mirror of
https://github.com/Yours3lf/rpi-vk-driver.git
synced 2024-12-05 17:24:14 +01:00
1295 lines
44 KiB
C++
1295 lines
44 KiB
C++
#include <iostream>
|
||
#include <vector>
|
||
#include <algorithm>
|
||
#include <string.h>
|
||
#include "driver/CustomAssert.h"
|
||
|
||
#include <vulkan/vulkan.h>
|
||
|
||
#include "driver/vkExt.h"
|
||
|
||
#include "QPUassembler/qpu_assembler.h"
|
||
|
||
//#define GLFW_INCLUDE_VULKAN
|
||
//#define VK_USE_PLATFORM_WIN32_KHR
|
||
//#include <GLFW/glfw3.h>
|
||
|
||
//#define GLFW_EXPOSE_NATIVE_WIN32
|
||
//#include <GLFW/glfw3native.h>
|
||
|
||
//GLFWwindow * window;
|
||
|
||
//#define WINDOW_WIDTH 640
|
||
//#define WINDOW_HEIGHT 480
|
||
|
||
// Note: support swap chain recreation (not only required for resized windows!)
|
||
// Note: window resize may not result in Vulkan telling that the swap chain should be recreated, should be handled explicitly!
|
||
void run();
|
||
void setupVulkan();
|
||
void mainLoop();
|
||
void cleanup();
|
||
void createInstance();
|
||
void createWindowSurface();
|
||
void findPhysicalDevice();
|
||
void checkSwapChainSupport();
|
||
void findQueueFamilies();
|
||
void createLogicalDevice();
|
||
void createSemaphores();
|
||
void createSwapChain();
|
||
void createCommandQueues();
|
||
void draw();
|
||
void CreateRenderPass();
|
||
void CreateFramebuffer();
|
||
void CreateShaders();
|
||
void CreatePipeline();
|
||
void CreateUniformBuffer();
|
||
void CreateDescriptorSet();
|
||
void CreateVertexBuffer();
|
||
void CreateTexture();
|
||
void recordCommandBuffers();
|
||
VkSurfaceFormatKHR chooseSurfaceFormat(const std::vector<VkSurfaceFormatKHR>& availableFormats);
|
||
VkExtent2D chooseSwapExtent(const VkSurfaceCapabilitiesKHR& surfaceCapabilities);
|
||
VkPresentModeKHR choosePresentMode(const std::vector<VkPresentModeKHR> presentModes);
|
||
|
||
VkInstance instance; //
|
||
VkSurfaceKHR windowSurface; //
|
||
VkPhysicalDevice physicalDevice;
|
||
VkDevice device; //
|
||
VkSemaphore imageAvailableSemaphore; //
|
||
VkSemaphore renderingFinishedSemaphore; //
|
||
VkSwapchainKHR swapChain; //
|
||
VkCommandPool commandPool; //
|
||
std::vector<VkCommandBuffer> presentCommandBuffers; //
|
||
std::vector<VkImage> swapChainImages; //
|
||
VkRenderPass renderPass; //
|
||
std::vector<VkFramebuffer> fbs; //
|
||
VkShaderModule shaderModule; //
|
||
VkPipeline pipeline; //
|
||
VkQueue graphicsQueue;
|
||
VkQueue presentQueue;
|
||
VkBuffer vertexBuffer;
|
||
VkDeviceMemory vertexBufferMemory;
|
||
VkPhysicalDeviceMemoryProperties pdmp;
|
||
std::vector<VkImageView> views; //?
