mirror of
https://github.com/Yours3lf/rpi-vk-driver.git
synced 2025-01-19 11:52:16 +01:00
802 lines
30 KiB
C
802 lines
30 KiB
C
#include "common.h"
|
|
|
|
#include "kernel/vc4_packet.h"
|
|
#include "../brcm/cle/v3d_decoder.h"
|
|
#include "../brcm/clif/clif_dump.h"
|
|
|
|
/*
|
|
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#commandbuffers-pools
|
|
* Command pools are opaque objects that command buffer memory is allocated from, and which allow the implementation to amortize the
|
|
* cost of resource creation across multiple command buffers. Command pools are externally synchronized, meaning that a command pool must
|
|
* not be used concurrently in multiple threads. That includes use via recording commands on any command buffers allocated from the pool,
|
|
* as well as operations that allocate, free, and reset command buffers or the pool itself.
|
|
*/
|
|
VKAPI_ATTR VkResult VKAPI_CALL rpi_vkCreateCommandPool(
|
|
VkDevice device,
|
|
const VkCommandPoolCreateInfo* pCreateInfo,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkCommandPool* pCommandPool)
|
|
{
|
|
assert(device);
|
|
assert(pCreateInfo);
|
|
|
|
//TODO VK_COMMAND_POOL_CREATE_TRANSIENT_BIT
|
|
//specifies that command buffers allocated from the pool will be short-lived, meaning that they will be reset or freed in a relatively short timeframe.
|
|
//This flag may be used by the implementation to control memory allocation behavior within the pool.
|
|
//--> definitely use pool allocator
|
|
|
|
//TODO pool family ignored for now
|
|
|
|
_commandPool* cp = ALLOCATE(sizeof(_commandPool), 1, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
|
|
|
|
if(!cp)
|
|
{
|
|
return VK_ERROR_OUT_OF_HOST_MEMORY;
|
|
}
|
|
|
|
cp->queueFamilyIndex = pCreateInfo->queueFamilyIndex;
|
|
|
|
cp->resetAble = pCreateInfo->flags & VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
|
|
|
|
//TODO CTS fails as we can't allocate enough memory for some reason
|
|
//tweak system allocation as root using:
|
|
//make sure kernel denies memory allocation that it won't be able to serve
|
|
//sysctl -w vm.overcommit_memory="2"
|
|
//specify after how much memory used the kernel will start denying requests
|
|
//sysctl -w vm.overcommit_ratio="80"
|
|
//
|
|
|
|
|
|
|
|
//initial number of command buffers to hold
|
|
int numCommandBufs = 128;
|
|
int consecutiveBlockSize = ARM_PAGE_SIZE;
|
|
int consecutiveBlockNumber = 64;
|
|
//int numCommandBufs = 30;
|
|
//int consecutiveBlockSize = getCPABlockSize(256);
|
|
//int consecutiveBlockNumber = 30;
|
|
int consecutivePoolSize = consecutiveBlockNumber * consecutiveBlockSize;
|
|
|
|
static int counter = 0;
|
|
|
|
//if(pCreateInfo->flags & VK_COMMAND_POOL_CREATE_TRANSIENT_BIT)
|
|
{
|
|
//use pool allocator
|
|
void* pamem = ALLOCATE(numCommandBufs * sizeof(_commandBuffer), 1, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
|
|
if(!pamem)
|
|
{
|
|
return VK_ERROR_OUT_OF_HOST_MEMORY;
|
|
}
|
|
cp->pa = createPoolAllocator(pamem, sizeof(_commandBuffer), numCommandBufs * sizeof(_commandBuffer));
|
|
|
|
void* cpamem = ALLOCATE(consecutivePoolSize, 1, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
|
|
if(!cpamem)
|
|
{
|
|
return VK_ERROR_OUT_OF_HOST_MEMORY;
|
|
}
|
|
cp->cpa = createConsecutivePoolAllocator(cpamem, consecutiveBlockSize, consecutivePoolSize);
|
|
}
|
|
|
|
*pCommandPool = (VkCommandPool)cp;
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#commandbuffer-allocation
|
|
* vkAllocateCommandBuffers can be used to create multiple command buffers. If the creation of any of those command buffers fails,
|
|
* the implementation must destroy all successfully created command buffer objects from this command, set all entries of the pCommandBuffers array to NULL and return the error.
