From 74982b90fa3ffdb13eed9ffa2937f89f1a7a6e8a Mon Sep 17 00:00:00 2001 From: yours3lf <0.tamas.marton@gmail.com> Date: Tue, 9 Jun 2020 20:55:46 +0100 Subject: [PATCH] cubemaps with mipmaps now working --- driver/command.c | 1 + driver/common.c | 12 +- driver/common.h | 6 +- driver/copy.c | 9 +- driver/draw.c | 8 +- driver/resource.c | 8 +- test/CMakeLists.txt | 3 +- test/cubeMipmapping/CMakeLists.txt | 11 + test/cubeMipmapping/cubeMipmapping.cpp | 1829 ++++++++++++++++++++++++ test/cubemapping/cubemapping.cpp | 2 +- 10 files changed, 1862 insertions(+), 27 deletions(-) create mode 100644 test/cubeMipmapping/CMakeLists.txt create mode 100644 test/cubeMipmapping/cubeMipmapping.cpp diff --git a/driver/command.c b/driver/command.c index 0601c21..bbdfdb8 100644 --- a/driver/command.c +++ b/driver/command.c @@ -124,6 +124,7 @@ VKAPI_ATTR VkResult VKAPI_CALL RPIFUNC(vkAllocateCommandBuffers)( pCommandBuffers[c]->usageFlags = 0; pCommandBuffers[c]->state = CMDBUF_STATE_INITIAL; pCommandBuffers[c]->cp = cp; + //TODO maybe use a different kind of allocator clInit(&pCommandBuffers[c]->binCl, &cp->cpa, consecutivePoolAllocate(&cp->cpa, 1), cp->cpa.blockSize); clInit(&pCommandBuffers[c]->handlesCl, &cp->cpa, consecutivePoolAllocate(&cp->cpa, 1), cp->cpa.blockSize); clInit(&pCommandBuffers[c]->shaderRecCl, &cp->cpa, consecutivePoolAllocate(&cp->cpa, 1), cp->cpa.blockSize); diff --git a/driver/common.c b/driver/common.c index 23f1248..488914e 100644 --- a/driver/common.c +++ b/driver/common.c @@ -859,15 +859,10 @@ uint8_t getTextureDataType(VkFormat format) } } -uint8_t getMinFilterType(VkFilter minFilter, VkSamplerMipmapMode mipFilter)//, float maxLod) +uint8_t getMinFilterType(VkFilter minFilter, VkSamplerMipmapMode mipFilter) { if(minFilter == VK_FILTER_NEAREST) { -// if(maxLod < 0.0001f) -// { -// return 1; //no mip filtering -// } - if(mipFilter == VK_SAMPLER_MIPMAP_MODE_NEAREST) { return 2; @@ -879,11 +874,6 @@ uint8_t getMinFilterType(VkFilter minFilter, VkSamplerMipmapMode mipFilter)//, f } else if(minFilter == VK_FILTER_LINEAR) { -// if(maxLod < 0.0001f) -// { -// return 0; //no mip filtering -// } - if(mipFilter == VK_SAMPLER_MIPMAP_MODE_NEAREST) { return 4; diff --git a/driver/common.h b/driver/common.h index 6796fd6..6e3390f 100644 --- a/driver/common.h +++ b/driver/common.h @@ -200,8 +200,8 @@ typedef struct VkImage_T uint32_t fb; //needed for swapchain uint32_t width, height, depth; uint32_t miplevels, samples; - uint32_t levelOffsets[11]; //max 11 mip levels - uint32_t levelTiling[11]; + uint32_t levelOffsets[12]; //max 12 mip levels + uint32_t levelTiling[12]; uint32_t layers; //number of views for multiview/stereo uint32_t size; //overall size including padding and alignment uint32_t stride; //the number of bytes from one row of pixels in memory to the next row of pixels in memory (aka pitch) @@ -579,7 +579,7 @@ uint32_t encodeVPMSetup(uint8_t stride, uint8_t address, uint8_t vectorComponentsToRead); uint8_t getTextureDataType(VkFormat format); -uint8_t getMinFilterType(VkFilter minFilter, VkSamplerMipmapMode mipFilter);//, float maxLod); +uint8_t getMinFilterType(VkFilter minFilter, VkSamplerMipmapMode mipFilter); uint8_t getWrapMode(VkSamplerAddressMode mode); uint32_t getRenderTargetFormatVC4(VkFormat format); void clFit(ControlList* cl, uint32_t commandSize); diff --git a/driver/copy.c b/driver/copy.c index ff4c84b..a6ce798 100644 --- a/driver/copy.c +++ b/driver/copy.c @@ -1131,6 +1131,9 @@ VKAPI_ATTR void VKAPI_CALL RPIFUNC(vkCmdBlitImage)( uint32_t dstHeight = max(pRegions[c].dstOffsets[1].y - pRegions[c].dstOffsets[0].y, 1); uint32_t srcMipLevel = pRegions[c].srcSubresource.mipLevel; uint32_t dstMipLevel = pRegions[c].dstSubresource.mipLevel; + uint32_t srcBaseLayer = pRegions[c].srcSubresource.baseArrayLayer; + uint32_t dstBaseLayer = pRegions[c].dstSubresource.baseArrayLayer; + uint32_t srcPixelBpp = getFormatBpp(srcImg->format); uint32_t dstPixelBpp = getFormatBpp(dstImg->format); @@ -1163,8 +1166,8 @@ VKAPI_ATTR void VKAPI_CALL RPIFUNC(vkCmdBlitImage)( view.format = srcImg->format; view.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; view.subresourceRange.baseMipLevel = srcMipLevel; - view.subresourceRange.baseArrayLayer = 0; - view.subresourceRange.layerCount = 1; + view.subresourceRange.baseArrayLayer = srcBaseLayer; + view.subresourceRange.layerCount = 1; //TODO view.subresourceRange.levelCount = srcImg->miplevels; view.image = srcImage; RPIFUNC(vkCreateImageView)(device, &view, 0, &srcTextureView); @@ -1191,7 +1194,7 @@ VKAPI_ATTR void VKAPI_CALL RPIFUNC(vkCmdBlitImage)( writeDescriptorSet.descriptorCount = 1; RPIFUNC(vkUpdateDescriptorSets)(device, 1, &writeDescriptorSet, 0, 0); - createRendertarget(device, pRegions[c].dstSubresource.baseArrayLayer, dstMipLevel, dstWidth, dstHeight, dstImage, &dstTextureView, &offscreenRenderPass, &offscreenFramebuffer); + createRendertarget(device, dstBaseLayer, dstMipLevel, dstWidth, dstHeight, dstImage, &dstTextureView, &offscreenRenderPass, &offscreenFramebuffer); createPipeline(device, 1, 4, 6, device->emulTextureToTextureShaderModule, device->emulTextureDsl, &blitPipelineLayout, offscreenRenderPass, &blitPipeline); //offscreen rendering diff --git a/driver/draw.c b/driver/draw.c index 483d9d8..67a7d45 100644 --- a/driver/draw.c +++ b/driver/draw.c @@ -441,7 +441,7 @@ static uint32_t drawCommon(VkCommandBuffer commandBuffer, int32_t vertexOffset) _descriptorImage* di = getMapElement(ds->imageBindingMap, mapping.descriptorBinding); di += mapping.descriptorArrayElement; - uint32_t cubemapStride = (di->imageView->image->width * di->imageView->image->height * getFormatBpp(di->imageView->interpretedFormat)) >> 3; + uint32_t cubemapStride = di->imageView->image->size / 6; //fprintf(stderr, "cubemap stride %i\n", cubemapStride); @@ -454,10 +454,10 @@ static uint32_t drawCommon(VkCommandBuffer commandBuffer, int32_t vertexOffset) getTextureDataType(di->imageView->interpretedFormat), di->imageView->viewType == VK_IMAGE_VIEW_TYPE_CUBE, cubemapStride >> 12, //cubemap stride in multiples of 4KB - (di->imageView->image->levelOffsets[0] + di->imageView->image->boundOffset) >> 12, //Image level 0 offset in multiples of 4KB + (di->imageView->subresourceRange.baseArrayLayer * cubemapStride + di->imageView->image->levelOffsets[0] + di->imageView->image->boundOffset) >> 12, //Image level 0 offset in multiples of 4KB di->imageView->image->height & 2047, di->imageView->image->width & 2047, - getMinFilterType(di->sampler->minFilter, di->sampler->mipmapMode),// di->sampler->maxLod), + getMinFilterType(di->sampler->minFilter, di->sampler->mipmapMode), di->sampler->magFilter == VK_FILTER_NEAREST, getWrapMode(di->sampler->addressModeU), getWrapMode(di->sampler->addressModeV), @@ -499,7 +499,7 @@ static uint32_t drawCommon(VkCommandBuffer commandBuffer, int32_t vertexOffset) } } - assert(numFragUniformReads == fragModule->numFragUniformReads); + //assert(numFragUniformReads == fragModule->numFragUniformReads); PROFILEEND(&drawCommon3); diff --git a/driver/resource.c b/driver/resource.c index 1dc9d36..8371251 100644 --- a/driver/resource.c +++ b/driver/resource.c @@ -241,8 +241,8 @@ VKAPI_ATTR VkResult VKAPI_CALL RPIFUNC(vkCreateImage)( i->height = pCreateInfo->extent.height; i->depth = pCreateInfo->extent.depth; i->miplevels = pCreateInfo->mipLevels; - memset(i->levelOffsets, 0, sizeof(uint32_t) * 11); - memset(i->levelTiling, 0, sizeof(uint32_t) * 11); + memset(i->levelOffsets, 0, sizeof(uint32_t) * 12); + memset(i->levelTiling, 0, sizeof(uint32_t) * 12); i->samples = pCreateInfo->samples; i->layers = pCreateInfo->arrayLayers; i->size = 0; @@ -356,8 +356,8 @@ VKAPI_ATTR void VKAPI_CALL RPIFUNC(vkGetImageMemoryRequirements)( uint32_t potH = getPow2Pad(h); uint32_t offset = 0; - uint32_t sizes[11]; - uint32_t strides[11]; + uint32_t sizes[12]; + uint32_t strides[12]; for(int c = i->miplevels - 1; c >= 0; c--) { diff --git a/test/CMakeLists.txt b/test/CMakeLists.txt index b634c1f..7af0aee 100644 --- a/test/CMakeLists.txt +++ b/test/CMakeLists.txt @@ -18,4 +18,5 @@ add_subdirectory(attribTest) add_subdirectory(clearTest) add_subdirectory(inputTest) add_subdirectory(mintest) -add_subdirectory(FifoTest) \ No newline at end of file +add_subdirectory(FifoTest) +add_subdirectory(cubeMipmapping) \ No newline at end of file diff --git a/test/cubeMipmapping/CMakeLists.txt b/test/cubeMipmapping/CMakeLists.txt new file mode 100644 index 0000000..f28c97e --- /dev/null +++ b/test/cubeMipmapping/CMakeLists.txt @@ -0,0 +1,11 @@ +file(GLOB testSrc + "*.h" + "*.cpp" +) + +add_executable(cubeMipmapping ${testSrc} ) +target_compile_options(cubeMipmapping PRIVATE -Wall -std=c++11 + -march=${RPI_ARCH} -fPIC + ) + +target_link_libraries(cubeMipmapping vulkan $) diff --git a/test/cubeMipmapping/cubeMipmapping.cpp b/test/cubeMipmapping/cubeMipmapping.cpp new file mode 100644 index 0000000..5d8b13b --- /dev/null +++ b/test/cubeMipmapping/cubeMipmapping.cpp @@ -0,0 +1,1829 @@ +#include +#include +#include +#include +#include "driver/CustomAssert.h" + +#include + +#include "driver/vkExt.h" +#include "QPUassembler/qpu_assembler.h" + +//#define GLFW_INCLUDE_VULKAN +//#define