|
||
VkSurfaceFormatKHR swapchainFormat;
|
||
VkExtent2D swapChainExtent;
|
||
VkPipelineLayout pipelineLayout;
|
||
|
||
uint32_t graphicsQueueFamily;
|
||
uint32_t presentQueueFamily;
|
||
|
||
void cleanup() {
|
||
vkDeviceWaitIdle(device);
|
||
|
||
// Note: this is done implicitly when the command pool is freed, but nice to know about
|
||
vkFreeCommandBuffers(device, commandPool, presentCommandBuffers.size(), presentCommandBuffers.data());
|
||
vkDestroyCommandPool(device, commandPool, nullptr);
|
||
|
||
vkDestroySemaphore(device, imageAvailableSemaphore, nullptr);
|
||
vkDestroySemaphore(device, renderingFinishedSemaphore, nullptr);
|
||
|
||
for(int c = 0; c < views.size(); ++c)
|
||
vkDestroyImageView(device, views[c], 0);
|
||
|
||
for (int c = 0; c < fbs.size(); ++c)
|
||
vkDestroyFramebuffer(device, fbs[c], 0);
|
||
|
||
vkDestroyRenderPass(device, renderPass, 0);
|
||
|
||
vkDestroyShaderModule(device, shaderModule, 0);
|
||
|
||
vkDestroyPipeline(device, pipeline, 0);
|
||
|
||
// Note: implicitly destroys images (in fact, we're not allowed to do that explicitly)
|
||
vkDestroySwapchainKHR(device, swapChain, nullptr);
|
||
|
||
vkDestroyDevice(device, nullptr);
|
||
|
||
vkDestroySurfaceKHR(instance, windowSurface, nullptr);
|
||
|
||
vkDestroyInstance(instance, nullptr);
|
||
}
|
||
|
||
void run() {
|
||
// Note: dynamically loading loader may be a better idea to fail gracefully when Vulkan is not supported
|
||
|
||
// Create window for Vulkan
|
||
//glfwInit();
|
||
|
||
//glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);
|
||
//glfwWindowHint(GLFW_RESIZABLE, GLFW_FALSE);
|
||
|
||
//window = glfwCreateWindow(WINDOW_WIDTH, WINDOW_HEIGHT, "The 630 line cornflower blue window", nullptr, nullptr);
|
||
|
||
// Use Vulkan
|
||
setupVulkan();
|
||
|
||
mainLoop();
|
||
|
||
cleanup();
|
||
}
|
||
|
||
void setupVulkan() {
|
||
createInstance();
|
||
createWindowSurface();
|
||
findPhysicalDevice();
|
||
checkSwapChainSupport();
|
||
findQueueFamilies();
|
||
createLogicalDevice();
|
||
createSemaphores();
|
||
createSwapChain();
|
||
createCommandQueues();
|
||
CreateRenderPass();
|
||
CreateFramebuffer();
|
||
CreateVertexBuffer();
|
||
//CreateUniformBuffer();
|
||
CreateShaders();
|
||
CreatePipeline();
|
||
recordCommandBuffers();
|
||
}
|
||
|
||
void mainLoop() {
|
||
//while (!glfwWindowShouldClose(window)) {
|
||
for(int c = 0; c < 300; ++c){
|
||
draw();
|
||
|
||
//glfwPollEvents();
|
||
}
|
||
}
|
||
|
||
void createInstance() {
|
||
VkApplicationInfo appInfo = {};
|
||
appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
|
||
appInfo.pApplicationName = "VulkanTriangle";
|
||
appInfo.applicationVersion = VK_MAKE_VERSION(1, 0, 0);
|
||
appInfo.pEngineName = "TriangleEngine";
|
||
appInfo.engineVersion = VK_MAKE_VERSION(1, 0, 0);
|
||
appInfo.apiVersion = VK_API_VERSION_1_0;
|
||
|
||
// Get instance extensions required by GLFW to draw to window
|
||
//unsigned int glfwExtensionCount;
|
||
//const char** glfwExtensions;
|
||
//glfwExtensions = glfwGetRequiredInstanceExtensions(&glfwExtensionCount);
|
||
|
||
// Check for extensions
|
||
uint32_t extensionCount = 0;
|
||
vkEnumerateInstanceExtensionProperties(nullptr, &extensionCount, nullptr);
|
||
|
||
if (extensionCount == 0) {
|
||
std::cerr << "no extensions supported!" << std::endl;
|
||
assert(0);
|
||
}
|
||
|
||
std::vector<VkExtensionProperties> availableExtensions(extensionCount);
|
||
vkEnumerateInstanceExtensionProperties(nullptr, &extensionCount, availableExtensions.data());
|
||
|
||
std::cout << "supported extensions:" << std::endl;
|
||
|
||
for (const auto& extension : availableExtensions) {
|
||
std::cout << "\t" << extension.extensionName << std::endl;
|
||
}
|
||
|
||
VkInstanceCreateInfo createInfo = {};