|
|
*/
|
|
VKAPI_ATTR VkResult VKAPI_CALL rpi_vkAllocateCommandBuffers(
|
|
VkDevice device,
|
|
const VkCommandBufferAllocateInfo* pAllocateInfo,
|
|
VkCommandBuffer* pCommandBuffers)
|
|
{
|
|
assert(device);
|
|
assert(pAllocateInfo);
|
|
assert(pCommandBuffers);
|
|
|
|
VkResult res = VK_SUCCESS;
|
|
|
|
_commandPool* cp = (_commandPool*)pAllocateInfo->commandPool;
|
|
|
|
//TODO secondary command buffers
|
|
|
|
//if(cp->usePoolAllocator)
|
|
{
|
|
for(int c = 0; c < pAllocateInfo->commandBufferCount; ++c)
|
|
{
|
|
pCommandBuffers[c] = poolAllocate(&cp->pa);
|
|
|
|
if(!pCommandBuffers[c])
|
|
{
|
|
res = VK_ERROR_OUT_OF_HOST_MEMORY;
|
|
break;
|
|
}
|
|
|
|
set_loader_magic_value(&pCommandBuffers[c]->loaderData);
|
|
|
|
pCommandBuffers[c]->dev = device;
|
|
|
|
pCommandBuffers[c]->shaderRecCount = 0;
|
|
pCommandBuffers[c]->usageFlags = 0;
|
|
pCommandBuffers[c]->state = CMDBUF_STATE_INITIAL;
|
|
pCommandBuffers[c]->cp = cp;
|
|
clInit(&pCommandBuffers[c]->binCl, consecutivePoolAllocate(&cp->cpa, 1), cp->cpa.blockSize);
|
|
clInit(&pCommandBuffers[c]->handlesCl, consecutivePoolAllocate(&cp->cpa, 1), cp->cpa.blockSize);
|
|
clInit(&pCommandBuffers[c]->shaderRecCl, consecutivePoolAllocate(&cp->cpa, 1), cp->cpa.blockSize);
|
|
clInit(&pCommandBuffers[c]->uniformsCl, consecutivePoolAllocate(&cp->cpa, 1), cp->cpa.blockSize);
|
|
|
|
pCommandBuffers[c]->graphicsPipeline = 0;
|
|
pCommandBuffers[c]->computePipeline = 0;
|
|
pCommandBuffers[c]->numDrawCallsSubmitted = 0;
|
|
pCommandBuffers[c]->indexBuffer = 0;
|
|
pCommandBuffers[c]->indexBufferOffset = 0;
|
|
pCommandBuffers[c]->vertexBufferDirty = 1;
|
|
pCommandBuffers[c]->indexBufferDirty = 1;
|
|
pCommandBuffers[c]->viewportDirty = 1;
|
|
pCommandBuffers[c]->lineWidthDirty = 1;
|
|
pCommandBuffers[c]->depthBiasDirty = 1;
|
|
pCommandBuffers[c]->graphicsPipelineDirty = 1;
|
|
pCommandBuffers[c]->computePipelineDirty = 1;
|
|
pCommandBuffers[c]->subpassDirty = 1;
|
|
pCommandBuffers[c]->blendConstantsDirty = 1;
|
|
pCommandBuffers[c]->scissorDirty = 1;
|
|
pCommandBuffers[c]->depthBoundsDirty = 1;
|
|
pCommandBuffers[c]->stencilCompareMaskDirty = 1;
|
|
pCommandBuffers[c]->stencilWriteMaskDirty = 1;
|
|
pCommandBuffers[c]->stencilReferenceDirty = 1;
|
|
pCommandBuffers[c]->descriptorSetDirty = 1;
|
|
pCommandBuffers[c]->pushConstantDirty = 1;
|
|
|
|
pCommandBuffers[c]->perfmonID = 0;
|
|
|
|
if(!pCommandBuffers[c]->binCl.buffer)
|
|
{
|
|
res = VK_ERROR_OUT_OF_HOST_MEMORY;
|
|
break;
|
|
}
|
|
|
|
if(!pCommandBuffers[c]->handlesCl.buffer)
|
|
{
|
|
res = VK_ERROR_OUT_OF_HOST_MEMORY;
|
|
break;
|
|
}
|
|
|
|
if(!pCommandBuffers[c]->shaderRecCl.buffer)
|
|
{
|
|
res = VK_ERROR_OUT_OF_HOST_MEMORY;
|
|
break;
|
|
}
|
|
|
|
if(!pCommandBuffers[c]->uniformsCl.buffer)
|
|
{
|
|
res = VK_ERROR_OUT_OF_HOST_MEMORY;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(res != VK_SUCCESS)
|
|
{
|
|
//if(cp->usePoolAllocator)
|
|
{
|
|
for(int c = 0; c < pAllocateInfo->commandBufferCount; ++c)
|
|
{
|
|
consecutivePoolFree(&cp->cpa, pCommandBuffers[c]->binCl.buffer, pCommandBuffers[c]->binCl.numBlocks);
|
|
consecutivePoolFree(&cp->cpa, pCommandBuffers[c]->handlesCl.buffer, pCommandBuffers[c]->handlesCl.numBlocks);
|
|
consecutivePoolFree(&cp->cpa, pCommandBuffers[c]->shaderRecCl.buffer, pCommandBuffers[c]->shaderRecCl.numBlocks);
|
|
consecutivePoolFree(&cp->cpa, pCommandBuffers[c]->uniformsCl.buffer, pCommandBuffers[c]->uniformsCl.numBlocks);
|
|
poolFree(&cp->pa, pCommandBuffers[c]);
|
|
pCommandBuffers[c] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkBeginCommandBuffer
|
|
*/
|
|
VKAPI_ATTR VkResult VKAPI_CALL rpi_vkBeginCommandBuffer(
|
|
VkCommandBuffer commandBuffer,
|
|
const VkCommandBufferBeginInfo* pBeginInfo)
|
|
{
|
|
assert(commandBuffer);
|
|
assert(pBeginInfo);
|
|
|
|
//TODO secondary command buffers
|
|
|
|
//VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT
|
|
//specifies that each recording of the command buffer will only be submitted once, and the command buffer will be reset and recorded again between each submission.
|
|
|
|
//TODO VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT
|
|
//specifies that a secondary command buffer is considered to be entirely inside a render pass. If this is a primary command buffer, then this bit is ignored
|
|
|
|
//TODO VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT
|
|
//specifies that a command buffer can be resubmitted to a queue while it is in the pending state, and recorded into multiple primary command buffers
|
|
|
|
//When a command buffer begins recording, all state in that command buffer is undefined
|
|
|
|
commandBuffer->usageFlags = pBeginInfo->flags;
|
|
commandBuffer->state = CMDBUF_STATE_RECORDING;
|
|
|
|
//TODO reset state?