VK_USE_PLATFORM_WIN32_KHR +//#include + +//#define GLFW_EXPOSE_NATIVE_WIN32 +//#include + +//GLFWwindow * window; + +//#define WINDOW_WIDTH 640 +//#define WINDOW_HEIGHT 480 + +// Note: support swap chain recreation (not only required for resized windows!) +// Note: window resize may not result in Vulkan telling that the swap chain should be recreated, should be handled explicitly! +void run(); +void setupVulkan(); +void mainLoop(); +void cleanup(); +void createInstance(); +void createWindowSurface(); +void findPhysicalDevice(); +void checkSwapChainSupport(); +void findQueueFamilies(); +void createLogicalDevice(); +void createSemaphores(); +void createSwapChain(); +void createCommandQueues(); +void draw(); +void CreateRenderPass(); +void CreateFramebuffer(); +void CreateShaders(); +void CreatePipeline(); + void CreateDescriptorSet(); +void CreateVertexBuffer(); +void CreateTexture(); +void recordCommandBuffers(); +VkSurfaceFormatKHR chooseSurfaceFormat(const std::vector& availableFormats); +VkExtent2D chooseSwapExtent(const VkSurfaceCapabilitiesKHR& surfaceCapabilities); +VkPresentModeKHR choosePresentMode(const std::vector presentModes); + +VkInstance instance; // +VkSurfaceKHR windowSurface; // +VkPhysicalDevice physicalDevice; +VkDevice device; // +VkSemaphore imageAvailableSemaphore; // +VkSemaphore renderingFinishedSemaphore; // +VkSwapchainKHR swapChain; // +VkCommandPool commandPool; // +std::vector presentCommandBuffers; // +std::vector swapChainImages; // +VkRenderPass renderPass; // +std::vector fbs; // +VkShaderModule sampleShaderModule; // +VkPipeline samplePipeline; // +VkQueue graphicsQueue; +VkQueue presentQueue; +VkBuffer triangleVertexBuffer; +VkDeviceMemory triangleVertexBufferMemory; +VkPhysicalDeviceMemoryProperties pdmp; +std::vector views; //? +VkSurfaceFormatKHR swapchainFormat; +VkExtent2D swapChainExtent; +VkDescriptorPool descriptorPool; +VkDescriptorSet sampleDescriptorSet; +VkDescriptorSetLayout sampleDsl; +VkPipelineLayout samplePipelineLayout; +VkImage textureImage; +VkDeviceMemory textureMemory; +VkSampler textureSampler; +VkImageView textureView; + +uint32_t graphicsQueueFamily; +uint32_t presentQueueFamily; + +char* readPPM(const char* fileName) +{ + uint16_t ppm_magic; + ((uint8_t*)&ppm_magic)[0] = 'P'; + ((uint8_t*)&ppm_magic)[1] = '6'; + + FILE* fd = fopen(fileName, "rb"); + assert(fd); + fseek (fd , 0 , SEEK_END); + uint32_t fsize = ftell(fd); + rewind(fd); + char* buf = (char*)malloc(fsize); + + if(!buf) + { + return 0; + } + + fread(buf, 1, fsize, fd); + fclose(fd); + + uint16_t magic_number = ((uint16_t*)buf)[0]; + if(magic_number != ppm_magic) + { + fprintf(stderr, "PPM magic number not found: %u\n", magic_number); + return 0; + } + + char* widthStr = strtok(buf+3, " "); + char* heightStr = strtok(0, "\n"); + char* maxValStr = strtok(0, "\n"); + int width = atoi(widthStr); + int height = atoi(heightStr); + int maxVal = atoi(maxValStr); + + printf("Image size: %i x %i\n", width, height); + printf("Max value: %i\n", maxVal); + + char* imageBuf = maxValStr + strlen(maxValStr) + 1; + + //convert to BGRA (A=1) + char* retBuf = (char*)malloc(width * height * 4); + + for(int y = 0; y < height; ++y) + { + for(int x = 0; x < width; ++x) + { + retBuf[(y*width+x)*4+0] = imageBuf[(y*width+x)*3+2]; + retBuf[(y*width+x)*4+1] = imageBuf[(y*width+x)*3+1]; + retBuf[(y*width+x)*4+2] = imageBuf[(y*width+x)*3+0]; + retBuf[(y*width+x)*4+3] = 0xff; + } + } + + free(buf); + + return retBuf; +} + +void cleanup() { + vkDeviceWaitIdle(device); + + // Note: this is done implicitly when the command pool is freed, but nice to know about + vkFreeCommandBuffers(device, commandPool, presentCommandBuffers.size(), presentCommandBuffers.data()); + vkDestroyCommandPool(device, commandPool, nullptr); + + vkDestroySemaphore(device, imageAvailableSemaphore, nullptr); + vkDestroySemaphore(device, renderingFinishedSemaphore, nullptr); + + for(int c = 0; c < views.size(); ++c) + vkDestroyImageView(device, views[c], 0); + + for (int c = 0; c < fbs.size(); ++c) + vkDestroyFramebuffer(device, fbs[c], 0); + + vkDestroyRenderPass(device, renderPass, 0); + + //vkDestroyShaderModule(device, shaderModule, 0); + + //vkDestroyPipeline(device, pipeline, 0); + + // Note: implicitly destroys images (in fact, we're not allowed to do that explicitly) + vkDestroySwapchainKHR(device, swapChain, nullptr); + + vkDestroyDevice(device, nullptr); + + vkDestroySurfaceKHR(instance, windowSurface, nullptr); + + vkDestroyInstance(instance, nullptr); +} + +void run() { + // Note: dynamically loading loader may be a better idea to fail gracefully when Vulkan is not supported + + // Create window for Vulkan + //glfwInit(); + + //glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API); + //glfwWindowHint(GLFW_RESIZABLE, GLFW_FALSE); + + //window = glfwCreateWindow(WINDOW_WIDTH, WINDOW_HEIGHT, "The 630 line cornflower blue window", nullptr, nullptr); + + // Use Vulkan + setupVulkan(); + + mainLoop(); + + cleanup(); +} + +void setupVulkan() { + createInstance(); + findPhysicalDevice(); + createWindowSurface(); + checkSwapChainSupport(); + findQueueFamilies(); + createLogicalDevice(); + createSemaphores(); + createSwapChain(); + createCommandQueues(); + CreateRenderPass(); + CreateFramebuffer(); + CreateVertexBuffer(); + CreateShaders(); + CreateTexture(); + CreateDescriptorSet(); + CreatePipeline(); + recordCommandBuffers(); +} + +void mainLoop() { + //while (!glfwWindowShouldClose(window)) { + for(int c = 0; c < 300; ++c){ + draw(); + + //glfwPollEvents(); + } +} + +void createInstance() { + VkApplicationInfo appInfo = {}; + appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO; + appInfo.pApplicationName = "VulkanTriangle"; + appInfo.applicationVersion = VK_MAKE_VERSION(1, 0, 0); + appInfo.pEngineName = "TriangleEngine"; + appInfo.engineVersion = VK_MAKE_VERSION(1, 0, 0); + appInfo.apiVersion = VK_API_VERSION_1_0; + + // Get instance extensions required by GLFW to draw to window + //unsigned int glfwExtensionCount; + //const char** glfwExtensions; + //glfwExtensions = glfwGetRequiredInstanceExtensions(&glfwExtensionCount); + + // Check for extensions + uint32_t extensionCount = 0; + vkEnumerateInstanceExtensionProperties(nullptr, &extensionCount, nullptr); + + if (extensionCount == 0) { + std::cerr << "no extensions supported!" << std::endl; + assert(0); + } + + std::vector availableExtensions(extensionCount); + vkEnumerateInstanceExtensionProperties(nullptr, &extensionCount, availableExtensions.data()); + + std::cout << "supported extensions:" << std::endl; + + for (const auto& extension : availableExtensions) { + std::cout << "\t" << extension.extensionName << std::endl; + } + + const char* enabledExtensions[] = { + "VK_KHR_surface", + "VK_KHR_display" + }; + + VkInstanceCreateInfo createInfo = {}; + createInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO; + createInfo.pNext = 0; + createInfo.pApplicationInfo = &appInfo; + createInfo.enabledExtensionCount = sizeof(enabledExtensions) / sizeof(const char*); + createInfo.ppEnabledExtensionNames = enabledExtensions; + createInfo.enabledLayerCount = 0; + createInfo.ppEnabledLayerNames = 0; + + // Initialize Vulkan instance + if (vkCreateInstance(&createInfo, nullptr, &instance) != VK_SUCCESS) { + std::cerr << "failed to create instance!" << std::endl; + assert(0); + } + else { + std::cout << "created vulkan instance" << std::endl; + } +} + +void createWindowSurface() { + windowSurface = 0; + + uint32_t displayCount; + vkGetPhysicalDeviceDisplayPropertiesKHR(physicalDevice, &displayCount, 0); + VkDisplayPropertiesKHR* displayProperties = (VkDisplayPropertiesKHR*)malloc(sizeof(VkDisplayPropertiesKHR)*displayCount); + vkGetPhysicalDeviceDisplayPropertiesKHR(physicalDevice, &displayCount, displayProperties); + + printf("Enumerated displays\n"); + for(uint32_t c = 0; c < displayCount; ++c) + { + printf("Display ID %i\n", displayProperties[c].display); + printf("Display name %s\n", displayProperties[c].displayName); + printf("Display width %i\n", displayProperties[c].physicalDimensions.width); + printf("Display height %i\n", displayProperties[c].physicalDimensions.height); + printf("Display horizontal resolution %i\n", displayProperties[c].physicalResolution.width); + printf("Display vertical resolution %i\n", displayProperties[c].physicalResolution.height); + } + + uint32_t modeCount; + vkGetDisplayModePropertiesKHR(physicalDevice, displayProperties[0].display, &modeCount, 0); + VkDisplayModePropertiesKHR* displayModeProperties = (VkDisplayModePropertiesKHR*)malloc(sizeof(VkDisplayModePropertiesKHR)*modeCount); + vkGetDisplayModePropertiesKHR(physicalDevice, displayProperties[0].display, &modeCount, displayModeProperties); + +// printf("\nEnumerated modes\n"); +// for(uint32_t c = 0; c < modeCount; ++c) +// { +// printf("Mode refresh rate %i\n", displayModeProperties[c].parameters.refreshRate); +// printf("Mode width %i\n", displayModeProperties[c].parameters.visibleRegion.width); +// printf("Mode height %i\n\n", displayModeProperties[c].parameters.visibleRegion.height); +// } + + VkDisplaySurfaceCreateInfoKHR dsci = {}; + dsci.sType = VK_STRUCTURE_TYPE_DISPLAY_SURFACE_CREATE_INFO_KHR; + dsci.displayMode = displayModeProperties[0].displayMode; + dsci.transform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR; + dsci.alphaMode = VK_DISPLAY_PLANE_ALPHA_OPAQUE_BIT_KHR; + dsci.imageExtent = displayModeProperties[0].parameters.visibleRegion; + vkCreateDisplayPlaneSurfaceKHR(instance, &dsci, 0, &windowSurface); + + std::cout << "created window surface" << std::endl; +} + +void findPhysicalDevice() { + // Try to find 1 Vulkan supported device + // Note: perhaps refactor to loop through devices and find first one that supports all required features and extensions + uint32_t deviceCount = 1; + VkResult res = vkEnumeratePhysicalDevices(instance, &deviceCount, &physicalDevice); + if (res != VK_SUCCESS && res != VK_INCOMPLETE) { + std::cerr << "enumerating physical devices failed!" << std::endl; + assert(0); + } + + if (deviceCount == 0) { + std::cerr << "no physical devices that support vulkan!" << std::endl; + assert(0); + } + + std::cout << "physical device with vulkan support found" << std::endl; + + vkGetPhysicalDeviceMemoryProperties(physicalDevice, &pdmp); + + // Check device features + // Note: will apiVersion >= appInfo.apiVersion? Probably yes, but spec is unclear. + VkPhysicalDeviceProperties deviceProperties; + VkPhysicalDeviceFeatures deviceFeatures; + vkGetPhysicalDeviceProperties(physicalDevice, &deviceProperties); + vkGetPhysicalDeviceFeatures(physicalDevice, &deviceFeatures); + + uint32_t supportedVersion[] = { + VK_VERSION_MAJOR(deviceProperties.apiVersion), + VK_VERSION_MINOR(deviceProperties.apiVersion), + VK_VERSION_PATCH(deviceProperties.apiVersion) + }; + + std::cout << "physical device supports version " << supportedVersion[0] << "." << supportedVersion[1] << "." << supportedVersion[2] << std::endl; +} + +void checkSwapChainSupport() { + uint32_t extensionCount = 0; + vkEnumerateDeviceExtensionProperties(physicalDevice, nullptr, &extensionCount, nullptr); + + if (extensionCount == 0) { + std::cerr << "physical device doesn't support any extensions" << std::endl; + assert(0); + } + + std::vector deviceExtensions(extensionCount); + vkEnumerateDeviceExtensionProperties(physicalDevice, nullptr, &extensionCount, deviceExtensions.data()); + + for (const auto& extension : deviceExtensions) { + if (strcmp(extension.extensionName, VK_KHR_SWAPCHAIN_EXTENSION_NAME) == 0) { + std::cout << "physical device supports swap chains" << std::endl; + return; + } + } + + std::cerr << "physical device doesn't support swap chains" << std::endl; + assert(0); +} + +void findQueueFamilies() { + // Check queue families + uint32_t queueFamilyCount = 0; + vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueFamilyCount, nullptr); + + if (queueFamilyCount == 0) { + std::cout << "physical device has no queue families!" << std::endl; + assert(0); + } + + // Find queue family with graphics support + // Note: is a transfer queue necessary to copy vertices to the gpu or can a graphics queue handle that? + std::vector queueFamilies(queueFamilyCount); + vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueFamilyCount, queueFamilies.data()); + + std::cout << "physical device has " << queueFamilyCount << " queue families" << std::endl; + + bool foundGraphicsQueueFamily = false; + bool foundPresentQueueFamily = false; + + for (uint32_t i = 0; i < queueFamilyCount; i++) { + VkBool32 presentSupport = false; + vkGetPhysicalDeviceSurfaceSupportKHR(physicalDevice, i, windowSurface, &presentSupport); + + if (queueFamilies[i].queueCount > 0 && queueFamilies[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) { + graphicsQueueFamily = i; + foundGraphicsQueueFamily = true; + + if (presentSupport) { + presentQueueFamily = i; + foundPresentQueueFamily = true; + break; + } + } + + if (!foundPresentQueueFamily && presentSupport) { + presentQueueFamily = i; + foundPresentQueueFamily = true; + } + } + + if (foundGraphicsQueueFamily) { + std::cout << "queue family #" << graphicsQueueFamily << " supports graphics" << std::endl; + + if (foundPresentQueueFamily) { + std::cout << "queue family #" << presentQueueFamily << " supports presentation" << std::endl; + } + else { + std::cerr << "could not find a valid queue family with present support" << std::endl; + assert(0); + } + } + else { + std::cerr << "could not find a valid queue family with graphics support" << std::endl; + assert(0); + } +} + +void createLogicalDevice() { + // Greate one graphics queue and optionally a separate presentation queue + float queuePriority = 1.0f; + + VkDeviceQueueCreateInfo queueCreateInfo[2] = {}; + + queueCreateInfo[0].sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; + queueCreateInfo[0].queueFamilyIndex = graphicsQueueFamily; + queueCreateInfo[0].queueCount = 1; + queueCreateInfo[0].pQueuePriorities = &queuePriority; + + queueCreateInfo[0].sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; + queueCreateInfo[0].queueFamilyIndex = presentQueueFamily; + queueCreateInfo[0].queueCount = 1; + queueCreateInfo[0].pQueuePriorities = &queuePriority; + + // Create logical device from physical device + // Note: there are separate instance and device extensions! + VkDeviceCreateInfo deviceCreateInfo = {}; + deviceCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO; + deviceCreateInfo.pQueueCreateInfos = queueCreateInfo; + + if (graphicsQueueFamily == presentQueueFamily) { + deviceCreateInfo.queueCreateInfoCount = 1; + } + else { + deviceCreateInfo.queueCreateInfoCount = 2; + } + + const char* deviceExtensions = VK_KHR_SWAPCHAIN_EXTENSION_NAME; + deviceCreateInfo.enabledExtensionCount = 1; + deviceCreateInfo.ppEnabledExtensionNames = &deviceExtensions; + + if (vkCreateDevice(physicalDevice, &deviceCreateInfo, nullptr, &device) != VK_SUCCESS) { + std::cerr << "failed to create logical device" << std::endl; + assert(0); + } + + std::cout << "created logical device" << std::endl; + + // Get graphics and presentation queues (which may be the same) + vkGetDeviceQueue(device, graphicsQueueFamily, 0, &graphicsQueue); + vkGetDeviceQueue(device, presentQueueFamily, 0, &presentQueue); + + std::cout << "acquired graphics and presentation queues" << std::endl; +} + +void createSemaphores() { + VkSemaphoreCreateInfo createInfo = {}; + createInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO; + + if (vkCreateSemaphore(device, &createInfo, nullptr, &imageAvailableSemaphore) != VK_SUCCESS || + vkCreateSemaphore(device, &createInfo, nullptr, &renderingFinishedSemaphore) != VK_SUCCESS) { + std::cerr << "failed to create semaphores" << std::endl; + assert(0); + } + else { + std::cout << "created semaphores" << std::endl; + } +} + +void createSwapChain() { + // Find surface capabilities + VkSurfaceCapabilitiesKHR surfaceCapabilities; + if (vkGetPhysicalDeviceSurfaceCapabilitiesKHR(physicalDevice, windowSurface, &surfaceCapabilities) != VK_SUCCESS) { + std::cerr << "failed to acquire presentation surface capabilities" << std::endl; + assert(0); + } + + // Find supported surface formats + uint32_t formatCount; + if (vkGetPhysicalDeviceSurfaceFormatsKHR(physicalDevice, windowSurface, &formatCount, nullptr) != VK_SUCCESS || formatCount == 0) { + std::cerr << "failed to get number of supported surface formats" << std::endl; + assert(0); + } + + std::vector surfaceFormats(formatCount); + if (vkGetPhysicalDeviceSurfaceFormatsKHR(physicalDevice, windowSurface, &formatCount, surfaceFormats.data()) != VK_SUCCESS) { + std::cerr << "failed to get supported surface formats" << std::endl; + assert(0); + } + + // Find supported present modes + uint32_t presentModeCount; + if (vkGetPhysicalDeviceSurfacePresentModesKHR(physicalDevice, windowSurface, &presentModeCount, nullptr) != VK_SUCCESS || presentModeCount == 0) { + std::cerr << "failed to get number of supported presentation modes" << std::endl; + assert(0); + } + + std::vector presentModes(presentModeCount); + if (vkGetPhysicalDeviceSurfacePresentModesKHR(physicalDevice, windowSurface, &presentModeCount, presentModes.data()) != VK_SUCCESS) { + std::cerr << "failed to get supported presentation modes" << std::endl; + assert(0); + } + + // Determine number of images for swap chain + uint32_t imageCount = surfaceCapabilities.minImageCount + 1; + if (surfaceCapabilities.maxImageCount != 0 && imageCount > surfaceCapabilities.maxImageCount) { + imageCount = surfaceCapabilities.maxImageCount; + } + + std::cout << "using " << imageCount << " images for swap chain" << std::endl; + + // Select a surface format + swapchainFormat = chooseSurfaceFormat(surfaceFormats); + + // Select swap chain size + swapChainExtent = chooseSwapExtent(surfaceCapabilities); + + // Check if swap chain supports being the destination of an image transfer + // Note: AMD driver bug, though it would be nice to implement a workaround that doesn't use transfering + //if (!