#include #include #include #include #include "driver/CustomAssert.h" #include #include "driver/vkExt.h" #include "QPUassembler/qpu_assembler.h" //#define GLFW_INCLUDE_VULKAN //#define VK_USE_PLATFORM_WIN32_KHR //#include //#define GLFW_EXPOSE_NATIVE_WIN32 //#include //GLFWwindow * window; //#define WINDOW_WIDTH 640 //#define WINDOW_HEIGHT 480 // Note: support swap chain recreation (not only required for resized windows!) // Note: window resize may not result in Vulkan telling that the swap chain should be recreated, should be handled explicitly! void run(); void setupVulkan(); void mainLoop(); void cleanup(); void createInstance(); void createWindowSurface(); void findPhysicalDevice(); void checkSwapChainSupport(); void findQueueFamilies(); void createLogicalDevice(); void createSemaphores(); void createSwapChain(); void createCommandQueues(); void draw(); void CreateRenderPass(); void CreateFramebuffer(); void CreateShaders(); void CreatePipeline(); void CreateDescriptorSet(); void CreateVertexBuffer(); void CreateTexture(); void recordCommandBuffers(); VkSurfaceFormatKHR chooseSurfaceFormat(const std::vector& availableFormats); VkExtent2D chooseSwapExtent(const VkSurfaceCapabilitiesKHR& surfaceCapabilities); VkPresentModeKHR choosePresentMode(const std::vector presentModes); VkInstance instance; // VkSurfaceKHR windowSurface; // VkPhysicalDevice physicalDevice; VkDevice device; // VkSemaphore imageAvailableSemaphore; // VkSemaphore renderingFinishedSemaphore; // VkSwapchainKHR swapChain; // VkCommandPool commandPool; // std::vector presentCommandBuffers; // std::vector swapChainImages; // VkRenderPass renderPass; // std::vector fbs; // VkShaderModule blitShaderModule; // VkShaderModule sampleShaderModule; // VkPipeline blitPipeline; // VkPipeline samplePipeline; // VkQueue graphicsQueue; VkQueue presentQueue; VkBuffer fsqVertexBuffer; VkDeviceMemory fsqVertexBufferMemory; VkBuffer triangleVertexBuffer; VkDeviceMemory triangleVertexBufferMemory; VkPhysicalDeviceMemoryProperties pdmp; std::vector views; //? VkSurfaceFormatKHR swapchainFormat; VkExtent2D swapChainExtent; VkDescriptorPool descriptorPool; VkDescriptorSet blitDescriptorSet; VkDescriptorSetLayout blitDsl; VkPipelineLayout blitPipelineLayout; VkDescriptorSet sampleDescriptorSet; VkDescriptorSetLayout sampleDsl; VkPipelineLayout samplePipelineLayout; VkImage textureImage; VkDeviceMemory textureMemory; VkSampler textureSampler; VkImageView textureView; VkBuffer texelBuffer; VkDeviceMemory texelBufferMemory; VkBufferView texelBufferView; VkRenderPass offscreenRenderPass; VkFramebuffer offscreenFramebuffer; uint32_t graphicsQueueFamily; uint32_t presentQueueFamily; char* readPPM(const char* fileName) { uint16_t ppm_magic; ((uint8_t*)&ppm_magic)[0] = 'P'; ((uint8_t*)&ppm_magic)[1] = '6'; FILE* fd = fopen(fileName, "rb"); fseek (fd , 0 , SEEK_END); uint32_t fsize = ftell(fd); rewind(fd); char* buf = (char*)malloc(fsize); if(!buf) { return 0; } fread(buf, 1, fsize, fd); fclose(fd); uint16_t magic_number = ((uint16_t*)buf)[0]; if(magic_number != ppm_magic) { fprintf(stderr, "PPM magic number not found: %u\n", magic_number); return 0; } char* widthStr = strtok(buf+3, " "); char* heightStr = strtok(0, "\n"); char* maxValStr = strtok(0, "\n"); int width = atoi(widthStr); int height = atoi(heightStr); int maxVal = atoi(maxValStr); printf("Image size: %i x %i\n", width, height); printf("Max value: %i\n", maxVal); char* imageBuf = maxValStr + strlen(maxValStr) + 1; //convert to BGRA (A=1) char* retBuf = (char*)malloc(width * height * 4); for(int y = 0; y < height; ++y) { for(int x = 0; x < width; ++x) { retBuf[(y*width+x)*4+0] = imageBuf[(y*width+x)*3+2]; retBuf[(y*width+x)*4+1] = imageBuf[(y*width+x)*3+1]; retBuf[(y*width+x)*4+2] = imageBuf[(y*width+x)*3+0]; retBuf[(y*width+x)*4+3] = 0xff; } } free(buf); return retBuf; } void cleanup() { vkDeviceWaitIdle(device); // Note: this is done implicitly when the command pool is freed, but nice to know about vkFreeCommandBuffers(device, commandPool, presentCommandBuffers.size(), presentCommandBuffers.data()); vkDestroyCommandPool(device, commandPool, nullptr); vkDestroySemaphore(device, imageAvailableSemaphore, nullptr); vkDestroySemaphore(device, renderingFinishedSemaphore, nullptr); for(int c = 0; c < views.size(); ++c) vkDestroyImageView(device, views[c], 0); for (int c = 0; c < fbs.size(); ++c) vkDestroyFramebuffer(device, fbs[c], 0); vkDestroyRenderPass(device, renderPass, 0); //vkDestroyShaderModule(device, shaderModule, 0); //vkDestroyPipeline(device, pipeline, 0); // Note: implicitly destroys images (in fact, we're not allowed to do that explicitly) vkDestroySwapchainKHR(device, swapChain, nullptr); vkDestroyDevice(device, nullptr); vkDestroySurfaceKHR(instance, windowSurface, nullptr); vkDestroyInstance(instance, nullptr); } void run() { // Note: dynamically loading loader may be a better idea to fail gracefully when Vulkan is not supported // Create window for Vulkan //glfwInit(); //glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API); //glfwWindowHint(GLFW_RESIZABLE, GLFW_FALSE); //window = glfwCreateWindow(WINDOW_WIDTH, WINDOW_HEIGHT, "The 630 line cornflower blue window", nullptr, nullptr); // Use Vulkan setupVulkan(); mainLoop(); cleanup(); } void setupVulkan() { createInstance(); createWindowSurface(); findPhysicalDevice(); checkSwapChainSupport(); findQueueFamilies(); createLogicalDevice(); createSemaphores(); createSwapChain(); createCommandQueues(); CreateRenderPass(); CreateFramebuffer(); CreateVertexBuffer(); CreateShaders(); CreateTexture(); CreateDescriptorSet(); CreatePipeline(); recordCommandBuffers(); } void mainLoop() { //while (!glfwWindowShouldClose(window)) { for(int c = 0; c < 300; ++c){ draw(); //glfwPollEvents(); } } void createInstance() { VkApplicationInfo appInfo = {}; appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO; appInfo.pApplicationName = "VulkanTriangle"; appInfo.applicationVersion = VK_MAKE_VERSION(1, 0, 0); appInfo.pEngineName = "TriangleEngine"; appInfo.engineVersion = VK_MAKE_VERSION(1, 0, 0); appInfo.apiVersion = VK_API_VERSION_1_0; // Get instance extensions required by GLFW to draw to window //unsigned int glfwExtensionCount; //const char** glfwExtensions; //glfwExtensions = glfwGetRequiredInstanceExtensions(&glfwExtensionCount); // Check for extensions uint32_t extensionCount = 0; vkEnumerateInstanceExtensionProperties(nullptr, &extensionCount, nullptr); if (extensionCount == 0) { std::cerr << "no extensions supported!" << std::endl; assert(0); } std::vector availableExtensions(extensionCount); vkEnumerateInstanceExtensionProperties(nullptr, &extensionCount, availableExtensions.data()); std::cout << "supported extensions:" << std::endl; for (const auto& extension : availableExtensions) { std::cout << "\t" << extension.extensionName << std::endl; } VkInstanceCreateInfo createInfo = {}; createInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO; createInfo.pApplicationInfo = &appInfo; //createInfo.enabledExtensionCount = glfwExtensionCount; createInfo.enabledExtensionCount = 0; //createInfo.ppEnabledExtensionNames = glfwExtensions; createInfo.ppEnabledExtensionNames = 0; createInfo.enabledLayerCount = 0; createInfo.ppEnabledLayerNames = 0; // Initialize Vulkan instance if (vkCreateInstance(&createInfo, nullptr, &instance) != VK_SUCCESS) { std::cerr << "failed to create instance!" << std::endl; assert(0); } else { std::cout << "created vulkan instance" << std::endl; } } void createWindowSurface() { if (vkCreateRpiSurfaceEXT(instance, 0, 0, &windowSurface) != VK_SUCCESS) { std::cerr << "failed to create window surface!" << std::endl; assert(0); } std::cout << "created window surface" << std::endl; } void findPhysicalDevice() { // Try to find 1 Vulkan supported device // Note: perhaps refactor to loop through devices and find first one that supports all required features and extensions uint32_t deviceCount = 1; VkResult res = vkEnumeratePhysicalDevices(instance, &deviceCount, &physicalDevice); if (res != VK_SUCCESS && res != VK_INCOMPLETE) { std::cerr << "enumerating physical devices failed!" << std::endl; assert(0); } if (deviceCount == 0) { std::cerr << "no physical devices that support vulkan!" << std::endl; assert(0); } std::cout << "physical device with vulkan support found" << std::endl; vkGetPhysicalDeviceMemoryProperties(physicalDevice, &pdmp); // Check device features // Note: will apiVersion >= appInfo.apiVersion? Probably yes, but spec is unclear. VkPhysicalDeviceProperties deviceProperties; VkPhysicalDeviceFeatures deviceFeatures; vkGetPhysicalDeviceProperties(physicalDevice, &deviceProperties); vkGetPhysicalDeviceFeatures(physicalDevice, &deviceFeatures); uint32_t supportedVersion[] = { VK_VERSION_MAJOR(deviceProperties.apiVersion), VK_VERSION_MINOR(deviceProperties.apiVersion), VK_VERSION_PATCH(deviceProperties.apiVersion) }; std::cout << "physical device supports version " << supportedVersion[0] << "." << supportedVersion[1] << "." << supportedVersion[2] << std::endl; } void checkSwapChainSupport() { uint32_t extensionCount = 0; vkEnumerateDeviceExtensionProperties(physicalDevice, nullptr, &extensionCount, nullptr); if (extensionCount == 0) { std::cerr << "physical device doesn't support any extensions" << std::endl; assert(0); } std::vector deviceExtensions(extensionCount); vkEnumerateDeviceExtensionProperties(physicalDevice, nullptr, &extensionCount, deviceExtensions.data()); for (const auto& extension : deviceExtensions) { if (strcmp(extension.extensionName, VK_KHR_SWAPCHAIN_EXTENSION_NAME) == 0) { std::cout << "physical device supports swap chains" << std::endl; return; } } std::cerr << "physical device doesn't support swap chains" << std::endl; assert(0); } void findQueueFamilies() { // Check queue families uint32_t queueFamilyCount = 0; vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueFamilyCount, nullptr); if (queueFamilyCount == 0) { std::cout << "physical device has no queue families!" << std::endl; assert(0); } // Find queue family with graphics support // Note: is a transfer queue necessary to copy vertices to the gpu or can a graphics queue handle that? std::vector queueFamilies(queueFamilyCount); vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueFamilyCount, queueFamilies.data()); std::cout << "physical device has " << queueFamilyCount << " queue families" << std::endl; bool foundGraphicsQueueFamily = false; bool foundPresentQueueFamily = false; for (uint32_t i = 0; i < queueFamilyCount; i++) { VkBool32 presentSupport = false; vkGetPhysicalDeviceSurfaceSupportKHR(physicalDevice, i, windowSurface, &presentSupport); if (queueFamilies[i].queueCount > 0 && queueFamilies[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) { graphicsQueueFamily = i; foundGraphicsQueueFamily = true; if (presentSupport) { presentQueueFamily = i; foundPresentQueueFamily = true; break; } } if (!foundPresentQueueFamily && presentSupport) { presentQueueFamily = i; foundPresentQueueFamily = true; } } if (foundGraphicsQueueFamily) { std::cout << "queue family #" << graphicsQueueFamily << " supports graphics" << std::endl; if (foundPresentQueueFamily) { std::cout << "queue family #" << presentQueueFamily << " supports presentation" << std::endl; } else { std::cerr << "could not find a valid queue family with present support" << std::endl; assert(0); } } else { std::cerr << "could not find a valid queue family with graphics support" << std::endl; assert(0); } } void createLogicalDevice() { // Greate one graphics queue and optionally a separate presentation queue float queuePriority = 1.0f; VkDeviceQueueCreateInfo queueCreateInfo[2] = {}; queueCreateInfo[0].sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; queueCreateInfo[0].queueFamilyIndex = graphicsQueueFamily; queueCreateInfo[0].queueCount = 1; queueCreateInfo[0].pQueuePriorities = &queuePriority; queueCreateInfo[0].sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; queueCreateInfo[0].queueFamilyIndex = presentQueueFamily; queueCreateInfo[0].queueCount = 1; queueCreateInfo[0].pQueuePriorities = &queuePriority; // Create logical device from physical device // Note: there are separate instance and device extensions! VkDeviceCreateInfo deviceCreateInfo = {}; deviceCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO; deviceCreateInfo.pQueueCreateInfos = queueCreateInfo; if (graphicsQueueFamily == presentQueueFamily) { deviceCreateInfo.queueCreateInfoCount = 1; } else { deviceCreateInfo.queueCreateInfoCount = 2; } const char* deviceExtensions = VK_KHR_SWAPCHAIN_EXTENSION_NAME; deviceCreateInfo.enabledExtensionCount = 1; deviceCreateInfo.ppEnabledExtensionNames = &deviceExtensions; if (vkCreateDevice(physicalDevice, &deviceCreateInfo, nullptr, &device) != VK_SUCCESS) { std::cerr << "failed to create logical device" << std::endl; assert(0); } std::cout << "created logical device" << std::endl; // Get graphics and presentation queues (which may be the same) vkGetDeviceQueue(device, graphicsQueueFamily, 0, &graphicsQueue); vkGetDeviceQueue(device, presentQueueFamily, 0, &presentQueue); std::cout << "acquired graphics and presentation queues" << std::endl; } void createSemaphores() { VkSemaphoreCreateInfo createInfo = {}; createInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO; if (vkCreateSemaphore(device, &createInfo, nullptr, &imageAvailableSemaphore) != VK_SUCCESS || vkCreateSemaphore(device, &createInfo, nullptr, &renderingFinishedSemaphore) != VK_SUCCESS) { std::cerr << "failed to create semaphores" << std::endl; assert(0); } else { std::cout << "created semaphores" << std::endl; } } void createSwapChain() { // Find surface capabilities VkSurfaceCapabilitiesKHR surfaceCapabilities; if (vkGetPhysicalDeviceSurfaceCapabilitiesKHR(physicalDevice, windowSurface, &surfaceCapabilities) != VK_SUCCESS) { std::cerr << "failed to acquire presentation surface capabilities" << std::endl; assert(0); } // Find supported surface formats uint32_t formatCount; if (vkGetPhysicalDeviceSurfaceFormatsKHR(physicalDevice, windowSurface, &formatCount, nullptr) != VK_SUCCESS || formatCount == 0) { std::cerr << "failed to get number of supported surface formats" << std::endl; assert(0); } std::vector surfaceFormats(formatCount); if (vkGetPhysicalDeviceSurfaceFormatsKHR(physicalDevice, windowSurface, &formatCount, surfaceFormats.data()) != VK_SUCCESS) { std::cerr << "failed to get supported surface formats" << std::endl; assert(0); } // Find supported present modes uint32_t presentModeCount; if (vkGetPhysicalDeviceSurfacePresentModesKHR(physicalDevice, windowSurface, &presentModeCount, nullptr) != VK_SUCCESS || presentModeCount == 0) { std::cerr << "failed to get number of supported presentation modes" << std::endl; assert(0); } std::vector presentModes(presentModeCount); if (vkGetPhysicalDeviceSurfacePresentModesKHR(physicalDevice, windowSurface, &presentModeCount, presentModes.data()) != VK_SUCCESS) { std::cerr << "failed to get supported presentation modes" << std::endl; assert(0); } // Determine number of images for swap chain uint32_t imageCount = surfaceCapabilities.minImageCount + 1; if (surfaceCapabilities.maxImageCount != 0 && imageCount > surfaceCapabilities.maxImageCount) { imageCount = surfaceCapabilities.maxImageCount; } std::cout << "using " << imageCount << " images for swap chain" << std::endl; // Select a surface format swapchainFormat = chooseSurfaceFormat(surfaceFormats); // Select swap chain size swapChainExtent = chooseSwapExtent(surfaceCapabilities); // Check if swap chain supports being the destination of an image transfer // Note: AMD driver bug, though it would be nice to implement a workaround that doesn't use transfering //if (!