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkEndCommandBuffer
|
|
* If there was an error during recording, the application will be notified by an unsuccessful return code returned by vkEndCommandBuffer.
|
|
* If the application wishes to further use the command buffer, the command buffer must be reset. The command buffer must have been in the recording state,
|
|
* and is moved to the executable state.
|
|
*/
|
|
VKAPI_ATTR VkResult VKAPI_CALL rpi_vkEndCommandBuffer(
|
|
VkCommandBuffer commandBuffer)
|
|
{
|
|
assert(commandBuffer);
|
|
|
|
commandBuffer->state = CMDBUF_STATE_EXECUTABLE;
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkQueueSubmit
|
|
* vkQueueSubmit is a queue submission command, with each batch defined by an element of pSubmits as an instance of the VkSubmitInfo structure.
|
|
* Batches begin execution in the order they appear in pSubmits, but may complete out of order.
|
|
* Fence and semaphore operations submitted with vkQueueSubmit have additional ordering constraints compared to other submission commands,
|
|
* with dependencies involving previous and subsequent queue operations. Information about these additional constraints can be found in the semaphore and
|
|
* fence sections of the synchronization chapter.
|
|
* Details on the interaction of pWaitDstStageMask with synchronization are described in the semaphore wait operation section of the synchronization chapter.
|
|
* The order that batches appear in pSubmits is used to determine submission order, and thus all the implicit ordering guarantees that respect it.
|
|
* Other than these implicit ordering guarantees and any explicit synchronization primitives, these batches may overlap or otherwise execute out of order.
|
|
* If any command buffer submitted to this queue is in the executable state, it is moved to the pending state. Once execution of all submissions of a command buffer complete,
|
|
* it moves from the pending state, back to the executable state. If a command buffer was recorded with the VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT flag,
|
|
* it instead moves back to the invalid state.
|
|
* If vkQueueSubmit fails, it may return VK_ERROR_OUT_OF_HOST_MEMORY or VK_ERROR_OUT_OF_DEVICE_MEMORY.
|
|
* If it does, the implementation must ensure that the state and contents of any resources or synchronization primitives referenced by the submitted command buffers and any semaphores
|
|
* referenced by pSubmits is unaffected by the call or its failure. If vkQueueSubmit fails in such a way that the implementation is unable to make that guarantee,
|
|
* the implementation must return VK_ERROR_DEVICE_LOST. See Lost Device.
|
|
*/
|
|
VKAPI_ATTR VkResult VKAPI_CALL rpi_vkQueueSubmit(
|
|
VkQueue queue,
|
|
uint32_t submitCount,
|
|
const VkSubmitInfo* pSubmits,
|
|
VkFence fence)
|
|
{
|
|
assert(queue);
|
|
|
|
//TODO this is incorrect
|
|
//see sync.c
|
|
//TODO: deal with pSubmits->pWaitDstStageMask
|
|
for(int c = 0; c < pSubmits->waitSemaphoreCount; ++c)
|
|
{
|
|
sem_wait((sem_t*)pSubmits->pWaitSemaphores[c]);
|
|
}
|
|
|
|
for(int c = 0; c < pSubmits->commandBufferCount; ++c)
|
|
{
|
|
if(pSubmits->pCommandBuffers[c]->state == CMDBUF_STATE_EXECUTABLE)
|
|
{
|
|
pSubmits->pCommandBuffers[c]->state = CMDBUF_STATE_PENDING;
|
|
}
|
|
}
|
|
|
|
for(int c = 0; c < pSubmits->commandBufferCount; ++c)
|
|
{
|
|
VkCommandBuffer cmdbuf = pSubmits->pCommandBuffers[c];
|
|
|
|
if(!cmdbuf->binCl.currMarker)
|
|
{
|
|
//no markers recorded yet, skip
|
|
continue;
|
|
}
|
|
|
|
//first entry is assumed to be a marker
|
|
CLMarker* marker = cmdbuf->binCl.buffer;
|
|
|
|
//a command buffer may contain multiple render passes
|
|
//and commands outside render passes such as clear commands
|
|
//each of these corresponds to a control list submit
|
|
|
|
//submit each separate control list
|
|
while(marker)
|
|
{
|
|
struct drm_vc4_submit_cl submitCl =
|
|
{
|
|
.color_read.hindex = ~0,
|
|
.zs_read.hindex = ~0,
|
|
.color_write.hindex = ~0,
|
|
.msaa_color_write.hindex = ~0,
|
|
.zs_write.hindex = ~0,
|
|
.msaa_zs_write.hindex = ~0,
|
|
};
|
|
|
|
_image* writeImage = marker->writeImage;
|
|
_image* readImage = marker->readImage;
|
|
_image* writeDepthStencilImage = marker->writeDepthStencilImage;
|
|
_image* readDepthStencilImage = marker->readDepthStencilImage;
|
|
_image* writeMSAAimage = marker->writeMSAAimage;
|
|
_image* writeMSAAdepthStencilImage = marker->writeMSAAdepthStencilImage;
|
|
uint32_t performResolve = marker->performResolve;
|
|
uint32_t readMSAAimage = marker->readMSAAimage;
|
|
uint32_t readMSAAdepthStencilImage = marker->readMSAAdepthStencilImage;
|
|
|
|
//This should not result in an insertion!