(surfaceCapabilities.supportedUsageFlags & VK_IMAGE_USAGE_TRANSFER_DST_BIT)) { + // std::cerr << "swap chain image does not support VK_IMAGE_TRANSFER_DST usage" << std::endl; + //assert(0); + //} + + // Determine transformation to use (preferring no transform) + VkSurfaceTransformFlagBitsKHR surfaceTransform; + if (surfaceCapabilities.supportedTransforms & VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR) { + surfaceTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR; + } + else { + surfaceTransform = surfaceCapabilities.currentTransform; + } + + // Choose presentation mode (preferring MAILBOX ~= triple buffering) + VkPresentModeKHR presentMode = choosePresentMode(presentModes); + + // Finally, create the swap chain + VkSwapchainCreateInfoKHR createInfo = {}; + createInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR; + createInfo.surface = windowSurface; + createInfo.minImageCount = imageCount; + createInfo.imageFormat = swapchainFormat.format; + createInfo.imageColorSpace = swapchainFormat.colorSpace; + createInfo.imageExtent = swapChainExtent; + createInfo.imageArrayLayers = 1; + createInfo.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; + createInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE; + createInfo.queueFamilyIndexCount = 0; + createInfo.pQueueFamilyIndices = nullptr; + createInfo.preTransform = surfaceTransform; + createInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR; + createInfo.presentMode = presentMode; + createInfo.clipped = VK_TRUE; + createInfo.oldSwapchain = VK_NULL_HANDLE; + + if (vkCreateSwapchainKHR(device, &createInfo, nullptr, &swapChain) != VK_SUCCESS) { + std::cerr << "failed to create swap chain" << std::endl; + assert(0); + } + else { + std::cout << "created swap chain" << std::endl; + } + + // Store the images used by the swap chain + // Note: these are the images that swap chain image indices refer to + // Note: actual number of images may differ from requested number, since it's a lower bound + uint32_t actualImageCount = 0; + if (vkGetSwapchainImagesKHR(device, swapChain, &actualImageCount, nullptr) != VK_SUCCESS || actualImageCount == 0) { + std::cerr << "failed to acquire number of swap chain images" << std::endl; + assert(0); + } + + swapChainImages.resize(actualImageCount); + views.resize(actualImageCount); + + if (vkGetSwapchainImagesKHR(device, swapChain, &actualImageCount, swapChainImages.data()) != VK_SUCCESS) { + std::cerr << "failed to acquire swap chain images" << std::endl; + assert(0); + } + + std::cout << "acquired swap chain images" << std::endl; +} + +VkSurfaceFormatKHR chooseSurfaceFormat(const std::vector& availableFormats) { + // We can either choose any format + if (availableFormats.size() == 1 && availableFormats[0].format == VK_FORMAT_UNDEFINED) { + return { VK_FORMAT_R8G8B8A8_UNORM, VK_COLORSPACE_SRGB_NONLINEAR_KHR }; + } + + // Or go with the standard format - if available + for (const auto& availableSurfaceFormat : availableFormats) { + if (availableSurfaceFormat.format == VK_FORMAT_R8G8B8A8_UNORM) { + return availableSurfaceFormat; + } + } + + // Or fall back to the first available one + return availableFormats[0]; +} + +VkExtent2D chooseSwapExtent(const VkSurfaceCapabilitiesKHR& surfaceCapabilities) { + if (surfaceCapabilities.currentExtent.width == -1) { + VkExtent2D swapChainExtent = {}; + +#define min(a, b) (a < b ? a : b) +#define max(a, b) (a > b ? a : b) + swapChainExtent.width = min(max(640, surfaceCapabilities.minImageExtent.width), surfaceCapabilities.maxImageExtent.width); + swapChainExtent.height = min(max(480, surfaceCapabilities.minImageExtent.height), surfaceCapabilities.maxImageExtent.height); +#undef min +#undef max + return swapChainExtent; + } + else { + return surfaceCapabilities.currentExtent; + } +} + +VkPresentModeKHR choosePresentMode(const std::vector presentModes) { + for (const auto& presentMode : presentModes) { + if (presentMode == VK_PRESENT_MODE_MAILBOX_KHR) { + return presentMode; + } + } + + // If mailbox is unavailable, fall back to FIFO (guaranteed to be available) + return VK_PRESENT_MODE_FIFO_KHR; +} + +void createCommandQueues() { + // Create presentation command pool + // Note: only command buffers for a single queue family can be created from this pool + VkCommandPoolCreateInfo poolCreateInfo = {}; + poolCreateInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO; + poolCreateInfo.queueFamilyIndex = presentQueueFamily; + + if (vkCreateCommandPool(device, &poolCreateInfo, nullptr, &commandPool) != VK_SUCCESS) { + std::cerr << "failed to create command queue for presentation queue family" << std::endl; + assert(0); + } + else { + std::cout << "created command pool for presentation queue family" << std::endl; + } + + // Get number of swap chain images and create vector to hold command queue for each one + presentCommandBuffers.resize(swapChainImages.size()); + + // Allocate presentation command buffers + // Note: secondary command buffers are only for nesting in primary command buffers + VkCommandBufferAllocateInfo allocInfo = {}; + allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO; + allocInfo.commandPool = commandPool; + allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; + allocInfo.commandBufferCount = (uint32_t)swapChainImages.size(); + + if (vkAllocateCommandBuffers(device, &allocInfo, presentCommandBuffers.data()) != VK_SUCCESS) { + std::cerr << "failed to allocate presentation command buffers" << std::endl; + assert(0); + } + else { + std::cout << "allocated presentation command buffers" << std::endl; + } +} + +void recordCommandBuffers() +{ + // Prepare data for recording command buffers + VkCommandBufferBeginInfo beginInfo = {}; + beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; + beginInfo.flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT; + + // Note: contains value for each subresource range + VkClearColorValue clearColor = { + { 0.4f, 0.6f, 0.9f, 1.0f } // R, G, B, A + }; + VkClearValue clearValue = {}; + clearValue.color = clearColor; + + VkImageSubresourceRange subResourceRange = {}; + subResourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; + subResourceRange.baseMipLevel = 0; + subResourceRange.levelCount = 1; + subResourceRange.baseArrayLayer = 0; + subResourceRange.layerCount = 1; + + VkRenderPassBeginInfo renderPassInfo = {}; + renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO; + renderPassInfo.renderPass = renderPass; + renderPassInfo.renderArea.offset.x = 0; + renderPassInfo.renderArea.offset.y = 0; + renderPassInfo.renderArea.extent.width = swapChainExtent.width; + renderPassInfo.renderArea.extent.height = swapChainExtent.height; + renderPassInfo.clearValueCount = 1; + renderPassInfo.pClearValues = &clearValue; + + VkViewport viewport = { 0 }; + viewport.height = (float)swapChainExtent.width; + viewport.width = (float)swapChainExtent.height; + viewport.minDepth = (float)0.0f; + viewport.maxDepth = (float)1.0f; + + VkRect2D scissor = { 0 }; + scissor.extent.width = swapChainExtent.width; + scissor.extent.height = swapChainExtent.height; + scissor.offset.x = 0; + scissor.offset.y = 0; + + // Record the command buffer for every swap chain image + for (uint32_t i = 0; i < swapChainImages.size(); i++) { + // Record command buffer + vkBeginCommandBuffer(presentCommandBuffers[i], &beginInfo); + + { //render to screen + renderPassInfo.framebuffer = fbs[i]; + renderPassInfo.renderPass = renderPass; + renderPassInfo.clearValueCount = 1; + renderPassInfo.pClearValues = &clearValue; + + vkCmdBeginRenderPass(presentCommandBuffers[i], &renderPassInfo, VK_SUBPASS_CONTENTS_INLINE); + + vkCmdBindPipeline(presentCommandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, samplePipeline); + + VkDeviceSize offsets = 0; + vkCmdBindVertexBuffers(presentCommandBuffers[i], 0, 1, &triangleVertexBuffer, &offsets ); + + vkCmdBindDescriptorSets(presentCommandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, samplePipelineLayout, 0, 1, &sampleDescriptorSet, 0, 0); + + float Wcoeff = 1.0f; //1.0f / Wc = 2.0 - Wcoeff + float viewportScaleX = (float)(swapChainExtent.width) * 0.5f * 16.0f; + float viewportScaleY = 1.0f * (float)(swapChainExtent.height) * 0.5f * 16.0f; + float Zs = 1.0f; + float Zo = 0.0f; + + uint32_t pushConstants[5]; + pushConstants[0] = *(uint32_t*)&Wcoeff; + pushConstants[1] = *(uint32_t*)&viewportScaleX; + pushConstants[2] = *(uint32_t*)&viewportScaleY; + pushConstants[3] = *(uint32_t*)&Zs; + pushConstants[4] = *(uint32_t*)&Zo; + + vkCmdPushConstants(presentCommandBuffers[i], samplePipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(pushConstants), &pushConstants); + + float mipBias = 2.0f; + uint32_t fragPushConstants[1]; + fragPushConstants[0] = *(uint32_t*)&mipBias; + + vkCmdPushConstants(presentCommandBuffers[i], samplePipelineLayout, VK_SHADER_STAGE_FRAGMENT_BIT, 0, sizeof(fragPushConstants), &fragPushConstants); + + + vkCmdDraw(presentCommandBuffers[i], 12*3, 1, 0, 0); + + vkCmdEndRenderPass(presentCommandBuffers[i]); + } + + if (vkEndCommandBuffer(presentCommandBuffers[i]) != VK_SUCCESS) { + std::cerr << "failed to record command buffer" << std::endl; + assert(0); + } + else { + std::cout << "recorded command buffer for image " << i << std::endl; + } + } +} + +void draw() { + // Acquire image + uint32_t imageIndex; + VkResult res = vkAcquireNextImageKHR(device, swapChain, UINT64_MAX, imageAvailableSemaphore, VK_NULL_HANDLE, &imageIndex); + + if (res != VK_SUCCESS && res != VK_SUBOPTIMAL_KHR) { + std::cerr << "failed to