|
||
createInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
|
||
createInfo.pApplicationInfo = &appInfo;
|
||
//createInfo.enabledExtensionCount = glfwExtensionCount;
|
||
createInfo.enabledExtensionCount = 0;
|
||
//createInfo.ppEnabledExtensionNames = glfwExtensions;
|
||
createInfo.ppEnabledExtensionNames = 0;
|
||
createInfo.enabledLayerCount = 0;
|
||
createInfo.ppEnabledLayerNames = 0;
|
||
|
||
// Initialize Vulkan instance
|
||
if (vkCreateInstance(&createInfo, nullptr, &instance) != VK_SUCCESS) {
|
||
std::cerr << "failed to create instance!" << std::endl;
|
||
assert(0);
|
||
}
|
||
else {
|
||
std::cout << "created vulkan instance" << std::endl;
|
||
}
|
||
}
|
||
|
||
void createWindowSurface() {
|
||
if (vkCreateRpiSurfaceEXT(instance, 0, 0, &windowSurface) != VK_SUCCESS) {
|
||
std::cerr << "failed to create window surface!" << std::endl;
|
||
assert(0);
|
||
}
|
||
|
||
std::cout << "created window surface" << std::endl;
|
||
}
|
||
|
||
void findPhysicalDevice() {
|
||
// Try to find 1 Vulkan supported device
|
||
// Note: perhaps refactor to loop through devices and find first one that supports all required features and extensions
|
||
uint32_t deviceCount = 1;
|
||
VkResult res = vkEnumeratePhysicalDevices(instance, &deviceCount, &physicalDevice);
|
||
if (res != VK_SUCCESS && res != VK_INCOMPLETE) {
|
||
std::cerr << "enumerating physical devices failed!" << std::endl;
|
||
assert(0);
|
||
}
|
||
|
||
if (deviceCount == 0) {
|
||
std::cerr << "no physical devices that support vulkan!" << std::endl;
|
||
assert(0);
|
||
}
|
||
|
||
std::cout << "physical device with vulkan support found" << std::endl;
|
||
|
||
vkGetPhysicalDeviceMemoryProperties(physicalDevice, &pdmp);
|
||
|
||
// Check device features
|
||
// Note: will apiVersion >= appInfo.apiVersion? Probably yes, but spec is unclear.
|
||
VkPhysicalDeviceProperties deviceProperties;
|
||
VkPhysicalDeviceFeatures deviceFeatures;
|
||
vkGetPhysicalDeviceProperties(physicalDevice, &deviceProperties);
|
||
vkGetPhysicalDeviceFeatures(physicalDevice, &deviceFeatures);
|
||
|
||
uint32_t supportedVersion[] = {
|
||
VK_VERSION_MAJOR(deviceProperties.apiVersion),
|
||
VK_VERSION_MINOR(deviceProperties.apiVersion),
|
||
VK_VERSION_PATCH(deviceProperties.apiVersion)
|
||
};
|
||
|
||
std::cout << "physical device supports version " << supportedVersion[0] << "." << supportedVersion[1] << "." << supportedVersion[2] << std::endl;
|
||
}
|
||
|
||
void checkSwapChainSupport() {
|
||
uint32_t extensionCount = 0;
|
||
vkEnumerateDeviceExtensionProperties(physicalDevice, nullptr, &extensionCount, nullptr);
|
||
|
||
if (extensionCount == 0) {
|
||
std::cerr << "physical device doesn't support any extensions" << std::endl;
|
||
assert(0);
|
||
}
|
||
|
||
std::vector<VkExtensionProperties> deviceExtensions(extensionCount);
|
||
vkEnumerateDeviceExtensionProperties(physicalDevice, nullptr, &extensionCount, deviceExtensions.data());
|
||
|
||
for (const auto& extension : deviceExtensions) {
|
||
if (strcmp(extension.extensionName, VK_KHR_SWAPCHAIN_EXTENSION_NAME) == 0) {
|
||
std::cout << "physical device supports swap chains" << std::endl;
|
||
return;
|
||
}
|
||
}
|
||
|
||
std::cerr << "physical device doesn't support swap chains" << std::endl;
|
||
assert(0);
|
||
}
|
||
|
||
void findQueueFamilies() {
|
||
// Check queue families
|
||
uint32_t queueFamilyCount = 0;
|
||
vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueFamilyCount, nullptr);
|
||
|
||
if (queueFamilyCount == 0) {
|
||
std::cout << "physical device has no queue families!" << std::endl;
|
||
assert(0);
|
||
}
|
||
|
||
// Find queue family with graphics support
|
||
// Note: is a transfer queue necessary to copy vertices to the gpu or can a graphics queue handle that?