|
|
uint32_t writeImageIdx = writeImage ? clGetHandleIndex(&cmdbuf->handlesCl, marker->handlesBuf, marker->handlesSize, writeImage->boundMem->bo) : 0;
|
|
uint32_t readImageIdx = readImage ? clGetHandleIndex(&cmdbuf->handlesCl, marker->handlesBuf, marker->handlesSize, readImage->boundMem->bo) : 0;
|
|
uint32_t writeDepthStencilImageIdx = writeDepthStencilImage ? clGetHandleIndex(&cmdbuf->handlesCl, marker->handlesBuf, marker->handlesSize, writeDepthStencilImage->boundMem->bo) : 0;
|
|
uint32_t readDepthStencilImageIdx = readDepthStencilImage ? clGetHandleIndex(&cmdbuf->handlesCl, marker->handlesBuf, marker->handlesSize, readDepthStencilImage->boundMem->bo) : 0;
|
|
uint32_t writeMSAAimageIdx = writeMSAAimage ? clGetHandleIndex(&cmdbuf->handlesCl, marker->handlesBuf, marker->handlesSize, writeMSAAimage->boundMem->bo) : 0;
|
|
uint32_t writeMSAAdepthStencilImageIdx = writeMSAAdepthStencilImage ? clGetHandleIndex(&cmdbuf->handlesCl, marker->handlesBuf, marker->handlesSize, writeMSAAdepthStencilImage->boundMem->bo) : 0;
|
|
|
|
// fprintf(stderr, "writeImage: %u\n", writeImage);
|
|
// fprintf(stderr, "readImage: %u\n", readImage);
|
|
// fprintf(stderr, "writeDepthStencilImage: %u\n", writeDepthStencilImage);
|
|
// fprintf(stderr, "readDepthStencilImage: %u\n", readDepthStencilImage);
|
|
// fprintf(stderr, "writeMSAAimage: %u\n", writeMSAAimage);
|
|
// fprintf(stderr, "writeMSAAdepthStencilImage: %u\n", writeMSAAdepthStencilImage);
|
|
// fprintf(stderr, "performResolve: %u\n", performResolve);
|
|
// fprintf(stderr, "readMSAAimage: %u\n", readMSAAimage);
|
|
// fprintf(stderr, "readMSAAdepthStencilImage: %u\n", readMSAAdepthStencilImage);
|
|
// fprintf(stderr, "writeImageIdx: %u\n", writeImageIdx);
|
|
// fprintf(stderr, "readImageIdx: %u\n", readImageIdx);
|
|
// fprintf(stderr, "writeDepthStencilImageIdx: %u\n", writeDepthStencilImageIdx);
|
|
// fprintf(stderr, "readDepthStencilImageIdx: %u\n", readDepthStencilImageIdx);
|
|
// fprintf(stderr, "writeMSAAimageIdx: %u\n", writeMSAAimageIdx);
|
|
// fprintf(stderr, "writeMSAAdepthStencilImageIdx: %u\n", writeMSAAdepthStencilImageIdx);
|
|
|
|
submitCl.clear_color[0] = 0;
|
|
submitCl.clear_color[1] = 0;
|
|
submitCl.clear_z = 0;
|
|
submitCl.clear_s = 0;
|
|
|
|
//fill out submit cl fields
|
|
if(writeImage)
|
|
{
|
|
submitCl.color_write.hindex = writeImageIdx;
|
|
submitCl.color_write.offset = marker->writeImageOffset;
|
|
submitCl.color_write.flags = 0;
|
|
submitCl.color_write.bits =
|
|
VC4_SET_FIELD(getRenderTargetFormatVC4(writeImage->format), VC4_RENDER_CONFIG_FORMAT) |
|
|
VC4_SET_FIELD(writeImage->tiling, VC4_RENDER_CONFIG_MEMORY_FORMAT);
|
|
|
|
if(performResolve)
|
|
{
|
|
submitCl.color_write.bits |= VC4_RENDER_CONFIG_MS_MODE_4X | VC4_RENDER_CONFIG_DECIMATE_MODE_4X;
|
|
}
|
|
}
|
|
|
|
if(writeMSAAimage)
|
|
{
|
|
submitCl.msaa_color_write.hindex = writeMSAAimageIdx;
|
|
submitCl.msaa_color_write.offset = marker->writeMSAAimageOffset;
|
|
submitCl.msaa_color_write.flags = 0;
|
|
submitCl.msaa_color_write.bits = VC4_RENDER_CONFIG_MS_MODE_4X;
|
|
}
|
|
|
|
if(readImage)
|
|
{
|
|
submitCl.color_read.hindex = readImageIdx;
|
|
submitCl.color_read.offset = marker->readImageOffset;
|
|
submitCl.color_read.flags = readMSAAimage ? VC4_SUBMIT_RCL_SURFACE_READ_IS_FULL_RES : 0;
|
|
submitCl.color_read.bits = VC4_SET_FIELD(getRenderTargetFormatVC4(readImage->format), VC4_RENDER_CONFIG_FORMAT) |
|
|