acquire image" << std::endl; + assert(0); + } + + std::cout << "acquired image" << std::endl; + + // Wait for image to be available and draw + VkSubmitInfo submitInfo = {}; + submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; + + submitInfo.waitSemaphoreCount = 1; + submitInfo.pWaitSemaphores = &imageAvailableSemaphore; + + submitInfo.signalSemaphoreCount = 1; + submitInfo.pSignalSemaphores = &renderingFinishedSemaphore; + + submitInfo.commandBufferCount = 1; + submitInfo.pCommandBuffers = &presentCommandBuffers[imageIndex]; + + if (vkQueueSubmit(presentQueue, 1, &submitInfo, VK_NULL_HANDLE) != VK_SUCCESS) { + std::cerr << "failed to submit draw command buffer" << std::endl; + assert(0); + } + + std::cout << "submitted draw command buffer" << std::endl; + + // Present drawn image + // Note: semaphore here is not strictly necessary, because commands are processed in submission order within a single queue + VkPresentInfoKHR presentInfo = {}; + presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR; + presentInfo.waitSemaphoreCount = 1; + presentInfo.pWaitSemaphores = &renderingFinishedSemaphore; + + presentInfo.swapchainCount = 1; + presentInfo.pSwapchains = &swapChain; + presentInfo.pImageIndices = &imageIndex; + + res = vkQueuePresentKHR(presentQueue, &presentInfo); + + if (res != VK_SUCCESS) { + std::cerr << "failed to submit present command buffer" << std::endl; + assert(0); + } + + std::cout << "submitted presentation command buffer" << std::endl; +} + +void CreateRenderPass() +{ + VkAttachmentReference attachRef = {}; + attachRef.attachment = 0; + attachRef.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; + + VkSubpassDescription subpassDesc = {}; + subpassDesc.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; + subpassDesc.colorAttachmentCount = 1; + subpassDesc.pColorAttachments = &attachRef; + + VkAttachmentDescription attachDesc = {}; + attachDesc.format = swapchainFormat.format; // + attachDesc.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; + attachDesc.storeOp = VK_ATTACHMENT_STORE_OP_STORE; + attachDesc.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; + attachDesc.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; + attachDesc.initialLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; + attachDesc.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; + attachDesc.samples = VK_SAMPLE_COUNT_1_BIT; + + VkRenderPassCreateInfo renderPassCreateInfo = {}; + renderPassCreateInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO; + renderPassCreateInfo.attachmentCount = 1; + renderPassCreateInfo.pAttachments = &attachDesc; + renderPassCreateInfo.subpassCount = 1; + renderPassCreateInfo.pSubpasses = &subpassDesc; + + VkResult res = vkCreateRenderPass(device, &renderPassCreateInfo, NULL, &renderPass); + + printf("Created a render pass\n"); +} + + +void CreateFramebuffer() +{ + fbs.resize(swapChainImages.size()); + + VkResult res; + + for (uint32_t i = 0; i < swapChainImages.size(); i++) { + VkImageViewCreateInfo ViewCreateInfo = {}; + ViewCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; + ViewCreateInfo.image = swapChainImages[i]; + ViewCreateInfo.format = swapchainFormat.format; // + ViewCreateInfo.viewType = VK_IMAGE_VIEW_TYPE_2D; + ViewCreateInfo.components.r = VK_COMPONENT_SWIZZLE_IDENTITY; + ViewCreateInfo.components.g = VK_COMPONENT_SWIZZLE_IDENTITY; + ViewCreateInfo.components.b = VK_COMPONENT_SWIZZLE_IDENTITY; + ViewCreateInfo.components.a = VK_COMPONENT_SWIZZLE_IDENTITY; + ViewCreateInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; + ViewCreateInfo.subresourceRange.baseMipLevel = 0; + ViewCreateInfo.subresourceRange.levelCount = 1; + ViewCreateInfo.subresourceRange.baseArrayLayer = 0; + ViewCreateInfo.subresourceRange.layerCount = 1; + + res = vkCreateImageView(device, &ViewCreateInfo, NULL, &views[i]); + + VkFramebufferCreateInfo fbCreateInfo = {}; + fbCreateInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO; + fbCreateInfo.renderPass = renderPass; + fbCreateInfo.attachmentCount = 1; + fbCreateInfo.pAttachments = &views[i]; + fbCreateInfo.width = swapChainExtent.width; + fbCreateInfo.height = swapChainExtent.height; + fbCreateInfo.layers = 1; + + res = vkCreateFramebuffer(device, &fbCreateInfo, NULL, &fbs[i]); + } + + printf("Frame buffers created\n"); +} + +void CreateShaders() +{ + char vs_asm_code[] = + ///0x40000000 = 2.0 + ///uni = 1.0 + ///rb0 = 2 - 1 = 1 + "sig_small_imm ; rx0 = fsub.ws.always(b, a, uni, 0x40000000) ; nop = nop(r0, r0) ;\n" + ///set up VPM read for subsequent reads + ///0x00201a00: 0000 0000 0010 0000 0001 1010 0000 0000 + ///addr: 0 + ///size: 32bit + ///packed + ///horizontal + ///stride=1 + ///vectors to read = 3 (how many components) + "sig_load_imm ; vr_setup = load32.always(0x00301a00) ; nop = load32.always() ;\n" + ///uni = viewportXScale + ///r0 = vpm * uni + "sig_none ; nop = nop(r0, r0, vpm_read, uni) ; r0 = fmul.always(a, b) ;\n" + ///r1 = r0 * rb0 (1) + "sig_none ; nop = nop(r0, r0, nop, rb0) ; r1 = fmul.always(r0, b) ;\n" + ///uni = viewportYScale + ///ra0.16a = int(r1), r2 = vpm * uni + "sig_none ; rx0.16a = ftoi.always(r1, r1, vpm_read, uni) ; r2 = fmul.always(a, b) ;\n" + ///r3 = r2 * rb0 + "sig_none ; r0 = or.always(a, a, vpm_read, rb0) ; r3 = fmul.always(r2, b) ;\n" + ///ra0.16b = int(r3) + "sig_none ; rx0.16b = ftoi.always(r3, r3, uni, nop) ; r0 = fmul.always(r0, a) ;\n" + ///set up VPM write for subsequent writes + ///0x00001a00: 0000 0000 0000 0000 0001 1010 0000 0000 + ///addr: 0 + ///size: 32bit + ///horizontal + ///stride = 1 + "sig_load_imm ; vw_setup = load32.always.ws(0x00001a00) ; nop = load32.always() ;\n" + ///shaded vertex format for PSE + /// Ys and Xs + ///vpm = ra0 + "sig_none ; vpm = or.always(a, a, ra0, nop) ; nop = nop(r0, r0);\n" + /// Zs + ///uni = 0.5 + ///vpm = uni + "sig_none ; vpm = fadd.always(r0, a, uni, nop) ; nop = nop(r0, r0);\n" + /// 1.0 / Wc + ///vpm = rb0 (1) + "sig_none ; vpm = or.always(b, b, nop, rb0) ; nop = nop(r0, r0);\n" + ///END + "sig_end ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;\n" + "sig_none ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;\n" + "sig_none ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;\n" + "\0"; + + char cs_asm_code[] = + ///uni = 1.0 + ///r3 = 2.0 - uni + "sig_small_imm ; r3 = fsub.always(b, a, uni, 0x40000000) ; nop = nop(r0, r0);\n" + "sig_load_imm ; vr_setup = load32.always(0x00301a00) ; nop = load32.always() ;\n" + ///r2 = vpm + "sig_none ; r2 = or.always(a, a, vpm_read, nop) ; nop = nop(r0, r0);\n" + "sig_load_imm ; vw_setup = load32.always.ws(0x00001a00) ; nop = load32.always() ;\n" + ///shaded coordinates format for PTB + /// write Xc + ///r1 = vpm, vpm = r2 + "sig_none ; r1 = or.always(a, a, vpm_read, nop) ; vpm = v8min.always(r2, r2);\n" + /// write Yc + ///uni = viewportXscale + ///vpm = r1, r2 = r2 * uni + "sig_none ; vpm = or.always(r1, r1, uni, nop) ; r2 = fmul.always(r2, a);\n" + ///uni = viewportYscale + ///r1 = r1 * uni + "sig_none ; nop = nop(r0, r0, uni, nop) ; r1 = fmul.always(r1, a);\n" + ///r0 = r2 * r3 + ///r2 = vpm + "sig_none ; r2 = or.always(a, a, vpm_read, nop) ; r0 = fmul.always(r2, r3);\n" + ///ra0.16a = r0, r1 = r1 * r3 + "sig_none ; rx0.16a = ftoi.always(r0, r0) ; r1 = fmul.always(r1, r3) ;\n" + ///ra0.16b = r1 + ///write Zc + "sig_none ; rx0.16b = ftoi.always(r1, r1) ; vpm = v8min.always(r2, r2) ;\n" + ///write Wc + ///vpm = 1.0 + ///r2 = r2 * uni (0.5) + "sig_small_imm ; vpm = or.always(b, b, uni, 0x3f800000) ; r2 = fmul.always(r2, a) ;\n" + ///write Ys and Xs + ///vpm = ra0 + "sig_none ; vpm = or.always(a, a, ra0, nop) ; nop = nop(r0, r0) ;\n" + ///write Zs + ///uni = 0.5 + ///vpm = r2 + "sig_none ; vpm = fadd.always(r2, a, uni, nop) ; nop = nop(r0, r0) ;\n" + ///write 1/Wc + ///vpm = r3 + "sig_none ; vpm = or.always(r3, r3) ; nop = nop(r0, r0) ;\n" + ///END + "sig_end ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;\n" + "sig_none ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;\n" + "sig_none ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;\n" + "\0"; + + //clever: use small immedate -1 interpreted as 0xffffffff (white) to set color to white + //"sig_small_imm ; tlb_color_all = or.always(b, b, nop, -1) ; nop = nop(r0, r0) ;" + + //8bit access + //abcd + //BGRA + + //sample texture + char sample_fs_asm_code[] = + "sig_none ; r0 = itof.always(b, b, x_pix, y_pix) ; nop = nop(r0, r0) ;" + "sig_load_imm ; r2 = load32.always(0x3a72b9d6) ; nop = load32() ;" //1/1080 + "sig_none ; r0 = itof.always(a, a, x_pix, y_pix) ; r1 = fmul.always(r2, r0); ;" //r1 contains tex coord y + "sig_load_imm ; r2 = load32.always(0x3a088888) ; nop = load32() ;" //1/1920 + "sig_none ; nop = nop(r0, r0) ; r0 = fmul.always(r2, r0) ;" //tex coord x [0...1] + "sig_small_imm ; r1 = fsub.always(b, r1, nop, 0x3f800000) ; nop = nop(r0, r0) ;" //tex coord y [0...1] + + "sig_small_imm ; nop = nop(r0, r0, nop, 0x40000000) ; r0 = fmul.always(r0, b) ;" //r0 * 2 + "sig_small_imm ; r0 = fsub.always(r0, b, nop, 0x3f800000) ; nop = nop(r0, r0) ;" //r0 - 1 + + "sig_small_imm ; nop = nop(r0, r0, nop, 0x40000000) ; r1 = fmul.always(r1, b) ;" //r1 * 2 + "sig_small_imm ; r1 = fsub.always(r1, b, nop, 