|
||
std::vector<VkQueueFamilyProperties> queueFamilies(queueFamilyCount);
|
||
vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueFamilyCount, queueFamilies.data());
|
||
|
||
std::cout << "physical device has " << queueFamilyCount << " queue families" << std::endl;
|
||
|
||
bool foundGraphicsQueueFamily = false;
|
||
bool foundPresentQueueFamily = false;
|
||
|
||
for (uint32_t i = 0; i < queueFamilyCount; i++) {
|
||
VkBool32 presentSupport = false;
|
||
vkGetPhysicalDeviceSurfaceSupportKHR(physicalDevice, i, windowSurface, &presentSupport);
|
||
|
||
if (queueFamilies[i].queueCount > 0 && queueFamilies[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) {
|
||
graphicsQueueFamily = i;
|
||
foundGraphicsQueueFamily = true;
|
||
|
||
if (presentSupport) {
|
||
presentQueueFamily = i;
|
||
foundPresentQueueFamily = true;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (!foundPresentQueueFamily && presentSupport) {
|
||
presentQueueFamily = i;
|
||
foundPresentQueueFamily = true;
|
||
}
|
||
}
|
||
|
||
if (foundGraphicsQueueFamily) {
|
||
std::cout << "queue family #" << graphicsQueueFamily << " supports graphics" << std::endl;
|
||
|
||
if (foundPresentQueueFamily) {
|
||
std::cout << "queue family #" << presentQueueFamily << " supports presentation" << std::endl;
|
||
}
|
||
else {
|
||
std::cerr << "could not find a valid queue family with present support" << std::endl;
|
||
assert(0);
|
||
}
|
||
}
|
||
else {
|
||
std::cerr << "could not find a valid queue family with graphics support" << std::endl;
|
||
assert(0);
|
||
}
|
||
}
|
||
|
||
void createLogicalDevice() {
|
||
// Greate one graphics queue and optionally a separate presentation queue
|
||
float queuePriority = 1.0f;
|
||
|
||
VkDeviceQueueCreateInfo queueCreateInfo[2] = {};
|
||
|
||
queueCreateInfo[0].sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
|
||
queueCreateInfo[0].queueFamilyIndex = graphicsQueueFamily;
|
||
queueCreateInfo[0].queueCount = 1;
|
||
queueCreateInfo[0].pQueuePriorities = &queuePriority;
|
||
|
||
queueCreateInfo[0].sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
|
||
queueCreateInfo[0].queueFamilyIndex = presentQueueFamily;
|
||
queueCreateInfo[0].queueCount = 1;
|
||
queueCreateInfo[0].pQueuePriorities = &queuePriority;
|
||
|
||
// Create logical device from physical device
|
||
// Note: there are separate instance and device extensions!
|
||
VkDeviceCreateInfo deviceCreateInfo = {};
|
||
deviceCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
|
||
deviceCreateInfo.pQueueCreateInfos = queueCreateInfo;
|
||
|
||
if (graphicsQueueFamily == presentQueueFamily) {
|
||
deviceCreateInfo.queueCreateInfoCount = 1;
|
||
}
|
||
else {
|
||
deviceCreateInfo.queueCreateInfoCount = 2;
|
||
}
|
||
|
||
const char* deviceExtensions = VK_KHR_SWAPCHAIN_EXTENSION_NAME;
|
||
deviceCreateInfo.enabledExtensionCount = 1;
|
||
deviceCreateInfo.ppEnabledExtensionNames = &deviceExtensions;
|
||
|
||
if (vkCreateDevice(physicalDevice, &deviceCreateInfo, nullptr, &device) != VK_SUCCESS) {
|
||
std::cerr << "failed to create logical device" << std::endl;
|
||
assert(0);
|
||
}
|
||
|
||
std::cout << "created logical device" << std::endl;
|
||
|
||
// Get graphics and presentation queues (which may be the same)
|
||
vkGetDeviceQueue(device, graphicsQueueFamily, 0, &graphicsQueue);
|
||
vkGetDeviceQueue(device, presentQueueFamily, 0, &presentQueue);
|
||
|
||
std::cout << "acquired graphics and presentation queues" << std::endl;