VC4_SET_FIELD(readImage->tiling, VC4_RENDER_CONFIG_MEMORY_FORMAT);
|
|
}
|
|
|
|
if(writeDepthStencilImage)
|
|
{
|
|
submitCl.zs_write.hindex = writeDepthStencilImageIdx;
|
|
submitCl.zs_write.offset = marker->writeDepthStencilImageOffset;
|
|
submitCl.zs_write.flags = 0;
|
|
submitCl.zs_write.bits = VC4_SET_FIELD(VC4_LOADSTORE_TILE_BUFFER_ZS, VC4_LOADSTORE_TILE_BUFFER_BUFFER) |
|
|
VC4_SET_FIELD(writeDepthStencilImage->tiling, VC4_LOADSTORE_TILE_BUFFER_TILING);
|
|
}
|
|
|
|
if(writeMSAAdepthStencilImage)
|
|
{
|
|
submitCl.msaa_zs_write.hindex = writeMSAAdepthStencilImageIdx;
|
|
submitCl.msaa_zs_write.offset = marker->writeMSAAdepthStencilImageOffset;
|
|
submitCl.msaa_zs_write.flags = 0;
|
|
submitCl.msaa_zs_write.bits = VC4_RENDER_CONFIG_MS_MODE_4X;
|
|
}
|
|
|
|
if(readDepthStencilImage)
|
|
{
|
|
submitCl.zs_read.hindex = readDepthStencilImageIdx;
|
|
submitCl.zs_read.offset = marker->readDepthStencilImageOffset;
|
|
submitCl.zs_read.flags = readMSAAdepthStencilImage ? VC4_SUBMIT_RCL_SURFACE_READ_IS_FULL_RES : 0; //TODO is this valid?
|
|
submitCl.zs_read.bits = VC4_SET_FIELD(getRenderTargetFormatVC4(readDepthStencilImage->format), VC4_RENDER_CONFIG_FORMAT) |
|
|
VC4_SET_FIELD(readDepthStencilImage->tiling, VC4_RENDER_CONFIG_MEMORY_FORMAT);
|
|
}
|
|
|
|
submitCl.clear_color[0] = marker->clearColor[0];
|
|
submitCl.clear_color[1] = marker->clearColor[1];
|
|
|
|
submitCl.clear_z = marker->clearDepth; //0...1 -> 0...0xffffff
|
|
submitCl.clear_s = marker->clearStencil; //0...0xff
|
|
|
|
|
|
// fprintf(stderr, "submitCl.clear_color[0]: %u\n", submitCl.clear_color[0]);
|
|
// fprintf(stderr, "submitCl.clear_color[1]: %u\n", submitCl.clear_color[1]);
|
|
// fprintf(stderr, "submitCl.clear_z: %u\n", submitCl.clear_z);
|
|
// fprintf(stderr, "submitCl.clear_s: %u\n", submitCl.clear_s);
|
|
|
|
submitCl.min_x_tile = 0;
|
|
submitCl.min_y_tile = 0;
|
|
|
|
uint32_t tileSizeW = 64;
|
|
uint32_t tileSizeH = 64;
|
|
|
|
uint32_t widthInTiles = 0, heightInTiles = 0;
|
|
uint32_t width = 0, height = 0, bpp = 0;
|
|
|
|
width = marker->width;
|
|
height = marker->height;
|
|
|
|
if(writeImage)
|
|
{
|
|
bpp = getFormatBpp(writeImage->format);
|
|
}
|
|
else if(writeMSAAimage)
|
|
{
|
|
bpp = getFormatBpp(writeMSAAimage->format);
|
|
}
|
|
|
|
if(bpp == 64)
|
|
{
|
|
tileSizeH >>= 1;
|
|
}
|
|
|
|
if(performResolve || writeMSAAimage || writeMSAAdepthStencilImage)
|
|
{
|
|
tileSizeW >>= 1;
|
|
tileSizeH >>= 1;
|
|
}
|
|
|
|
widthInTiles = divRoundUp(width, tileSizeW);
|
|
heightInTiles = divRoundUp(height, tileSizeH);
|
|
|
|
submitCl.max_x_tile = widthInTiles - 1;
|
|
submitCl.max_y_tile = heightInTiles - 1;
|
|
submitCl.width = width;
|
|
submitCl.height = height;
|
|
submitCl.flags |= marker->flags;
|
|
|
|
submitCl.bo_handles = marker->handlesBuf;
|
|
submitCl.bin_cl = ((uint8_t*)marker) + sizeof(CLMarker);
|
|
submitCl.shader_rec = marker->shaderRecBuf;
|
|
submitCl.uniforms = marker->uniformsBuf;
|
|
|
|
if(marker->perfmonID)
|
|
{
|
|
uint32_t perfmonSelector = 0;
|
|
uint32_t* perfmonIDptr = (uint32_t*)marker->perfmonID;
|
|
|
|
if(pSubmits->pNext)
|
|
{
|
|
VkPerformanceQuerySubmitInfoKHR* perfQuerySubmitInfo = pSubmits->pNext;
|
|
perfmonSelector = perfQuerySubmitInfo->counterPassIndex;
|
|
}
|
|
|
|
submitCl.perfmonid = *(perfmonIDptr + perfmonSelector);
|
|
}
|
|
|
|
//marker not closed yet
|
|
//close here
|
|
if(!marker->size)
|
|
{
|
|