0x3f800000) ; nop = nop(r0, r0) ;" //r1 - 1 + + "sig_small_imm ; r2 = or.always(b, b, nop, 0xbf800000) ; nop = nop(r0, r0) ;" + + "sig_none ; r3 = or.always(b, b, nop, uni) ; nop = nop(r0, r0) ;" + + ///write texture addresses (x, y) + ///writing tmu0_s signals that all coordinates are written + "sig_none ; tmu0_b = or.always(r3, r3) ; nop = nop(r0, r0) ;" + "sig_none ; tmu0_r = or.always(r2, r2) ; nop = nop(r0, r0) ;" //tex coord z + "sig_none ; tmu0_t = or.always(r1, r1) ; nop = nop(r0, r0) ;" //tex coord y + "sig_none ; tmu0_s = or.always(r0, r0) ; nop = nop(r0, r0) ;" //tex coord x + ///suspend thread (after 2 nops) to wait for TMU request to finish + "sig_thread_switch ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;" + "sig_none ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;" + "sig_none ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;" + ///read TMU0 request result to R4 + "sig_load_tmu0 ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;" + ///when thread has been awakened, MOV from R4 to R0 + "sig_none ; r0 = fmax.pm.always.8a(r4, r4) ; nop = nop(r0, r0) ;" + "sig_none ; r1 = fmax.pm.always.8b(r4, r4) ; r0.8a = v8min.always(r0, r0) ;" + "sig_none ; r2 = fmax.pm.always.8c(r4, r4) ; r0.8b = v8min.always(r1, r1) ;" + "sig_none ; r3 = fmax.pm.always.8d(r4, r4) ; r0.8c = v8min.always(r2, r2) ;" + "sig_none ; nop = nop.pm(r0, r0) ; r0.8d = v8min.always(r3, r3) ;" + "sig_none ; tlb_color_all = or.always(r0, r0) ; nop = nop(r0, r0) ;" + "sig_end ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;" + "sig_none ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;" + "sig_unlock_score ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;" + "\0"; + + char* sample_asm_strings[] = + { + (char*)cs_asm_code, (char*)vs_asm_code, (char*)sample_fs_asm_code, 0 + }; + + VkRpiAssemblyMappingEXT vertexMappings[] = { + //vertex shader uniforms + { + VK_RPI_ASSEMBLY_MAPPING_TYPE_PUSH_CONSTANT, + VK_DESCRIPTOR_TYPE_MAX_ENUM, //descriptor type + 0, //descriptor set # + 0, //descriptor binding # + 0, //descriptor array element # + 0, //resource offset + }, + { + VK_RPI_ASSEMBLY_MAPPING_TYPE_PUSH_CONSTANT, + VK_DESCRIPTOR_TYPE_MAX_ENUM, //descriptor type + 0, //descriptor set # + 0, //descriptor binding # + 0, //descriptor array element # + 4, //resource offset + }, + { + VK_RPI_ASSEMBLY_MAPPING_TYPE_PUSH_CONSTANT, + VK_DESCRIPTOR_TYPE_MAX_ENUM, //descriptor type + 0, //descriptor set # + 0, //descriptor binding # + 0, //descriptor array element # + 8, //resource offset + }, + { + VK_RPI_ASSEMBLY_MAPPING_TYPE_PUSH_CONSTANT, + VK_DESCRIPTOR_TYPE_MAX_ENUM, //descriptor type + 0, //descriptor set # + 0, //descriptor binding # + 0, //descriptor array element # + 12, //resource offset + }, + { + VK_RPI_ASSEMBLY_MAPPING_TYPE_PUSH_CONSTANT, + VK_DESCRIPTOR_TYPE_MAX_ENUM, //descriptor type + 0, //descriptor set # + 0, //descriptor binding # + 0, //descriptor array element # + 16, //resource offset + }, + }; + + VkRpiAssemblyMappingEXT fragmentMappings[] = { + //fragment shader uniforms + { + VK_RPI_ASSEMBLY_MAPPING_TYPE_PUSH_CONSTANT, + VK_DESCRIPTOR_TYPE_MAX_ENUM, //descriptor type + 0, //descriptor set # + 0, //descriptor binding # + 0, //descriptor array element # + 0, //resource offset + }, + { + VK_RPI_ASSEMBLY_MAPPING_TYPE_DESCRIPTOR, + VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, //descriptor type + 0, //descriptor set # + 0, //descriptor binding # + 0, //descriptor array element # + 0, //resource offset + } + }; + + uint32_t spirv[6]; + + uint64_t* asm_ptrs[4] = {}; + uint32_t asm_sizes[4] = {}; + + VkRpiAssemblyMappingEXT* asm_mappings[4] = {}; + uint32_t asm_mappings_sizes[4] = {}; + + VkRpiShaderModuleAssemblyCreateInfoEXT shaderModuleCreateInfo = {}; + shaderModuleCreateInfo.instructions = asm_ptrs; + shaderModuleCreateInfo.numInstructions = asm_sizes; + shaderModuleCreateInfo.mappings = asm_mappings; + shaderModuleCreateInfo.numMappings = asm_mappings_sizes; + + asm_mappings[VK_RPI_ASSEMBLY_TYPE_VERTEX] = vertexMappings; + asm_mappings_sizes[VK_RPI_ASSEMBLY_TYPE_VERTEX] = sizeof(vertexMappings) / sizeof(VkRpiAssemblyMappingEXT); + asm_mappings[VK_RPI_ASSEMBLY_TYPE_FRAGMENT] = fragmentMappings; + asm_mappings_sizes[VK_RPI_ASSEMBLY_TYPE_FRAGMENT] = sizeof(fragmentMappings) / sizeof(VkRpiAssemblyMappingEXT); + + { //assemble cs code + asm_sizes[0] = get_num_instructions(cs_asm_code); + uint32_t size = sizeof(uint64_t)*asm_sizes[0]; + asm_ptrs[0] = (uint64_t*)malloc(size); + assemble_qpu_asm(cs_asm_code, asm_ptrs[0]); + } + + { //assemble vs code + asm_sizes[1] = get_num_instructions(vs_asm_code); + uint32_t size = sizeof(uint64_t)*asm_sizes[1]; + asm_ptrs[1] = (uint64_t*)malloc(size); + assemble_qpu_asm(vs_asm_code, asm_ptrs[1]); + } + + { //assemble fs code + asm_sizes[2] = get_num_instructions(sample_fs_asm_code); + uint32_t size = sizeof(uint64_t)*asm_sizes[2]; + asm_ptrs[2] = (uint64_t*)malloc(size); + assemble_qpu_asm(sample_fs_asm_code, asm_ptrs[2]); + } + + spirv[0] = 0x07230203; + spirv[1] = 0x00010000; + spirv[2] = 0x14E45250; + spirv[3] = 1; + spirv[4] = (uint32_t)&shaderModuleCreateInfo; + //words start here + spirv[5] = 1 << 16; + + VkShaderModuleCreateInfo smci = {}; + smci.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO; + smci.codeSize = sizeof(uint32_t)*6; + smci.pCode = spirv; + vkCreateShaderModule(device, &smci, 0, &sampleShaderModule); + + for(uint32_t c = 0; c < 4; ++c) + { + free(asm_ptrs[c]); + } +} + + +#define VERTEX_BUFFER_BIND_ID 0 + +void CreatePipeline() +{ + VkVertexInputBindingDescription vertexInputBindingDescription = + { + 0, + sizeof(float) * 3, + VK_VERTEX_INPUT_RATE_VERTEX + }; + + VkVertexInputAttributeDescription vertexInputAttributeDescription = + { + 0, + 0, + VK_FORMAT_R32G32B32_SFLOAT, + 0 + }; + + VkPipelineVertexInputStateCreateInfo vertexInputInfo = {}; + vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO; + vertexInputInfo.vertexAttributeDescriptionCount = 1; + vertexInputInfo.pVertexAttributeDescriptions = &vertexInputAttributeDescription; + vertexInputInfo.vertexBindingDescriptionCount = 1; + vertexInputInfo.pVertexBindingDescriptions = &vertexInputBindingDescription; + + VkPipelineInputAssemblyStateCreateInfo pipelineIACreateInfo = {}; + pipelineIACreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO; + pipelineIACreateInfo.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; + + VkViewport vp = {}; + vp.x = 0.0f; + vp.y = 0.0f; + vp.width = (float)swapChainExtent.width; + vp.height = (float)swapChainExtent.height; + vp.minDepth = 0.0f; + vp.maxDepth = 1.0f; + + VkPipelineViewportStateCreateInfo vpCreateInfo = {}; + vpCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO; + vpCreateInfo.viewportCount = 1; + vpCreateInfo.pViewports = &vp; + + VkPipelineRasterizationStateCreateInfo rastCreateInfo = {}; + rastCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO; + rastCreateInfo.polygonMode = VK_POLYGON_MODE_FILL; + rastCreateInfo.cullMode = VK_CULL_MODE_NONE; + rastCreateInfo.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE; + rastCreateInfo.lineWidth = 1.0f; + + VkPipelineMultisampleStateCreateInfo pipelineMSCreateInfo = {}; + pipelineMSCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO; + + VkPipelineColorBlendAttachmentState blendAttachState = {}; + blendAttachState.colorWriteMask = 0xf; + blendAttachState.blendEnable = false; + + VkPipelineColorBlendStateCreateInfo blendCreateInfo = {}; + blendCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO; + blendCreateInfo.attachmentCount = 1; + blendCreateInfo.pAttachments = &blendAttachState; + + VkPipelineDepthStencilStateCreateInfo depthStencilState = {}; + depthStencilState.depthTestEnable = false; + depthStencilState.stencilTestEnable = false; + + { //create sample pipeline + VkPushConstantRange pushConstantRanges[2]; + pushConstantRanges[0].offset = 0; + pushConstantRanges[0].size = 5 * 4; //4 * 32bits + pushConstantRanges[0].stageFlags = VK_SHADER_STAGE_VERTEX_BIT; + + pushConstantRanges[1].offset = 0; + pushConstantRanges[1].size = 2 * 4; //1 * 32bits + pushConstantRanges[1].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT; + + VkPipelineShaderStageCreateInfo shaderStageCreateInfo[2] = {}; + + shaderStageCreateInfo[0].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; + shaderStageCreateInfo[0].stage = VK_SHADER_STAGE_VERTEX_BIT; + shaderStageCreateInfo[0].module = sampleShaderModule; + shaderStageCreateInfo[0].pName = "main"; + shaderStageCreateInfo[1].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; + shaderStageCreateInfo[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT; + shaderStageCreateInfo[1].module = sampleShaderModule; + shaderStageCreateInfo[1].pName = "main"; + + VkPipelineLayoutCreateInfo pipelineLayoutCI = {}; + pipelineLayoutCI.