(surfaceCapabilities.supportedUsageFlags & VK_IMAGE_USAGE_TRANSFER_DST_BIT)) { // std::cerr << "swap chain image does not support VK_IMAGE_TRANSFER_DST usage" << std::endl; //assert(0); //} // Determine transformation to use (preferring no transform) VkSurfaceTransformFlagBitsKHR surfaceTransform; if (surfaceCapabilities.supportedTransforms & VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR) { surfaceTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR; } else { surfaceTransform = surfaceCapabilities.currentTransform; } // Choose presentation mode (preferring MAILBOX ~= triple buffering) VkPresentModeKHR presentMode = choosePresentMode(presentModes); // Finally, create the swap chain VkSwapchainCreateInfoKHR createInfo = {}; createInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR; createInfo.surface = windowSurface; createInfo.minImageCount = imageCount; createInfo.imageFormat = swapchainFormat.format; createInfo.imageColorSpace = swapchainFormat.colorSpace; createInfo.imageExtent = swapChainExtent; createInfo.imageArrayLayers = 1; createInfo.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; createInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE; createInfo.queueFamilyIndexCount = 0; createInfo.pQueueFamilyIndices = nullptr; createInfo.preTransform = surfaceTransform; createInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR; createInfo.presentMode = presentMode; createInfo.clipped = VK_TRUE; createInfo.oldSwapchain = VK_NULL_HANDLE; if (vkCreateSwapchainKHR(device, &createInfo, nullptr, &swapChain) != VK_SUCCESS) { std::cerr << "failed to create swap chain" << std::endl; assert(0); } else { std::cout << "created swap chain" << std::endl; } // Store the images used by the swap chain // Note: these are the images that swap chain image indices refer to // Note: actual number of images may differ from requested number, since it's a lower bound uint32_t actualImageCount = 0; if (vkGetSwapchainImagesKHR(device, swapChain, &actualImageCount, nullptr) != VK_SUCCESS || actualImageCount == 0) { std::cerr << "failed to acquire number of swap chain images" << std::endl; assert(0); } swapChainImages.resize(actualImageCount); views.resize(actualImageCount); if (vkGetSwapchainImagesKHR(device, swapChain, &actualImageCount, swapChainImages.data()) != VK_SUCCESS) { std::cerr << "failed to acquire swap chain images" << std::endl; assert(0); } std::cout << "acquired swap chain images" << std::endl; } VkSurfaceFormatKHR chooseSurfaceFormat(const std::vector& availableFormats) { // We can either choose any format if (availableFormats.size() == 1 && availableFormats[0].format == VK_FORMAT_UNDEFINED) { return { VK_FORMAT_R8G8B8A8_UNORM, VK_COLORSPACE_SRGB_NONLINEAR_KHR }; } // Or go with the standard format - if available for (const auto& availableSurfaceFormat : availableFormats) { if (availableSurfaceFormat.format == VK_FORMAT_R8G8B8A8_UNORM) { return availableSurfaceFormat; } } // Or fall back to the first available one return availableFormats[0]; } VkExtent2D chooseSwapExtent(const VkSurfaceCapabilitiesKHR& surfaceCapabilities) { if (surfaceCapabilities.currentExtent.width == -1) { VkExtent2D swapChainExtent = {}; #define min(a, b) (a < b ? a : b) #define max(a, b) (a > b ? a : b) swapChainExtent.width = min(max(640, surfaceCapabilities.minImageExtent.width), surfaceCapabilities.maxImageExtent.width); swapChainExtent.height = min(max(480, surfaceCapabilities.minImageExtent.height), surfaceCapabilities.maxImageExtent.height); return swapChainExtent; } else { return surfaceCapabilities.currentExtent; } } VkPresentModeKHR choosePresentMode(const std::vector presentModes) { for (const auto& presentMode : presentModes) { if (presentMode == VK_PRESENT_MODE_MAILBOX_KHR) { return presentMode; } } // If mailbox is unavailable, fall back to FIFO (guaranteed to be available) return VK_PRESENT_MODE_FIFO_KHR; } void createCommandQueues() { // Create presentation command pool // Note: only command buffers for a single queue family can be created from this pool VkCommandPoolCreateInfo poolCreateInfo = {}; poolCreateInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO; poolCreateInfo.queueFamilyIndex = presentQueueFamily; if (vkCreateCommandPool(device, &poolCreateInfo, nullptr, &commandPool) != VK_SUCCESS) { std::cerr << "failed to create command queue for presentation queue family" << std::endl; assert(0); } else { std::cout << "created command pool for presentation queue family" << std::endl; } // Get number of swap chain images and create vector to hold command queue for each one presentCommandBuffers.resize(swapChainImages.size()); // Allocate presentation command buffers // Note: secondary command buffers are only for nesting in primary command buffers VkCommandBufferAllocateInfo allocInfo = {}; allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO; allocInfo.commandPool = commandPool; allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; allocInfo.commandBufferCount = (uint32_t)swapChainImages.size(); if (vkAllocateCommandBuffers(device, &allocInfo, presentCommandBuffers.data()) != VK_SUCCESS) { std::cerr << "failed to allocate presentation command buffers" << std::endl; assert(0); } else { std::cout << "allocated presentation command buffers" << std::endl; } } void recordCommandBuffers() { // Prepare data for recording command buffers VkCommandBufferBeginInfo beginInfo = {}; beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; beginInfo.flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT; // Note: contains value for each subresource range VkClearColorValue clearColor = { { 0.4f, 0.6f, 0.9f, 1.0f } // R, G, B, A }; VkClearValue clearValue = {}; clearValue.color = clearColor; VkImageSubresourceRange subResourceRange = {}; subResourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; subResourceRange.baseMipLevel = 0; subResourceRange.levelCount = 1; subResourceRange.baseArrayLayer = 0; subResourceRange.layerCount = 1; VkRenderPassBeginInfo renderPassInfo = {}; renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO; renderPassInfo.renderPass = renderPass; renderPassInfo.renderArea.offset.x = 0; renderPassInfo.renderArea.offset.y = 0; renderPassInfo.renderArea.extent.width = swapChainExtent.width; renderPassInfo.renderArea.extent.height = swapChainExtent.height; renderPassInfo.clearValueCount = 1; renderPassInfo.pClearValues = &clearValue; VkViewport viewport = { 0 }; viewport.height = (float)swapChainExtent.width; viewport.width = (float)swapChainExtent.height; viewport.minDepth = (float)0.0f; viewport.maxDepth = (float)1.0f; VkRect2D scissor = { 0 }; scissor.extent.width = swapChainExtent.width; scissor.extent.height = swapChainExtent.height; scissor.offset.x = 0; scissor.offset.y = 0; // Record the command buffer for every swap chain image for (uint32_t i = 0; i < swapChainImages.size(); i++) { // Record command buffer vkBeginCommandBuffer(presentCommandBuffers[i], &beginInfo); { //offscreen rendering VkClearValue offscreenClearValues = { .color = { 1.0f, 0.0f, 1.0f, 1.0f } }; renderPassInfo.framebuffer = offscreenFramebuffer; renderPassInfo.renderPass = offscreenRenderPass; renderPassInfo.clearValueCount = 1; renderPassInfo.pClearValues = &offscreenClearValues; vkCmdBeginRenderPass(presentCommandBuffers[i], &renderPassInfo, VK_SUBPASS_CONTENTS_INLINE); vkCmdBindPipeline(presentCommandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, blitPipeline); VkDeviceSize offsets = 0; vkCmdBindVertexBuffers(presentCommandBuffers[i], 0, 1, &fsqVertexBuffer, &offsets ); vkCmdBindDescriptorSets(presentCommandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, blitPipelineLayout, 0, 1, &blitDescriptorSet, 0, 0); float Wcoeff = 1.0f; //1.0f / Wc = 2.0 - Wcoeff float viewportScaleX = (float)(swapChainExtent.width) * 0.5f * 16.0f; float viewportScaleY = -1.0f * (float)(swapChainExtent.height) * 0.5f * 16.0f; float Zs = 0.5f; uint32_t vertConstants[4]; vertConstants[0] = *(uint32_t*)&Wcoeff; vertConstants[1] = *(uint32_t*)&viewportScaleX; vertConstants[2] = *(uint32_t*)&viewportScaleY; vertConstants[3] = *(uint32_t*)&Zs; vkCmdPushConstants(presentCommandBuffers[i], blitPipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(vertConstants), &vertConstants); uint32_t size = swapChainExtent.width * swapChainExtent.height * 4 - 4;//swapChainExtent.width * swapChainExtent.height * 4; uint32_t fragConstants[2]; fragConstants[0] = size; fragConstants[1] = 0; vkCmdPushConstants(presentCommandBuffers[i], blitPipelineLayout, VK_SHADER_STAGE_FRAGMENT_BIT, 0, sizeof(fragConstants), &fragConstants); vkCmdDraw(presentCommandBuffers[i], 6, 1, 0, 0); vkCmdEndRenderPass(presentCommandBuffers[i]); } { //render to screen renderPassInfo.framebuffer = fbs[i]; renderPassInfo.renderPass = renderPass; renderPassInfo.clearValueCount = 1; renderPassInfo.pClearValues = &clearValue; vkCmdBeginRenderPass(presentCommandBuffers[i], &renderPassInfo, VK_SUBPASS_CONTENTS_INLINE); vkCmdBindPipeline(presentCommandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, samplePipeline); VkDeviceSize offsets = 0; vkCmdBindVertexBuffers(presentCommandBuffers[i], 0, 1, &triangleVertexBuffer, &offsets ); vkCmdBindDescriptorSets(presentCommandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, samplePipelineLayout, 0, 1, &sampleDescriptorSet, 0, 0); float Wcoeff = 1.0f; //1.0f / Wc = 2.0 - Wcoeff float viewportScaleX = (float)(swapChainExtent.width) * 0.5f * 16.0f; float viewportScaleY = -1.0f * (float)(swapChainExtent.height) * 0.5f * 16.0f; float Zs = 0.5f; uint32_t pushConstants[4]; pushConstants[0] = *(uint32_t*)&Wcoeff; pushConstants[1] = *(uint32_t*)&viewportScaleX; pushConstants[2] = *(uint32_t*)&viewportScaleY; pushConstants[3] = *(uint32_t*)&Zs; vkCmdPushConstants(presentCommandBuffers[i], samplePipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(pushConstants), &pushConstants); vkCmdDraw(presentCommandBuffers[i], 3, 1, 0, 0); vkCmdEndRenderPass(presentCommandBuffers[i]); } if (vkEndCommandBuffer(presentCommandBuffers[i]) != VK_SUCCESS) { std::cerr << "failed to record command buffer" << std::endl; assert(0); } else { std::cout << "recorded command buffer for image " << i << std::endl; } } } void draw() { // Acquire image uint32_t imageIndex; VkResult res = vkAcquireNextImageKHR(device, swapChain, UINT64_MAX, imageAvailableSemaphore, VK_NULL_HANDLE, &imageIndex); if (res != VK_SUCCESS && res != VK_SUBOPTIMAL_KHR) { std::cerr << "failed to acquire image" << std::endl; assert(0); } std::cout << "acquired image" << std::endl; // Wait for image to be available and draw VkSubmitInfo submitInfo = {}; submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; submitInfo.waitSemaphoreCount = 1; submitInfo.pWaitSemaphores = &imageAvailableSemaphore; submitInfo.signalSemaphoreCount = 1; submitInfo.pSignalSemaphores = &renderingFinishedSemaphore; submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &presentCommandBuffers[imageIndex]; if (vkQueueSubmit(presentQueue, 1, &submitInfo, VK_NULL_HANDLE) != VK_SUCCESS) { std::cerr << "failed to submit draw command buffer" << std::endl; assert(0); } std::cout << "submitted draw command buffer" << std::endl; // Present drawn image // Note: semaphore here is not strictly necessary, because commands are processed in submission order within a single queue VkPresentInfoKHR presentInfo = {}; presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR; presentInfo.waitSemaphoreCount = 1; presentInfo.pWaitSemaphores = &renderingFinishedSemaphore; presentInfo.swapchainCount = 1; presentInfo.pSwapchains = &swapChain; presentInfo.pImageIndices = &imageIndex; res = vkQueuePresentKHR(presentQueue, &presentInfo); if (res != VK_SUCCESS) { std::cerr << "failed to submit present command buffer" << std::endl; assert(0); } std::cout << "submitted presentation command buffer" << std::endl; } void CreateRenderPass() { VkAttachmentReference attachRef = {}; attachRef.attachment = 0; attachRef.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; VkSubpassDescription subpassDesc = {}; subpassDesc.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; subpassDesc.colorAttachmentCount = 1; subpassDesc.pColorAttachments = &attachRef; VkAttachmentDescription attachDesc = {}; attachDesc.format = swapchainFormat.format; //Todo attachDesc.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; attachDesc.storeOp = VK_ATTACHMENT_STORE_OP_STORE; attachDesc.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attachDesc.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attachDesc.initialLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; attachDesc.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; attachDesc.samples = VK_SAMPLE_COUNT_1_BIT; VkRenderPassCreateInfo renderPassCreateInfo = {}; renderPassCreateInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO; renderPassCreateInfo.attachmentCount = 1; renderPassCreateInfo.pAttachments = &attachDesc; renderPassCreateInfo.subpassCount = 1; renderPassCreateInfo.pSubpasses = &subpassDesc; VkResult res = vkCreateRenderPass(device, &renderPassCreateInfo, NULL, &renderPass); printf("Created a render pass\n"); } void CreateFramebuffer() { fbs.resize(swapChainImages.size()); VkResult res; for (uint32_t i = 0; i < swapChainImages.size(); i++) { VkImageViewCreateInfo ViewCreateInfo = {}; ViewCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; ViewCreateInfo.image = swapChainImages[i]; ViewCreateInfo.format = swapchainFormat.format; //Todo ViewCreateInfo.viewType = VK_IMAGE_VIEW_TYPE_2D; ViewCreateInfo.components.r = VK_COMPONENT_SWIZZLE_IDENTITY; ViewCreateInfo.components.g = VK_COMPONENT_SWIZZLE_IDENTITY; ViewCreateInfo.components.b = VK_COMPONENT_SWIZZLE_IDENTITY; ViewCreateInfo.components.a = VK_COMPONENT_SWIZZLE_IDENTITY; ViewCreateInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; ViewCreateInfo.subresourceRange.baseMipLevel = 0; ViewCreateInfo.subresourceRange.levelCount = 1; ViewCreateInfo.subresourceRange.baseArrayLayer = 0; ViewCreateInfo.subresourceRange.layerCount = 1; res = vkCreateImageView(device, &ViewCreateInfo, NULL, &views[i]); VkFramebufferCreateInfo fbCreateInfo = {}; fbCreateInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO; fbCreateInfo.renderPass = renderPass; fbCreateInfo.attachmentCount = 1; fbCreateInfo.pAttachments = &views[i]; fbCreateInfo.width = swapChainExtent.width; fbCreateInfo.height = swapChainExtent.height; fbCreateInfo.layers = 1; res = vkCreateFramebuffer(device, &fbCreateInfo, NULL, &fbs[i]); } printf("Frame buffers created\n"); } void CreateShaders() { //TODO doesn't work for some reason... char vs_asm_code[] = ///0x40000000 = 2.0 ///uni = 1.0 ///rb0 = 2 - 1 = 1 "sig_small_imm ; rx0 = fsub.ws.always(b, a, uni, 0x40000000) ; nop = nop(r0, r0) ;\n" ///set up VPM read for subsequent reads ///0x00201a00: 0000 0000 0010 0000 0001 1010 0000 0000 ///addr: 0 ///size: 32bit ///packed ///horizontal ///stride=1 ///vectors to read = 2 (how many components) "sig_load_imm ; vr_setup = load32.always(0x00201a00) ; nop = load32.always() ;\n" ///uni = viewportXScale ///r0 = vpm * uni "sig_none ; nop = nop(r0, r0, vpm_read, uni) ; r0 = fmul.always(a, b) ;\n" ///r1 = r0 * rb0 (1) "sig_none ; nop = nop(r0, r0, nop, rb0) ; r1 = fmul.always(r0, b) ;\n" ///uni = viewportYScale ///ra0.16a = int(r1), r2 = vpm * uni "sig_none ; rx0.16a = ftoi.always(r1, r1, vpm_read, uni) ; r2 = fmul.always(a, b) ;\n" ///r3 = r2 * rb0 "sig_none ; nop = nop(r0, r0, nop, rb0) ; r3 = fmul.always(r2, b) ;\n" ///ra0.16b = int(r3) "sig_none ; rx0.16b = ftoi.always(r3, r3) ; nop = nop(r0, r0) ;\n" ///set up VPM write for subsequent writes ///0x00001a00: 0000 0000 0000 0000 0001 1010 0000 0000 ///addr: 0 ///size: 32bit ///horizontal ///stride = 1 "sig_load_imm ; vw_setup = load32.always.ws(0x00001a00) ; nop = load32.always() ;\n" ///shaded vertex format for PSE /// Ys and Xs ///vpm = ra0 "sig_none ; vpm = or.always(a, a, ra0, nop) ; nop = nop(r0, r0);\n" /// Zc ///uni = 0.5 ///vpm = uni "sig_none ; vpm = or.always(a, a, uni, nop) ; nop = nop(r0, r0);\n" /// 1.0 / Wc ///vpm = rb0 (1) "sig_none ; vpm = or.always(b, b, nop, rb0) ; nop = nop(r0, r0);\n" ///END "sig_end ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;\n" "sig_none ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;\n" "sig_none ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;\n" "\0"; char cs_asm_code[] = ///uni = 1.0 ///r3 = 2.0 - uni "sig_small_imm ; r3 = fsub.always(b, a, uni, 0x40000000) ; nop = nop(r0, r0);\n" "sig_load_imm ; vr_setup = load32.always(0x00201a00) ; nop = load32.always() ;\n" ///r2 = vpm "sig_none ; r2 = or.always(a, a, vpm_read, nop) ; nop = nop(r0, r0);\n" "sig_load_imm ; vw_setup = load32.always.ws(0x00001a00) ; nop = load32.always() ;\n" ///shaded coordinates format for PTB /// write Xc ///r1 = vpm, vpm = r2 "sig_none ; r1 = or.always(a, a, vpm_read, nop) ; vpm = v8min.always(r2, r2);\n" /// write Yc ///uni = viewportXscale ///vpm = r1, r2 = r2 * uni "sig_none ; vpm = or.always(r1, r1, uni, nop) ; r2 = fmul.always(r2, a);\n" ///uni = viewportYscale ///r1 = r1 * uni "sig_none ; nop = nop(r0, r0, uni, nop) ; r1 = fmul.always(r1, a);\n" ///r0 = r2 * r3 "sig_none ; nop = nop(r0, r0) ; r0 = fmul.always(r2, r3);\n" ///ra0.16a = r0, r1 = r1 * r3 "sig_none ; rx0.16a = ftoi.always(r0, r0) ; r1 = fmul.always(r1, r3) ;\n" ///ra0.16b = r1 "sig_none ; rx0.16b = ftoi.always(r1, r1) ; nop = nop(r0, r0) ;\n" ///write Zc ///vpm = 0 "sig_small_imm ; vpm = or.always(b, b, nop, 0) ; nop = nop(r0, r0) ;\n" ///write Wc ///vpm = 1.0 "sig_small_imm ; vpm = or.always(b, b, nop, 0x3f800000) ; nop = nop(r0, r0) ;\n" ///write Ys and Xs ///vpm = ra0 "sig_none ; vpm = or.always(a, a, ra0, nop) ; nop = nop(r0, r0) ;\n" ///write Zs ///uni = 0.5 ///vpm = uni "sig_none ; vpm = or.always(a, a, uni, nop) ; nop = nop(r0, r0) ;\n" ///write 1/Wc ///vpm = r3 "sig_none ; vpm = or.always(r3, r3) ; nop = nop(r0, r0) ;\n" ///END "sig_end ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;\n" "sig_none ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;\n" "sig_none ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;\n" "\0"; //clever: use small immedate -1 interpreted as 0xffffffff (white) to set color to white //"sig_small_imm ; tlb_color_all = or.always(b, b, nop, -1) ; nop = nop(r0, r0) ;" //8bit access //abcd //BGRA /** "General-memory lookups are performed by writing to just the ā€˜sā€™ parameter, using the absolute memory address. In this case no uniform is read. General-memory lookups always return a 32-bit value, and the bottom two bits of the address are ignored." /**/ //blit buffer to texture (generic buffer read) char blit_fs_asm_code[] = "sig_load_imm ; r2 = load32.always(0x44f00000) ; nop = load32() ;" //width = 1920.0 "sig_none ; r1 = itof.always(b, b, x_pix, y_pix) ; nop = nop(r0, r0) ;" //FragCoord Y "sig_none ; r0 = itof.always(a, a, x_pix, y_pix) ; r1 = fmul.always(r1, r2) ;" //FragCoord X, r1 = Y * width "sig_none ; r0 = fadd.always(r0, r1) ; r0 = nop(r0, r0) ;" //r0 = Y * width + X "sig_small_imm ; r0 = nop(r0, r0, nop, 0x40800000) ; r0 = fmul.always(r0, b) ;" //r0 = (Y * width + X) * 4 "sig_none ; r0 = ftoi.always(r0, r0) ; nop = nop(r0, r0) ;" //convert to integer ///write general mem access address ///first argument must be clamped to [0...bufsize-4] ///eg must do min(max(x,0), uni) ///second argument must be a uniform (containing base address, which is 0) ///writing tmu0_s signals that all coordinates are written "sig_small_imm ; r0 = max.always(r0, b, nop, 0) ; nop = nop(r0, r0) ;" //clamp general access "sig_none ; r0 = min.always(r0, b, nop, uni) ; nop = nop(r0, r0) ;" //uni = 1920 * 1080 * 4 - 4 "sig_none ; tmu0_s = add.always(r0, b, nop, uni) ; nop = nop(r0, r0) ;" ///suspend thread (after 2 nops) to wait for TMU request to finish "sig_thread_switch ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;" "sig_none ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;" "sig_none ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;" ///read TMU0 request result to R4 "sig_load_tmu0 ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;" ///when thread has been awakened, MOV from R4 to R0 "sig_none ; r0 = fmax.pm.always.8a(r4, r4) ; nop = nop(r0, r0) ;" "sig_none ; r1 = fmax.pm.always.8b(r4, r4) ; r0.8a = v8min.always(r0, r0) ;" "sig_none ; r2 = fmax.pm.always.8c(r4, r4) ; r0.8b = v8min.always(r1, r1) ;" "sig_none ; r3 = fmax.pm.always.8d(r4, r4) ; r0.8c = v8min.always(r2, r2) ;" "sig_none ; nop = nop.pm(r0, r0) ; r0.8d = v8min.always(r3, r3) ;" "sig_none ; tlb_color_all = or.always(r0, r0) ; nop = nop(r0, r0) ;" "sig_end ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;" "sig_none ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;" "sig_unlock_score ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;" "\0"; //sample texture char sample_fs_asm_code[] = "sig_none ; r0 = itof.always(b, b, x_pix, y_pix) ; nop = nop(r0, r0) ;" "sig_load_imm ; r2 = load32.always(0x3a72b9d6) ; nop = load32() ;" //1/1080 "sig_none ; r0 = itof.always(a, a, x_pix, y_pix) ; r1 = fmul.always(r2, r0); ;" //r1 contains tex coord y "sig_load_imm ; r2 = load32.always(0x3a088888) ; nop = load32() ;" //1/1920 ///write texture addresses (x, y) ///writing tmu0_s signals that all coordinates are written "sig_none ; tmu0_t = or.always(r1, r1) ; r0 = fmul.always(r2, r0) ;" //r0 contains tex coord x "sig_none ; tmu0_s = or.always(r0, r0) ; nop = nop(r0, r0) ;" ///suspend thread (after 2 nops) to wait for TMU request to finish "sig_thread_switch ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;" "sig_none ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;" "sig_none ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;" ///read TMU0 request result to R4 "sig_load_tmu0 ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;" ///when thread has been awakened, MOV from R4 to R0 "sig_none ; r0 = fmax.pm.always.8a(r4, r4) ; nop = nop(r0, r0) ;" "sig_none ; r1 = fmax.pm.always.8b(r4, r4) ; r0.8a = v8min.always(r0, r0) ;" "sig_none ; r2 = fmax.pm.always.8c(r4, r4) ; r0.8b = v8min.always(r1, r1) ;" "sig_none ; r3 = fmax.pm.always.8d(r4, r4) ; r0.8c = v8min.always(r2, r2) ;" "sig_none ; nop = nop.pm(r0, r0) ; r0.8d = v8min.always(r3, r3) ;" "sig_none ; tlb_color_all = or.always(r0, r0) ; nop = nop(r0, r0) ;" "sig_end ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;" "sig_none ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;" "sig_unlock_score ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;" "\0"; char* blit_asm_strings[] = { (char*)cs_asm_code, (char*)vs_asm_code, (char*)blit_fs_asm_code, 0 }; char* sample_asm_strings[] = { (char*)cs_asm_code, (char*)vs_asm_code, (char*)sample_fs_asm_code, 0 }; VkRpiAssemblyMappingEXT blit_mappings[] = { //vertex shader uniforms { VK_RPI_ASSEMBLY_MAPPING_TYPE_PUSH_CONSTANT, VK_DESCRIPTOR_TYPE_MAX_ENUM, //descriptor type 0, //descriptor set # 0, //descriptor binding # 0, //descriptor array element # 0, //resource offset VK_SHADER_STAGE_VERTEX_BIT }, { VK_RPI_ASSEMBLY_MAPPING_TYPE_PUSH_CONSTANT, VK_DESCRIPTOR_TYPE_MAX_ENUM, //descriptor type 0, //descriptor set # 0, //descriptor binding # 0, //descriptor array element # 4, //resource offset VK_SHADER_STAGE_VERTEX_BIT }, { VK_RPI_ASSEMBLY_MAPPING_TYPE_PUSH_CONSTANT, VK_DESCRIPTOR_TYPE_MAX_ENUM, //descriptor type 0, //descriptor set # 0, //descriptor binding # 0, //descriptor array element # 8, //resource offset VK_SHADER_STAGE_VERTEX_BIT }, { VK_RPI_ASSEMBLY_MAPPING_TYPE_PUSH_CONSTANT, VK_DESCRIPTOR_TYPE_MAX_ENUM, //descriptor type 0, //descriptor set # 0, //descriptor binding # 0, //descriptor array element # 12, //resource offset VK_SHADER_STAGE_VERTEX_BIT }, { VK_RPI_ASSEMBLY_MAPPING_TYPE_PUSH_CONSTANT, VK_DESCRIPTOR_TYPE_MAX_ENUM, //descriptor type 0, //descriptor set # 0, //descriptor binding # 0, //descriptor array element # 0, //resource offset VK_SHADER_STAGE_FRAGMENT_BIT }, { VK_RPI_ASSEMBLY_MAPPING_TYPE_PUSH_CONSTANT, VK_DESCRIPTOR_TYPE_MAX_ENUM, //descriptor type 0, //descriptor set # 0, //descriptor binding # 0, //descriptor array element # 4, //resource offset VK_SHADER_STAGE_FRAGMENT_BIT }, //fragment shader uniforms { VK_RPI_ASSEMBLY_MAPPING_TYPE_DESCRIPTOR, VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER, //descriptor type 0, //descriptor set # 0, //descriptor binding # 0, //descriptor array element # 0, //resource offset VK_SHADER_STAGE_FRAGMENT_BIT } }; VkRpiAssemblyMappingEXT sample_mappings[] = { //vertex shader uniforms { VK_RPI_ASSEMBLY_MAPPING_TYPE_PUSH_CONSTANT, VK_DESCRIPTOR_TYPE_MAX_ENUM, //descriptor type 0, //descriptor set # 0, //descriptor binding # 0, //descriptor array element # 0, //resource offset VK_SHADER_STAGE_VERTEX_BIT }, { VK_RPI_ASSEMBLY_MAPPING_TYPE_PUSH_CONSTANT, VK_DESCRIPTOR_TYPE_MAX_ENUM, //descriptor type 0, //descriptor set # 0, //descriptor binding # 0, //descriptor array element # 4, //resource offset VK_SHADER_STAGE_VERTEX_BIT }, { VK_RPI_ASSEMBLY_MAPPING_TYPE_PUSH_CONSTANT, VK_DESCRIPTOR_TYPE_MAX_ENUM, //descriptor type 0, //descriptor set # 0, //descriptor binding # 0, //descriptor array element # 8, //resource offset VK_SHADER_STAGE_VERTEX_BIT }, { VK_RPI_ASSEMBLY_MAPPING_TYPE_PUSH_CONSTANT, VK_DESCRIPTOR_TYPE_MAX_ENUM, //descriptor type 0, //descriptor set # 0, //descriptor binding # 0, //descriptor array element # 12, //resource offset VK_SHADER_STAGE_VERTEX_BIT }, //fragment shader uniforms { VK_RPI_ASSEMBLY_MAPPING_TYPE_DESCRIPTOR, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, //descriptor type 0, //descriptor set # 0, //descriptor binding # 0, //descriptor array element # 0, //resource offset VK_SHADER_STAGE_FRAGMENT_BIT } }; VkRpiShaderModuleAssemblyCreateInfoEXT shaderModuleCreateInfo; shaderModuleCreateInfo.asmStrings = blit_asm_strings; shaderModuleCreateInfo.mappings = blit_mappings; shaderModuleCreateInfo.numMappings = sizeof(blit_mappings) / sizeof(VkRpiAssemblyMappingEXT); VkResult res = vkCreateShaderModuleFromRpiAssemblyEXT(device, &shaderModuleCreateInfo, 0, &blitShaderModule); assert(blitShaderModule); shaderModuleCreateInfo.asmStrings = sample_asm_strings; shaderModuleCreateInfo.mappings = sample_mappings; shaderModuleCreateInfo.numMappings = sizeof(sample_mappings) / sizeof(VkRpiAssemblyMappingEXT); res = vkCreateShaderModuleFromRpiAssemblyEXT(device, &shaderModuleCreateInfo, 0, &sampleShaderModule); assert(sampleShaderModule); //exit(-1); } #define VERTEX_BUFFER_BIND_ID 0 void CreatePipeline() { VkVertexInputBindingDescription vertexInputBindingDescription = { 0, sizeof(float) * 2, VK_VERTEX_INPUT_RATE_VERTEX }; VkVertexInputAttributeDescription vertexInputAttributeDescription = { 0, 0, VK_FORMAT_R32G32_SFLOAT, 0 }; VkPipelineVertexInputStateCreateInfo vertexInputInfo = {}; vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO; vertexInputInfo.vertexAttributeDescriptionCount = 1; vertexInputInfo.pVertexAttributeDescriptions = &vertexInputAttributeDescription; vertexInputInfo.vertexBindingDescriptionCount = 1; vertexInputInfo.pVertexBindingDescriptions = &vertexInputBindingDescription; VkPipelineInputAssemblyStateCreateInfo pipelineIACreateInfo = {}; pipelineIACreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO; pipelineIACreateInfo.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; VkViewport vp = {}; vp.x = 0.0f; vp.y = 0.0f; vp.width = (float)swapChainExtent.width; vp.height = (float)swapChainExtent.height; vp.minDepth = 0.0f; vp.maxDepth = 1.0f; VkPipelineViewportStateCreateInfo vpCreateInfo = {}; vpCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO; vpCreateInfo.viewportCount = 1; vpCreateInfo.pViewports = &vp; VkPipelineRasterizationStateCreateInfo rastCreateInfo = {}; rastCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO; rastCreateInfo.polygonMode = VK_POLYGON_MODE_FILL; rastCreateInfo.cullMode = VK_CULL_MODE_NONE; rastCreateInfo.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE; rastCreateInfo.lineWidth = 1.0f; VkPipelineMultisampleStateCreateInfo pipelineMSCreateInfo = {}; pipelineMSCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO; VkPipelineColorBlendAttachmentState blendAttachState = {}; blendAttachState.colorWriteMask = 0xf; blendAttachState.blendEnable = false; VkPipelineColorBlendStateCreateInfo blendCreateInfo = {}; blendCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO; blendCreateInfo.attachmentCount = 1; blendCreateInfo.pAttachments = &blendAttachState; VkPipelineDepthStencilStateCreateInfo depthStencilState = {}; depthStencilState.depthTestEnable = false; depthStencilState.stencilTestEnable = false; { //create blit pipeline VkPushConstantRange pushConstantRanges[2]; pushConstantRanges[0].offset = 0; pushConstantRanges[0].size = 4 * 4; //4 * 32bits pushConstantRanges[0].stageFlags = VK_SHADER_STAGE_VERTEX_BIT; pushConstantRanges[1].offset = 0; pushConstantRanges[1].size = 3 * 4; //3 * 32bits pushConstantRanges[1].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT; VkPipelineShaderStageCreateInfo shaderStageCreateInfo[2] = {}; shaderStageCreateInfo[0].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; shaderStageCreateInfo[0].stage = VK_SHADER_STAGE_VERTEX_BIT; shaderStageCreateInfo[0].module = blitShaderModule; shaderStageCreateInfo[0].pName = "main"; shaderStageCreateInfo[1].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; shaderStageCreateInfo[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT; shaderStageCreateInfo[1].module = blitShaderModule; shaderStageCreateInfo[1].pName = "main"; VkPipelineLayoutCreateInfo pipelineLayoutCI = {}; pipelineLayoutCI.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO; pipelineLayoutCI.setLayoutCount = 1; pipelineLayoutCI.pSetLayouts = &blitDsl; pipelineLayoutCI.pushConstantRangeCount = 2; pipelineLayoutCI.pPushConstantRanges = &pushConstantRanges[0]; vkCreatePipelineLayout(device, &pipelineLayoutCI, 0, &blitPipelineLayout); VkGraphicsPipelineCreateInfo pipelineInfo = {}; pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO; pipelineInfo.stageCount = 2; pipelineInfo.pStages = &shaderStageCreateInfo[0]; pipelineInfo.pVertexInputState = &vertexInputInfo; pipelineInfo.pInputAssemblyState = &pipelineIACreateInfo; pipelineInfo.pViewportState = &vpCreateInfo; pipelineInfo.pRasterizationState = &rastCreateInfo; pipelineInfo.pMultisampleState = &pipelineMSCreateInfo; pipelineInfo.pColorBlendState = &blendCreateInfo; pipelineInfo.renderPass = offscreenRenderPass; pipelineInfo.basePipelineIndex = -1; pipelineInfo.pDepthStencilState = &depthStencilState; pipelineInfo.layout = blitPipelineLayout; VkResult res = vkCreateGraphicsPipelines(device, VK_NULL_HANDLE, 1, &pipelineInfo, NULL, &blitPipeline); } { //create sample pipeline VkPushConstantRange pushConstantRanges[2]; pushConstantRanges[0].offset = 0; pushConstantRanges[0].size = 4 * 4; //4 * 32bits pushConstantRanges[0].stageFlags = VK_SHADER_STAGE_VERTEX_BIT; pushConstantRanges[1].offset = 0; pushConstantRanges[1].size = 1 * 4; //1 * 32bits pushConstantRanges[1].