|
||
}
|
||
|
||
void createSemaphores() {
|
||
VkSemaphoreCreateInfo createInfo = {};
|
||
createInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
|
||
|
||
if (vkCreateSemaphore(device, &createInfo, nullptr, &imageAvailableSemaphore) != VK_SUCCESS ||
|
||
vkCreateSemaphore(device, &createInfo, nullptr, &renderingFinishedSemaphore) != VK_SUCCESS) {
|
||
std::cerr << "failed to create semaphores" << std::endl;
|
||
assert(0);
|
||
}
|
||
else {
|
||
std::cout << "created semaphores" << std::endl;
|
||
}
|
||
}
|
||
|
||
void createSwapChain() {
|
||
// Find surface capabilities
|
||
VkSurfaceCapabilitiesKHR surfaceCapabilities;
|
||
if (vkGetPhysicalDeviceSurfaceCapabilitiesKHR(physicalDevice, windowSurface, &surfaceCapabilities) != VK_SUCCESS) {
|
||
std::cerr << "failed to acquire presentation surface capabilities" << std::endl;
|
||
assert(0);
|
||
}
|
||
|
||
// Find supported surface formats
|
||
uint32_t formatCount;
|
||
if (vkGetPhysicalDeviceSurfaceFormatsKHR(physicalDevice, windowSurface, &formatCount, nullptr) != VK_SUCCESS || formatCount == 0) {
|
||
std::cerr << "failed to get number of supported surface formats" << std::endl;
|
||
assert(0);
|
||
}
|
||
|
||
std::vector<VkSurfaceFormatKHR> surfaceFormats(formatCount);
|
||
if (vkGetPhysicalDeviceSurfaceFormatsKHR(physicalDevice, windowSurface, &formatCount, surfaceFormats.data()) != VK_SUCCESS) {
|
||
std::cerr << "failed to get supported surface formats" << std::endl;
|
||
assert(0);
|
||
}
|
||
|
||
// Find supported present modes
|
||
uint32_t presentModeCount;
|
||
if (vkGetPhysicalDeviceSurfacePresentModesKHR(physicalDevice, windowSurface, &presentModeCount, nullptr) != VK_SUCCESS || presentModeCount == 0) {
|
||
std::cerr << "failed to get number of supported presentation modes" << std::endl;
|
||
assert(0);
|
||
}
|
||
|
||
std::vector<VkPresentModeKHR> presentModes(presentModeCount);
|
||
if (vkGetPhysicalDeviceSurfacePresentModesKHR(physicalDevice, windowSurface, &presentModeCount, presentModes.data()) != VK_SUCCESS) {
|
||
std::cerr << "failed to get supported presentation modes" << std::endl;
|
||
assert(0);
|
||
}
|
||
|
||
// Determine number of images for swap chain
|
||
uint32_t imageCount = surfaceCapabilities.minImageCount + 1;
|
||
if (surfaceCapabilities.maxImageCount != 0 && imageCount > surfaceCapabilities.maxImageCount) {
|
||
imageCount = surfaceCapabilities.maxImageCount;
|
||
}
|
||
|
||
std::cout << "using " << imageCount << " images for swap chain" << std::endl;
|
||
|
||
// Select a surface format
|
||
swapchainFormat = chooseSurfaceFormat(surfaceFormats);
|
||
|
||
// Select swap chain size
|
||
swapChainExtent = chooseSwapExtent(surfaceCapabilities);
|
||
|
||
// Check if swap chain supports being the destination of an image transfer
|
||
// Note: AMD driver bug, though it would be nice to implement a workaround that doesn't use transfering
|
||
//if (!(surfaceCapabilities.supportedUsageFlags & VK_IMAGE_USAGE_TRANSFER_DST_BIT)) {
|
||
// std::cerr << "swap chain image does not support VK_IMAGE_TRANSFER_DST usage" << std::endl;
|
||
//assert(0);
|
||
//}
|
||
|
||
// Determine transformation to use (preferring no transform)
|
||
VkSurfaceTransformFlagBitsKHR surfaceTransform;
|
||
if (surfaceCapabilities.supportedTransforms & VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR) {
|
||
surfaceTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
|
||
}
|
||
else {
|
||
surfaceTransform = surfaceCapabilities.currentTransform;