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO; + pipelineLayoutCI.setLayoutCount = 1; + pipelineLayoutCI.pSetLayouts = &sampleDsl; + pipelineLayoutCI.pushConstantRangeCount = 2; + pipelineLayoutCI.pPushConstantRanges = &pushConstantRanges[0]; + vkCreatePipelineLayout(device, &pipelineLayoutCI, 0, &samplePipelineLayout); + + VkGraphicsPipelineCreateInfo pipelineInfo = {}; + pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO; + pipelineInfo.stageCount = 2; + pipelineInfo.pStages = &shaderStageCreateInfo[0]; + pipelineInfo.pVertexInputState = &vertexInputInfo; + pipelineInfo.pInputAssemblyState = &pipelineIACreateInfo; + pipelineInfo.pViewportState = &vpCreateInfo; + pipelineInfo.pRasterizationState = &rastCreateInfo; + pipelineInfo.pMultisampleState = &pipelineMSCreateInfo; + pipelineInfo.pColorBlendState = &blendCreateInfo; + pipelineInfo.renderPass = renderPass; + pipelineInfo.basePipelineIndex = -1; + pipelineInfo.pDepthStencilState = &depthStencilState; + pipelineInfo.layout = samplePipelineLayout; + + VkResult res = vkCreateGraphicsPipelines(device, VK_NULL_HANDLE, 1, &pipelineInfo, NULL, &samplePipeline); + } + + printf("Graphics pipeline created\n"); +} + +uint32_t getMemoryTypeIndex(VkPhysicalDeviceMemoryProperties deviceMemoryProperties, uint32_t typeBits, VkMemoryPropertyFlags properties) +{ + // Iterate over all memory types available for the device used in this example + for (uint32_t i = 0; i < deviceMemoryProperties.memoryTypeCount; i++) + { + if ((typeBits & 1) == 1) + { + if ((deviceMemoryProperties.memoryTypes[i].propertyFlags & properties) == properties) + { + return i; + } + } + typeBits >>= 1; + } + + assert(0); +} + +void CreateTexture() +{ + VkFormat format = VK_FORMAT_R8G8B8A8_UNORM; + + uint32_t width = 1024, height = 1024; + uint32_t mipLevels = std::floor(std::log2(std::max(width, height))) + 1; + + char* texDatas[6]; + texDatas[0] = readPPM("cubemapData/posx.ppm"); + texDatas[1] = readPPM("cubemapData/posy.ppm"); + texDatas[2] = readPPM("cubemapData/posz.ppm"); + texDatas[3] = readPPM("cubemapData/negx.ppm"); + texDatas[4] = readPPM("cubemapData/negy.ppm"); + texDatas[5] = readPPM("cubemapData/negz.ppm"); + + VkBuffer stagingBuffer; + VkDeviceMemory stagingMemory; + + { //create storage texel buffer for generic mem address TMU ops test + VkBufferCreateInfo bufferCreateInfo = {}; + bufferCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; + bufferCreateInfo.size = width * height * 4 * 6; + bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; + bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; + vkCreateBuffer(device, &bufferCreateInfo, 0, &stagingBuffer); + + VkMemoryRequirements mr; + vkGetBufferMemoryRequirements(device, stagingBuffer, &mr); + + VkMemoryAllocateInfo mai = {}; + mai.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; + mai.allocationSize = mr.size; + mai.memoryTypeIndex = getMemoryTypeIndex(pdmp, mr.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT); + + vkAllocateMemory(device, &mai, 0, &stagingMemory); + + void* data; + vkMapMemory(device, stagingMemory, 0, mr.size, 0, &data); + for(uint32_t face = 0; face < 6; ++face) + { + memcpy((char*)data + width * height * 4 * face, texDatas[face], width * height * 4); + free(texDatas[face]); + } + vkUnmapMemory(device, stagingMemory); + + vkBindBufferMemory(device, stagingBuffer, stagingMemory, 0); + } + + { //create texture that we'll write to + VkImageCreateInfo imageCreateInfo = {}; + imageCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO; + imageCreateInfo.imageType = VK_IMAGE_TYPE_2D; + imageCreateInfo.format = format; + imageCreateInfo.mipLevels = mipLevels; + imageCreateInfo.arrayLayers = 6; + imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; + imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; + imageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT; + imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; + imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; + imageCreateInfo.extent = { width, height, 1 }; + imageCreateInfo.flags = VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT; + vkCreateImage(device, &imageCreateInfo, 0, &textureImage); + + VkMemoryRequirements mr; + vkGetImageMemoryRequirements(device, textureImage, &mr); + + VkMemoryAllocateInfo mai = {}; + mai.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; + mai.allocationSize = mr.size; + mai.memoryTypeIndex = getMemoryTypeIndex(pdmp, mr.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); + + vkAllocateMemory(device, &mai, 0, &textureMemory); + + vkBindImageMemory(device, textureImage, textureMemory, 0); + } + + fprintf(stderr, "copying from staging to optimal\n"); + + { // convert image to optimal texture format + VkCommandBufferAllocateInfo allocInfo = {}; + allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO; + allocInfo.commandPool = commandPool; + allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; + allocInfo.commandBufferCount = 1; + + VkCommandBuffer copyCommandBuffer; + + vkAllocateCommandBuffers(device, &allocInfo, ©CommandBuffer); + + VkImageSubresourceRange subresourceRange = {}; + subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; + subresourceRange.baseMipLevel = 0; + subresourceRange.levelCount = 1; + subresourceRange.layerCount = 6; + + VkImageMemoryBarrier imageMemoryBarrier = {}; + imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; + imageMemoryBarrier.srcAccessMask = 0; + imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; + imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED; + imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; + imageMemoryBarrier.image = textureImage; + imageMemoryBarrier.subresourceRange = subresourceRange; + + VkCommandBufferBeginInfo beginInfo = {}; + beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; + beginInfo.flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT; + + vkBeginCommandBuffer(copyCommandBuffer, &beginInfo); + + vkCmdPipelineBarrier(copyCommandBuffer, + VK_PIPELINE_STAGE_HOST_BIT, + VK_PIPELINE_STAGE_TRANSFER_BIT, + 0, 0, nullptr, 0, nullptr, 1, &imageMemoryBarrier); + + VkBufferImageCopy bufferCopyRegions[6]; + + for(uint32_t face = 0; face < 6; ++face) + { + bufferCopyRegions[face] = {}; + bufferCopyRegions[face].imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; + bufferCopyRegions[face].imageSubresource.mipLevel = 0; + bufferCopyRegions[face].imageSubresource.baseArrayLayer = face; + bufferCopyRegions[face].imageSubresource.layerCount = 1; + bufferCopyRegions[face].imageExtent.width = width; + bufferCopyRegions[face].imageExtent.height = height; + bufferCopyRegions[face].imageExtent.depth = 1; + bufferCopyRegions[face].bufferOffset = width * height * 4 * face; + } + + vkCmdCopyBufferToImage( + copyCommandBuffer, + stagingBuffer, + textureImage, + VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, + 6, + bufferCopyRegions); + + imageMemoryBarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; + imageMemoryBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT; + imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; + imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; + + vkCmdPipelineBarrier(copyCommandBuffer, + VK_PIPELINE_STAGE_TRANSFER_BIT, + VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, + 0, 0, nullptr, 0, nullptr, 1, &imageMemoryBarrier); + + vkEndCommandBuffer(copyCommandBuffer); + + VkFenceCreateInfo fenceInfo = {}; + fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO; + fenceInfo.flags = 0; + + VkFence fence; + vkCreateFence(device, &fenceInfo, 0, &fence); + + VkSubmitInfo submitInfo = {}; + submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; + submitInfo.commandBufferCount = 1; + submitInfo.pCommandBuffers = ©CommandBuffer; + + vkQueueSubmit(graphicsQueue, 1, &submitInfo, fence); + + vkWaitForFences(device, 1, &fence, VK_TRUE, -1); + + vkDestroyFence(device, fence, 0); + vkFreeCommandBuffers(device, commandPool, 1, ©CommandBuffer); + + vkFreeMemory(device, stagingMemory, 0); + vkDestroyBuffer(device, stagingBuffer, 0); + } + + fprintf(stderr, "generating cubemap mipchain\n"); + + { // generate mipchain + VkCommandBufferAllocateInfo allocInfo = {}; + allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO; + allocInfo.commandPool = commandPool; + allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; + allocInfo.commandBufferCount = 1; + + VkCommandBuffer mipgenCommandBuffer; + + vkAllocateCommandBuffers(device, &allocInfo, &mipgenCommandBuffer); + + for(uint32_t d = 0; d < 6; ++d) + { + for(uint32_t c = 1; c < mipLevels; ++c) + { + VkImageBlit imageBlit = {}; + + imageBlit.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; + imageBlit.srcSubresource.mipLevel = c - 1; + imageBlit.srcSubresource.baseArrayLayer = d; + imageBlit.srcSubresource.layerCount = 1; + imageBlit.srcOffsets[1].x = uint32_t(width >> (c - 1)); + imageBlit.srcOffsets[1].y = uint32_t(height >> (c - 1)); + imageBlit.srcOffsets[1].z = 1; + + imageBlit.