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT; VkPipelineShaderStageCreateInfo shaderStageCreateInfo[2] = {}; shaderStageCreateInfo[0].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; shaderStageCreateInfo[0].stage = VK_SHADER_STAGE_VERTEX_BIT; shaderStageCreateInfo[0].module = sampleShaderModule; shaderStageCreateInfo[0].pName = "main"; shaderStageCreateInfo[1].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; shaderStageCreateInfo[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT; shaderStageCreateInfo[1].module = sampleShaderModule; shaderStageCreateInfo[1].pName = "main"; VkPipelineLayoutCreateInfo pipelineLayoutCI = {}; pipelineLayoutCI.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO; pipelineLayoutCI.setLayoutCount = 1; pipelineLayoutCI.pSetLayouts = &sampleDsl; pipelineLayoutCI.pushConstantRangeCount = 2; pipelineLayoutCI.pPushConstantRanges = &pushConstantRanges[0]; vkCreatePipelineLayout(device, &pipelineLayoutCI, 0, &samplePipelineLayout); VkGraphicsPipelineCreateInfo pipelineInfo = {}; pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO; pipelineInfo.stageCount = 2; pipelineInfo.pStages = &shaderStageCreateInfo[0]; pipelineInfo.pVertexInputState = &vertexInputInfo; pipelineInfo.pInputAssemblyState = &pipelineIACreateInfo; pipelineInfo.pViewportState = &vpCreateInfo; pipelineInfo.pRasterizationState = &rastCreateInfo; pipelineInfo.pMultisampleState = &pipelineMSCreateInfo; pipelineInfo.pColorBlendState = &blendCreateInfo; pipelineInfo.renderPass = renderPass; pipelineInfo.basePipelineIndex = -1; pipelineInfo.pDepthStencilState = &depthStencilState; pipelineInfo.layout = samplePipelineLayout; VkResult res = vkCreateGraphicsPipelines(device, VK_NULL_HANDLE, 1, &pipelineInfo, NULL, &samplePipeline); } printf("Graphics pipeline created\n"); } uint32_t getMemoryTypeIndex(VkPhysicalDeviceMemoryProperties deviceMemoryProperties, uint32_t typeBits, VkMemoryPropertyFlags properties) { // Iterate over all memory types available for the device used in this example for (uint32_t i = 0; i < deviceMemoryProperties.memoryTypeCount; i++) { if ((typeBits & 1) == 1) { if ((deviceMemoryProperties.memoryTypes[i].propertyFlags & properties) == properties) { return i; } } typeBits >>= 1; } assert(0); } void CreateTexture() { VkFormat format = VK_FORMAT_R8G8B8A8_UNORM; uint32_t width = swapChainExtent.width, height = swapChainExtent.height; uint32_t mipLevels = 1; char* texData = readPPM("image.ppm"); { //create storage texel buffer for generic mem address TMU ops test VkBufferCreateInfo bufferCreateInfo = {}; bufferCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; bufferCreateInfo.size = width * height * 4; bufferCreateInfo.usage = VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT; bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; vkCreateBuffer(device, &bufferCreateInfo, 0, &texelBuffer); VkMemoryRequirements mr; vkGetBufferMemoryRequirements(device, texelBuffer, &mr); VkMemoryAllocateInfo mai = {}; mai.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; mai.allocationSize = mr.size; mai.memoryTypeIndex = getMemoryTypeIndex(pdmp, mr.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT); vkAllocateMemory(device, &mai, 0, &texelBufferMemory); void* data; vkMapMemory(device, texelBufferMemory, 0, mr.size, 0, &data); memcpy(data, texData, width * height * 4); vkUnmapMemory(device, texelBufferMemory); free(texData); vkBindBufferMemory(device, texelBuffer, texelBufferMemory, 0); VkBufferViewCreateInfo bufferViewCreateInfo = {}; bufferViewCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO; bufferViewCreateInfo.buffer = texelBuffer; bufferViewCreateInfo.format = format; bufferViewCreateInfo.offset = 0; bufferViewCreateInfo.range = VK_WHOLE_SIZE; vkCreateBufferView(device, &bufferViewCreateInfo, 0, &texelBufferView); } { //create texture that we'll write to VkImageCreateInfo imageCreateInfo = {}; imageCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO; imageCreateInfo.imageType = VK_IMAGE_TYPE_2D; imageCreateInfo.format = format; imageCreateInfo.mipLevels = mipLevels; imageCreateInfo.arrayLayers = 1; imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; imageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; imageCreateInfo.extent = { width, height, 1 }; vkCreateImage(device, &imageCreateInfo, 0, &textureImage); VkMemoryRequirements mr; vkGetImageMemoryRequirements(device, textureImage, &mr); VkMemoryAllocateInfo mai = {}; mai.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; mai.allocationSize = mr.size; mai.memoryTypeIndex = getMemoryTypeIndex(pdmp, mr.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); vkAllocateMemory(device, &mai, 0, &textureMemory); vkBindImageMemory(device, textureImage, textureMemory, 0); VkImageViewCreateInfo view = {}; view.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; view.viewType = VK_IMAGE_VIEW_TYPE_2D; view.format = format; view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A }; view.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; view.subresourceRange.baseMipLevel = 0; view.subresourceRange.baseArrayLayer = 0; view.subresourceRange.layerCount = 1; view.subresourceRange.levelCount = 1; view.image = textureImage; vkCreateImageView(device, &view, nullptr, &textureView); VkSamplerCreateInfo sampler = {}; sampler.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO; sampler.magFilter = VK_FILTER_NEAREST; sampler.minFilter = VK_FILTER_NEAREST; sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST; sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT; sampler.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT; sampler.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT; sampler.mipLodBias = 0.0f; sampler.compareOp = VK_COMPARE_OP_NEVER; sampler.minLod = 0.0f; sampler.maxLod = 0.0f; sampler.borderColor = VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK; vkCreateSampler(device, &sampler, 0, &textureSampler); VkAttachmentDescription attachmentDescription = {}; attachmentDescription.format = format; attachmentDescription.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; attachmentDescription.finalLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; attachmentDescription.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; attachmentDescription.storeOp = VK_ATTACHMENT_STORE_OP_STORE; attachmentDescription.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attachmentDescription.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attachmentDescription.samples = VK_SAMPLE_COUNT_1_BIT; VkAttachmentReference colorReference = { 0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL }; VkSubpassDescription subpassDescription = {}; subpassDescription.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; subpassDescription.colorAttachmentCount = 1; subpassDescription.pColorAttachments = &colorReference; VkSubpassDependency dependencies[2]; dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL; dependencies[0].dstSubpass = 0; dependencies[0].srcStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT; dependencies[0].