0];
uc->f[1] = rgba[1];
uc->f[2] = rgba[2];
uc->f[3] = rgba[3];
}
return;
case PIPE_FORMAT_R32G32B32_FLOAT:
{
uc->f[0] = rgba[0];
uc->f[1] = rgba[1];
uc->f[2] = rgba[2];
}
return;
default:
util_format_write_4f(format, rgba, 0, uc, 0, 0, 0, 1, 1);
}
}*/