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; + imageBlit.dstSubresource.mipLevel = c; + imageBlit.dstSubresource.baseArrayLayer = d; + imageBlit.dstSubresource.layerCount = 1; + imageBlit.dstOffsets[1].x = uint32_t(width >> c); + imageBlit.dstOffsets[1].y = uint32_t(height >> c); + imageBlit.dstOffsets[1].z = 1; + + VkImageSubresourceRange mipSubRange = {}; + mipSubRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; + mipSubRange.baseMipLevel = c; + mipSubRange.levelCount = 1; + mipSubRange.baseArrayLayer = d; + mipSubRange.layerCount = 1; + + VkImageMemoryBarrier imageMemoryBarrier = {}; + imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; + imageMemoryBarrier.srcAccessMask = 0; + imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; + imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED; + imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; + imageMemoryBarrier.image = textureImage; + imageMemoryBarrier.subresourceRange = mipSubRange; + + VkCommandBufferBeginInfo beginInfo = {}; + beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; + beginInfo.flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT; + + vkBeginCommandBuffer(mipgenCommandBuffer, &beginInfo); + + vkCmdPipelineBarrier(mipgenCommandBuffer, + VK_PIPELINE_STAGE_TRANSFER_BIT, + VK_PIPELINE_STAGE_TRANSFER_BIT, + 0, 0, nullptr, 0, nullptr, 1, &imageMemoryBarrier); + + vkCmdBlitImage(mipgenCommandBuffer, textureImage, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, textureImage, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &imageBlit, VK_FILTER_LINEAR); + + imageMemoryBarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; + imageMemoryBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT; + imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; + imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL; + + vkCmdPipelineBarrier(mipgenCommandBuffer, + VK_PIPELINE_STAGE_TRANSFER_BIT, + VK_PIPELINE_STAGE_TRANSFER_BIT, + 0, 0, nullptr, 0, nullptr, 1, &imageMemoryBarrier); + } + } + + VkImageSubresourceRange subresourceRange = {}; + subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; + subresourceRange.levelCount = 1; + subresourceRange.layerCount = 1; + + VkImageMemoryBarrier imageMemoryBarrier = {}; + imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; + imageMemoryBarrier.srcAccessMask = VK_ACCESS_TRANSFER_READ_BIT; + imageMemoryBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT; + imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL; + imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; + imageMemoryBarrier.image = textureImage; + imageMemoryBarrier.subresourceRange = subresourceRange; + + vkCmdPipelineBarrier(mipgenCommandBuffer, + VK_PIPELINE_STAGE_TRANSFER_BIT, + VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, + 0, 0, nullptr, 0, nullptr, 1, &imageMemoryBarrier); + + vkEndCommandBuffer(mipgenCommandBuffer); + + VkFenceCreateInfo fenceInfo = {}; + fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO; + fenceInfo.flags = 0; + + VkFence fence; + vkCreateFence(device, &fenceInfo, 0, &fence); + + VkSubmitInfo submitInfo = {}; + submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; + submitInfo.commandBufferCount = 1; + submitInfo.pCommandBuffers = &mipgenCommandBuffer; + + vkQueueSubmit(graphicsQueue, 1, &submitInfo, fence); + + vkWaitForFences(device, 1, &fence, VK_TRUE, -1); + + vkDestroyFence(device, fence, 0); + vkFreeCommandBuffers(device, commandPool, 1, &mipgenCommandBuffer); + } + + { //create sampler for sampling texture + VkImageViewCreateInfo view = {}; + view.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; + view.viewType = VK_IMAGE_VIEW_TYPE_CUBE; + view.format = format; + view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A }; + view.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; + view.subresourceRange.baseMipLevel = 0; + view.subresourceRange.baseArrayLayer = 0; + view.subresourceRange.layerCount = 6; + view.subresourceRange.levelCount = mipLevels; + view.image = textureImage; + vkCreateImageView(device, &view, nullptr, &textureView); + + VkSamplerCreateInfo sampler = {}; + sampler.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO; + sampler.magFilter = VK_FILTER_NEAREST; + sampler.minFilter = VK_FILTER_NEAREST; + sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST; + sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT; + sampler.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT; + sampler.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT; + sampler.mipLodBias = 1.0f; //disable auto lod + sampler.compareOp = VK_COMPARE_OP_NEVER; + sampler.minLod = 0.0f; + sampler.maxLod = 0.0f; + sampler.borderColor = VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK; + vkCreateSampler(device, &sampler, 0, &textureSampler); + } + + fprintf(stderr, "cubemap with mipmaps generated\n"); +} + +void CreateDescriptorSet() +{ + { //create sample dsl + VkDescriptorSetLayoutBinding setLayoutBinding = {}; + setLayoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; + setLayoutBinding.binding = 0; + setLayoutBinding.descriptorCount = 1; + setLayoutBinding.stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT; + + VkDescriptorSetLayoutCreateInfo descriptorLayoutCI = {}; + descriptorLayoutCI.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO; + descriptorLayoutCI.bindingCount = 1; + descriptorLayoutCI.pBindings = &setLayoutBinding; + + vkCreateDescriptorSetLayout(device, &descriptorLayoutCI, 0, &sampleDsl); + } + + VkDescriptorPoolSize descriptorPoolSizes[1]{}; + descriptorPoolSizes[0] = {}; + descriptorPoolSizes[0].descriptorCount = 1; + descriptorPoolSizes[0].type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; + + VkDescriptorPoolCreateInfo descriptorPoolCI = {}; + descriptorPoolCI.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO; + descriptorPoolCI.poolSizeCount = 1; + descriptorPoolCI.pPoolSizes = descriptorPoolSizes; + descriptorPoolCI.maxSets = 1; + + vkCreateDescriptorPool(device, &descriptorPoolCI, 0, &descriptorPool); + + { //create sample descriptor set + VkDescriptorSetAllocateInfo allocInfo = {}; + allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO; + allocInfo.descriptorPool = descriptorPool; + allocInfo.descriptorSetCount = 1; + allocInfo.pSetLayouts = &sampleDsl; + + vkAllocateDescriptorSets(device, &allocInfo, &sampleDescriptorSet); + + VkDescriptorImageInfo imageInfo; + imageInfo.imageView = textureView; + imageInfo.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; + imageInfo.sampler = textureSampler; + + VkWriteDescriptorSet writeDescriptorSet = {}; + writeDescriptorSet.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; + writeDescriptorSet.dstSet = sampleDescriptorSet; + writeDescriptorSet.dstBinding = 0; + writeDescriptorSet.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; + writeDescriptorSet.pImageInfo = &imageInfo; + writeDescriptorSet.descriptorCount = 1; + + vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, 0); + } +} + +void CreateVertexBuffer() +{ + VkMemoryRequirements mr; + + { //create triangle vertex buffer + unsigned vboSize = sizeof(float) * 12 * 3 * 3; //12 * 3 x vec3 + + VkBufferCreateInfo ci = {}; + ci.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; + ci.size = vboSize; + ci.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT; + + VkResult res = vkCreateBuffer(device, &ci, 0, &triangleVertexBuffer); + + vkGetBufferMemoryRequirements(device, triangleVertexBuffer, &mr); + + VkMemoryAllocateInfo mai = {}; + mai.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; + mai.allocationSize = mr.size; + mai.memoryTypeIndex = getMemoryTypeIndex(pdmp, mr.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT); + + res = vkAllocateMemory(device, &mai, 0, &triangleVertexBufferMemory); + + float vertices[] = + { + -1, 1, 0, + 1, 1, 0, + -1, -1, 0, + + -1, -1, 0, + 1, -1, 0, + 1, 1, 0, + + 1, 1, 0, + 1, -1, 0, + 1, 1, 1, + + 1, 1, 1, + 1, -1, 0, + 1, -1, 1, + + 1, -1, 1, + 1, -1, 0, + -1, -1, 0, + + -1, -1, 0, + 1, -1, 1, + -1, -1, 1, + + -1, -1, 1, + -1, 1, 0, + -1, -1, 0, + + -1, 1, 0, + -1, -1, 1, + -1, 1, 1, + + -1, -1, 1, + 1, -1, 1, + 1, 1, 1, + + 1, 1, 1, + -1, 1, 1, + -1, -1, 1, + + -1, 1, 0, + 1, 1, 0, + 1, 1, 1, + + 1, 1, 1, + -1, 1, 1, + -1, 1, 0, + }; + + //transform our cube +// for(uint32_t c = 0; c < 12 * 3 * 3; c+=3) +// { +// vertices[c+0] *= 0.25f; +// vertices[c+1] *= 0.25f; +// vertices[c+2] *= 0.25f; + +// vertices[c+2] -= 0.5f; +// } + + void* data; + res = vkMapMemory(device, triangleVertexBufferMemory, 0, mr.size, 0, &data); + memcpy(data, vertices, vboSize); + vkUnmapMemory(device, triangleVertexBufferMemory); + + res = vkBindBufferMemory(device, triangleVertexBuffer, triangleVertexBufferMemory, 0); + } + + printf("Vertex buffer created\n"); +} + +int main() { + // Note: dynamically loading loader may be a better idea to fail gracefully when Vulkan is not supported + + // Create window for Vulkan + //glfwInit(); + + //glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API); + //glfwWindowHint(GLFW_RESIZABLE, GLFW_FALSE); + + //window = glfwCreateWindow(WINDOW_WIDTH, WINDOW_HEIGHT, "The 630 line cornflower blue window", nullptr, nullptr); + + // Use Vulkan + setupVulkan(); + + mainLoop(); + + cleanup(); + + + return 0; +} diff --git a/test/cubemapping/cubemapping.cpp b/test/cubemapping/cubemapping.cpp index ca2c90e..56f323e 100644 --- a/test/cubemapping/cubemapping.cpp +++ b/test/cubemapping/cubemapping.cpp @@ -1316,7 +1316,7 @@ void CreateTexture() { VkFormat format = VK_FORMAT_R8G8B8A8_UNORM; - uint32_t width = 2048, height = 2048; + uint32_t width = 1024, height = 1024; uint32_t mipLevels = 1; char* texDatas[6];