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependencies[0].srcAccessMask = VK_ACCESS_SHADER_READ_BIT; dependencies[0].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT; dependencies[1].srcSubpass = 0; dependencies[1].dstSubpass = VK_SUBPASS_EXTERNAL; dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependencies[1].dstStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT; dependencies[1].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; dependencies[1].dstAccessMask = VK_ACCESS_SHADER_READ_BIT; dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT; VkRenderPassCreateInfo renderPassInfo = {}; renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO; renderPassInfo.attachmentCount = 1; renderPassInfo.pAttachments = &attachmentDescription; renderPassInfo.subpassCount = 1; renderPassInfo.pSubpasses = &subpassDescription; renderPassInfo.dependencyCount = 2; renderPassInfo.pDependencies = dependencies; vkCreateRenderPass(device, &renderPassInfo, 0, &offscreenRenderPass); VkImageView attachments = textureView; VkFramebufferCreateInfo framebufferCreateInfo = {}; framebufferCreateInfo.renderPass = offscreenRenderPass; framebufferCreateInfo.attachmentCount = 1; framebufferCreateInfo.pAttachments = &attachments; framebufferCreateInfo.width = width; framebufferCreateInfo.height = height; framebufferCreateInfo.layers = 1; vkCreateFramebuffer(device, &framebufferCreateInfo, 0, &offscreenFramebuffer); } } void CreateDescriptorSet() { { //create blit dsl VkDescriptorSetLayoutBinding setLayoutBinding = {}; setLayoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER; setLayoutBinding.binding = 0; setLayoutBinding.descriptorCount = 1; setLayoutBinding.stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT; VkDescriptorSetLayoutCreateInfo descriptorLayoutCI = {}; descriptorLayoutCI.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO; descriptorLayoutCI.bindingCount = 1; descriptorLayoutCI.pBindings = &setLayoutBinding; vkCreateDescriptorSetLayout(device, &descriptorLayoutCI, 0, &blitDsl); } { //create sample dsl VkDescriptorSetLayoutBinding setLayoutBinding = {}; setLayoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; setLayoutBinding.binding = 0; setLayoutBinding.descriptorCount = 1; setLayoutBinding.stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT; VkDescriptorSetLayoutCreateInfo descriptorLayoutCI = {}; descriptorLayoutCI.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO; descriptorLayoutCI.bindingCount = 1; descriptorLayoutCI.pBindings = &setLayoutBinding; vkCreateDescriptorSetLayout(device, &descriptorLayoutCI, 0, &sampleDsl); } VkDescriptorPoolSize descriptorPoolSizes[2]{}; descriptorPoolSizes[0] = {}; descriptorPoolSizes[0].descriptorCount = 1; descriptorPoolSizes[0].type = VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER; descriptorPoolSizes[1] = {}; descriptorPoolSizes[1].descriptorCount = 1; descriptorPoolSizes[1].type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; VkDescriptorPoolCreateInfo descriptorPoolCI = {}; descriptorPoolCI.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO; descriptorPoolCI.poolSizeCount = 2; descriptorPoolCI.pPoolSizes = descriptorPoolSizes; descriptorPoolCI.maxSets = 2; vkCreateDescriptorPool(device, &descriptorPoolCI, 0, &descriptorPool); { //create blit descriptor set VkDescriptorSetAllocateInfo allocInfo = {}; allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO; allocInfo.descriptorPool = descriptorPool; allocInfo.descriptorSetCount = 1; allocInfo.pSetLayouts = &blitDsl; vkAllocateDescriptorSets(device, &allocInfo, &blitDescriptorSet); VkWriteDescriptorSet writeDescriptorSet = {}; writeDescriptorSet.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; writeDescriptorSet.dstSet = blitDescriptorSet; writeDescriptorSet.dstBinding = 0; writeDescriptorSet.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER; writeDescriptorSet.pTexelBufferView = &texelBufferView; writeDescriptorSet.descriptorCount = 1; vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, 0); } { //create sample descriptor set VkDescriptorSetAllocateInfo allocInfo = {}; allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO; allocInfo.descriptorPool = descriptorPool; allocInfo.descriptorSetCount = 1; allocInfo.pSetLayouts = &sampleDsl; vkAllocateDescriptorSets(device, &allocInfo, &sampleDescriptorSet); VkDescriptorImageInfo imageInfo; imageInfo.imageView = textureView; imageInfo.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; imageInfo.sampler = textureSampler; VkWriteDescriptorSet writeDescriptorSet = {}; writeDescriptorSet.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; writeDescriptorSet.dstSet = sampleDescriptorSet; writeDescriptorSet.dstBinding = 0; writeDescriptorSet.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; writeDescriptorSet.pImageInfo = &imageInfo; writeDescriptorSet.descriptorCount = 1; vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, 0); } } void CreateVertexBuffer() { unsigned vboSize = sizeof(float) * 2 * 3 * 2; //2 * 3 x vec2 VkMemoryRequirements mr; { //create fsq vertex buffer unsigned vboSize = sizeof(float) * 2 * 3 * 2; //2 * 3 x vec2 VkBufferCreateInfo ci = {}; ci.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; ci.size = vboSize; ci.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT; VkResult res = vkCreateBuffer(device, &ci, 0, &fsqVertexBuffer); vkGetBufferMemoryRequirements(device, fsqVertexBuffer, &mr); VkMemoryAllocateInfo mai = {}; mai.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; mai.allocationSize = mr.size; mai.memoryTypeIndex = getMemoryTypeIndex(pdmp, mr.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT); res = vkAllocateMemory(device, &mai, 0, &fsqVertexBufferMemory); float vertices[] = { -1, -1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1 }; void* data; res = vkMapMemory(device, fsqVertexBufferMemory, 0, mr.size, 0, &data); memcpy(data, vertices, vboSize); vkUnmapMemory(device, fsqVertexBufferMemory); res = vkBindBufferMemory(device, fsqVertexBuffer, fsqVertexBufferMemory, 0); } { //create triangle vertex buffer unsigned vboSize = sizeof(float) * 1 * 3 * 2; //1 * 3 x vec2 VkBufferCreateInfo ci = {}; ci.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; ci.size = vboSize; ci.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT; VkResult res = vkCreateBuffer(device, &ci, 0, &triangleVertexBuffer); vkGetBufferMemoryRequirements(device, triangleVertexBuffer, &mr); VkMemoryAllocateInfo mai = {}; mai.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; mai.allocationSize = mr.size; mai.memoryTypeIndex = getMemoryTypeIndex(pdmp, mr.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT); res = vkAllocateMemory(device, &mai, 0, &triangleVertexBufferMemory); float vertices[] = { -1, -1, 1, -1, 0, 1 }; void* data; res = vkMapMemory(device, triangleVertexBufferMemory, 0, mr.size, 0, &data); memcpy(data, vertices, vboSize); vkUnmapMemory(device, triangleVertexBufferMemory); res = vkBindBufferMemory(device, triangleVertexBuffer, triangleVertexBufferMemory, 0); } printf("Vertex buffer created\n"); } int main() { // Note: dynamically loading loader may be a better idea to fail gracefully when Vulkan is not supported // Create window for Vulkan //glfwInit(); //glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API); //glfwWindowHint(GLFW_RESIZABLE, GLFW_FALSE); //window = glfwCreateWindow(WINDOW_WIDTH, WINDOW_HEIGHT, "The 630 line cornflower blue window", nullptr, nullptr); // Use Vulkan setupVulkan(); mainLoop(); cleanup(); return 0; }