clCloseCurrentMarker(&cmdbuf->binCl, &cmdbuf->handlesCl, &cmdbuf->shaderRecCl, cmdbuf->shaderRecCount, &cmdbuf->uniformsCl);
|
|
}
|
|
|
|
submitCl.bo_handle_count = marker->handlesSize / 4;
|
|
submitCl.bin_cl_size = marker->size;
|
|
submitCl.shader_rec_size = marker->shaderRecSize;
|
|
submitCl.shader_rec_count = marker->shaderRecCount;
|
|
submitCl.uniforms_size = marker->uniformsSize;
|
|
|
|
/**/
|
|
printf("BCL:\n");
|
|
clDump(((uint8_t*)marker) + sizeof(CLMarker), marker->size);
|
|
printf("BO handles: ");
|
|
for(int d = 0; d < marker->handlesSize / 4; ++d)
|
|
{
|
|
printf("%u ", *((uint32_t*)(marker->handlesBuf)+d));
|
|
}
|
|
printf("\nUniforms: ");
|
|
for(int d = 0; d < marker->uniformsSize / 4; ++d)
|
|
{
|
|
printf("%u ", *((uint32_t*)(marker->uniformsBuf)+d));
|
|
}
|
|
printf("\nShader recs: ");
|
|
uint8_t* ptr = marker->shaderRecBuf + (3 + 1) * 4;
|
|
for(int d = 0; d < marker->shaderRecCount; ++d)
|
|
{
|
|
uint8_t flags = *ptr;
|
|
uint8_t fragmentShaderIsSingleThreaded = flags & (1 << 0);
|
|
uint8_t pointSizeIncludedInShadedVertexData = (flags & (1 << 1)) >> 1;
|
|
uint8_t enableClipping = (flags & (1 << 2)) >> 2;
|
|
ptr += 2;
|
|
|
|
uint8_t fragmentNumberOfUniforms = *ptr; ptr++;
|
|
uint8_t fragmentNumberOfVaryings = *ptr; ptr++;
|
|
uint32_t fragmentShaderCodeAddress = *(uint32_t*)ptr; ptr+=4;
|
|
uint32_t fragmentShaderUniformAddress = *(uint32_t*)ptr; ptr+=4;
|
|
|
|
uint16_t vertexNumberOfUniforms = *(uint16_t*)ptr; ptr+=2;
|
|
uint8_t vertexAttribSelectBits = *ptr; ptr++;
|
|
uint8_t vertexAttribTotalSize = *ptr; ptr++;
|
|
uint32_t vertexShaderCodeAddress = *(uint32_t*)ptr; ptr+=4;
|
|
uint32_t vertexShaderUniformAddress = *(uint32_t*)ptr; ptr+=4;
|
|
|
|
uint16_t coordNumberOfUniforms = *(uint16_t*)ptr; ptr+=2;
|
|
uint8_t coordAttribSelectBits = *ptr; ptr++;
|
|
uint8_t coordAttribTotalSize = *ptr; ptr++;
|
|
uint32_t coordShaderCodeAddress = *(uint32_t*)ptr; ptr+=4;
|
|
uint32_t coordShaderUniformAddress = *(uint32_t*)ptr; ptr+=4;
|
|
|
|
printf("\nfragmentShaderIsSingleThreaded: %i", fragmentShaderIsSingleThreaded);
|
|
printf("\npointSizeIncludedInShadedVertexData: %i", pointSizeIncludedInShadedVertexData);
|
|
printf("\nenableClipping: %i", enableClipping);
|
|
|
|
printf("\nfragmentNumberOfUniforms: %i", fragmentNumberOfUniforms);
|
|
printf("\nfragmentNumberOfVaryings: %i", fragmentNumberOfVaryings);
|
|
printf("\nfragmentShaderCodeAddress: %i", fragmentShaderCodeAddress);
|
|
printf("\nfragmentShaderUniformAddress: %i", fragmentShaderUniformAddress);
|
|
|
|
printf("\nvertexNumberOfUniforms: %i", vertexNumberOfUniforms);
|
|
printf("\nvertexAttribSelectBits: %i", vertexAttribSelectBits);
|
|
printf("\nvertexAttribTotalSize: %i", vertexAttribTotalSize);
|
|
printf("\nvertexShaderCodeAddress: %i", vertexShaderCodeAddress);
|
|
printf("\nvertexShaderUniformAddress: %i", vertexShaderUniformAddress);
|
|
|
|
printf("\ncoordNumberOfUniforms: %i", coordNumberOfUniforms);
|
|
printf("\ncoordAttribSelectBits: %i", coordAttribSelectBits);
|
|
printf("\ncoordAttribTotalSize: %i", coordAttribTotalSize);
|
|
printf("\ncoordShaderCodeAddress: %i", coordShaderCodeAddress);
|
|
printf("\ncoordShaderUniformAddress: %i", coordShaderUniformAddress);
|
|
|
|
uint8_t numAttribs = 0;
|
|
for(uint8_t e = 0; e < 8; ++e)
|
|
{
|
|
numAttribs += (vertexAttribSelectBits & (1 << e)) >> e;
|
|
}
|
|
|
|
for(uint8_t e = 0; e < numAttribs; ++e)
|
|
{
|
|
uint32_t attribBaseAddress = *(uint32_t*)ptr; ptr+=4;
|
|
uint8_t attribNumBytes = *ptr; ptr++;
|
|
uint8_t attribStride = *ptr; ptr++;
|
|
uint8_t attribVsVPMOffset = *ptr; ptr++;
|
|
uint8_t attribCsVPMOffset = *ptr; ptr++;
|
|
|
|
printf("\nattrib \#%i", e);
|
|
printf("\nattribBaseAddress: %i", attribBaseAddress);
|
|
printf("\nattribNumBytes: %i", attribNumBytes);
|
|
printf("\nattribStride: %i", attribStride);
|
|
printf("\nattribVsVPMOffset: %i", attribVsVPMOffset);
|
|
printf("\nattribCsVPMOffset: %i", attribCsVPMOffset);
|
|
}
|
|
}
|
|
printf("\nwidth height: %u, %u\n", submitCl.width, submitCl.height);
|
|
printf("tile min/max: %u,%u %u,%u\n", submitCl.min_x_tile, submitCl.min_y_tile, submitCl.max_x_tile, submitCl.max_y_tile);
|
|
printf("color read surf: hindex, offset, bits, flags %u %u %u %u\n", submitCl.color_read.hindex, submitCl.color_read.offset, submitCl.color_read.bits, submitCl.color_read.flags);
|
|
printf("color write surf: hindex, offset, bits, flags %u %u %u %u\n", submitCl.color_write.hindex, submitCl.color_write.offset, submitCl.color_write.bits, submitCl.color_write.flags);
|
|
printf("zs read surf: hindex, offset, bits, flags %u %u %u %u\n", submitCl.zs_read.hindex, submitCl.zs_read.offset, submitCl.zs_read.bits, submitCl.zs_read.flags);
|
|
printf("zs write surf: hindex, offset, bits, flags %u %u %u %u\n", submitCl.zs_write.hindex, submitCl.zs_write.offset, submitCl.zs_write.bits, submitCl.zs_write.flags);
|
|
printf("msaa color write surf: hindex, offset, bits, flags %u %u %u %u\n", submitCl.msaa_color_write.hindex, submitCl.msaa_color_write.offset, submitCl.msaa_color_write.bits, submitCl.msaa_color_write.flags);
|
|
printf("msaa zs write surf: hindex, offset, bits, flags %u %u %u %u\n", submitCl.msaa_zs_write.hindex, submitCl.msaa_zs_write.offset, submitCl.msaa_zs_write.bits, submitCl.msaa_zs_write.flags);
|
|
printf("clear color packed rgba %u %u\n", submitCl.clear_color[0], submitCl.clear_color[1]);
|
|
printf("clear z %u\n", submitCl.clear_z);
|
|
printf("clear s %u\n", submitCl.clear_s);
|
|
printf("flags %u\n", submitCl.flags);
|
|
printf("perfmonID %u\n", submitCl.perfmonid);
|
|
/**/
|
|
|
|
assert(submitCl.bo_handle_count > 0);
|
|
|
|
//TODO somehow store last finished globally
|
|
//so waiting on fences is faster
|
|
//eg. could be an atomic value
|
|
static uint64_t lastFinishedSeqno = 0;
|
|
|
|
//submit ioctl
|
|
vc4_cl_submit(controlFd, &submitCl, &queue->lastEmitSeqno, &lastFinishedSeqno);
|
|
|
|
//advance in linked list
|
|
marker = marker->nextMarker;
|
|
}
|
|
}
|
|
|
|
for(int c = 0; c < pSubmits->commandBufferCount; ++c)
|
|
{
|
|
if(pSubmits->pCommandBuffers[c]->state == CMDBUF_STATE_PENDING)
|
|
{
|
|
if(pSubmits->pCommandBuffers[c]->usageFlags & VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT)
|
|
{
|
|
pSubmits->pCommandBuffers[c]->state = CMDBUF_STATE_INVALID;
|
|
}
|
|
else
|
|
{
|
|
pSubmits->pCommandBuffers[c]->state = CMDBUF_STATE_EXECUTABLE;
|
|
}
|
|
}
|
|
}
|
|
|
|
for(int c = 0; c < pSubmits->signalSemaphoreCount; ++c)
|
|
{
|
|
sem_post((sem_t*)pSubmits->pSignalSemaphores[c]);
|
|
}
|
|
|
|
_fence* f = fence;
|
|
if(f)
|
|
{
|
|
f->seqno = queue->lastEmitSeqno;
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkFreeCommandBuffers
|
|
* Any primary command buffer that is in the recording or executable state and has any element of pCommandBuffers recorded into it, becomes invalid.
|
|
*/
|
|
VKAPI_ATTR void VKAPI_CALL rpi_vkFreeCommandBuffers(
|
|
VkDevice device,
|
|
VkCommandPool commandPool,
|
|
uint32_t commandBufferCount,
|
|
const VkCommandBuffer* pCommandBuffers)
|
|
{
|
|
assert(device);
|
|
assert(commandPool);
|
|
assert(pCommandBuffers);
|
|
|
|
_commandPool* cp = (_commandPool*)commandPool;
|
|
|
|
for(int c = 0; c < commandBufferCount; ++c)
|
|
{
|
|
if(pCommandBuffers[c])
|
|
{
|
|
consecutivePoolFree(&cp->cpa, pCommandBuffers[c]->binCl.buffer, pCommandBuffers[c]->binCl.numBlocks);
|
|
consecutivePoolFree(&cp->cpa, pCommandBuffers[c]->handlesCl.buffer, pCommandBuffers[c]->handlesCl.numBlocks);
|
|
consecutivePoolFree(&cp->cpa, pCommandBuffers[c]->shaderRecCl.buffer, pCommandBuffers[c]->shaderRecCl.numBlocks);
|
|
consecutivePoolFree(&cp->cpa, pCommandBuffers[c]->uniformsCl.buffer, pCommandBuffers[c]->uniformsCl.numBlocks);
|
|
poolFree(&cp->pa, pCommandBuffers[c]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkDestroyCommandPool
|
|
* When a pool is destroyed, all command buffers allocated from the pool are freed.
|
|
* Any primary command buffer allocated from another VkCommandPool that is in the recording or executable state and has a secondary command buffer
|
|
* allocated from commandPool recorded into it, becomes invalid.
|
|
*/
|
|
VKAPI_ATTR void VKAPI_CALL rpi_vkDestroyCommandPool(
|
|
VkDevice device,
|
|
VkCommandPool commandPool,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
assert(device);
|
|
|
|
_commandPool* cp = (_commandPool*)commandPool;
|
|
|
|
if(cp)
|
|
{
|
|
FREE(cp->pa.buf);
|
|
FREE(cp->cpa.buf);
|
|
destroyPoolAllocator(&cp->pa);
|
|
destroyConsecutivePoolAllocator(&cp->cpa);
|
|
FREE(cp);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkTrimCommandPool
|
|
*/
|
|
VKAPI_ATTR void VKAPI_CALL rpi_vkTrimCommandPool(
|
|
VkDevice device,
|
|
VkCommandPool commandPool,
|
|
VkCommandPoolTrimFlags flags)
|
|
{
|
|
assert(device);
|
|
assert(commandPool);
|
|
|
|
_commandPool* cp = commandPool;
|
|
|
|
//TODO trim cp's pool allocator and consecutive pool allocator
|
|
//by reallocating to just used size
|
|
//kinda silly, as if you need memory afterwards we need to reallocate again...
|
|
}
|
|
|
|
/*
|
|
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkResetCommandPool
|
|
*/
|
|
VKAPI_ATTR VkResult VKAPI_CALL rpi_vkResetCommandPool(
|
|
VkDevice device,
|
|
VkCommandPool commandPool,
|
|
VkCommandPoolResetFlags flags)
|
|
{
|
|
assert(device);
|
|
assert(commandPool);
|
|
|
|
_commandPool* cp = commandPool;
|
|
|
|
for(char* c = cp->pa.buf; c != cp->pa.buf + cp->pa.size; c += cp->pa.blockSize)
|
|
{
|
|
char* d = cp->pa.nextFreeBlock;
|
|
while(d)
|
|
{
|
|
if(c == d) break;
|
|
|
|
d = *(uint32_t*)d;
|
|
}
|
|
|
|
if(c == d) //block is free, as we found it in the free chain
|
|
{
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
//we found a valid block
|
|
_commandBuffer* cb = c;
|
|
assert(cb->state != CMDBUF_STATE_PENDING);
|
|
cb->state = CMDBUF_STATE_INITIAL;
|
|
}
|
|
}
|
|
|
|
//TODO secondary command buffers
|
|
|
|
//TODO reset flag --> free all pool resources
|
|
}
|
|
|
|
/*
|
|
* https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#vkResetCommandBuffer
|
|
*/
|
|
VKAPI_ATTR VkResult VKAPI_CALL rpi_vkResetCommandBuffer(
|
|
VkCommandBuffer commandBuffer,
|
|
VkCommandBufferResetFlags flags)
|
|
{
|
|
assert(commandBuffer);
|
|
|
|
_commandBuffer* cb = commandBuffer;
|
|
|
|
assert(cb->state != CMDBUF_STATE_PENDING);
|
|
|
|
assert(cb->cp->resetAble);
|
|
|
|
if(cb->state == CMDBUF_STATE_RECORDING || cb->state == CMDBUF_STATE_EXECUTABLE)
|
|
{
|
|
cb->state = CMDBUF_STATE_INVALID;
|
|
}
|
|
else
|
|
{
|
|
cb->state = CMDBUF_STATE_INITIAL;
|
|
}
|
|
|
|
if(flags & VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT)
|
|
{
|
|
//TODO release resources
|
|
}
|
|
|
|
//TODO reset state?
|
|
}
|
|
|
|
VKAPI_ATTR void VKAPI_CALL rpi_vkCmdExecuteCommands(
|
|
VkCommandBuffer commandBuffer,
|
|
uint32_t commandBufferCount,
|
|
const VkCommandBuffer* pCommandBuffers)
|
|
{
|
|
|
|
}
|
|
|
|
VKAPI_ATTR void VKAPI_CALL rpi_vkCmdSetDeviceMask(
|
|
VkCommandBuffer commandBuffer,
|
|
uint32_t deviceMask)
|
|
{
|
|
UNSUPPORTED(rpi_vkCmdSetDeviceMask);
|
|
}
|