|
||
}
|
||
|
||
// Choose presentation mode (preferring MAILBOX ~= triple buffering)
|
||
VkPresentModeKHR presentMode = choosePresentMode(presentModes);
|
||
|
||
// Finally, create the swap chain
|
||
VkSwapchainCreateInfoKHR createInfo = {};
|
||
createInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
|
||
createInfo.surface = windowSurface;
|
||
createInfo.minImageCount = imageCount;
|
||
createInfo.imageFormat = swapchainFormat.format;
|
||
createInfo.imageColorSpace = swapchainFormat.colorSpace;
|
||
createInfo.imageExtent = swapChainExtent;
|
||
createInfo.imageArrayLayers = 1;
|
||
createInfo.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
|
||
createInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
|
||
createInfo.queueFamilyIndexCount = 0;
|
||
createInfo.pQueueFamilyIndices = nullptr;
|
||
createInfo.preTransform = surfaceTransform;
|
||
createInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
|
||
createInfo.presentMode = presentMode;
|
||
createInfo.clipped = VK_TRUE;
|
||
createInfo.oldSwapchain = VK_NULL_HANDLE;
|
||
|
||
if (vkCreateSwapchainKHR(device, &createInfo, nullptr, &swapChain) != VK_SUCCESS) {
|
||
std::cerr << "failed to create swap chain" << std::endl;
|
||
assert(0);
|
||
}
|
||
else {
|
||
std::cout << "created swap chain" << std::endl;
|
||
}
|
||
|
||
// Store the images used by the swap chain
|
||
// Note: these are the images that swap chain image indices refer to
|
||
// Note: actual number of images may differ from requested number, since it's a lower bound
|
||
uint32_t actualImageCount = 0;
|
||
if (vkGetSwapchainImagesKHR(device, swapChain, &actualImageCount, nullptr) != VK_SUCCESS || actualImageCount == 0) {
|
||
std::cerr << "failed to acquire number of swap chain images" << std::endl;
|
||
assert(0);
|
||
}
|
||
|
||
swapChainImages.resize(actualImageCount);
|
||
views.resize(actualImageCount);
|
||
|
||
if (vkGetSwapchainImagesKHR(device, swapChain, &actualImageCount, swapChainImages.data()) != VK_SUCCESS) {
|
||
std::cerr << "failed to acquire swap chain images" << std::endl;
|
||
assert(0);
|
||
}
|
||
|
||
std::cout << "acquired swap chain images" << std::endl;
|
||
}
|
||
|
||
VkSurfaceFormatKHR chooseSurfaceFormat(const std::vector<VkSurfaceFormatKHR>& availableFormats) {
|
||
// We can either choose any format
|
||
if (availableFormats.size() == 1 && availableFormats[0].format == VK_FORMAT_UNDEFINED) {
|
||
return { VK_FORMAT_R8G8B8A8_UNORM, VK_COLORSPACE_SRGB_NONLINEAR_KHR };
|
||
}
|
||
|
||
// Or go with the standard format - if available
|
||
for (const auto& availableSurfaceFormat : availableFormats) {
|
||
if (availableSurfaceFormat.format == VK_FORMAT_R8G8B8A8_UNORM) {
|
||
return availableSurfaceFormat;
|
||
}
|
||
}
|
||
|
||
// Or fall back to the first available one
|
||
return availableFormats[0];
|
||
}
|
||
|
||
VkExtent2D chooseSwapExtent(const VkSurfaceCapabilitiesKHR& surfaceCapabilities) {
|
||
if (surfaceCapabilities.currentExtent.width == -1) {
|
||
VkExtent2D swapChainExtent = {};
|
||
|
||
#define min(a, b) (a < b ? a : b)
|
||
#define max(a, b) (a > b ? a : b)
|
||
swapChainExtent.width = min(max(640, surfaceCapabilities.minImageExtent.width), surfaceCapabilities.maxImageExtent.width);
|
||
swapChainExtent.height = min(max(480, surfaceCapabilities.minImageExtent.height), surfaceCapabilities.maxImageExtent.height);
|
||
|
||
return swapChainExtent;
|
||
}
|
||
else {
|
||
return surfaceCapabilities.currentExtent;
|
||
}
|
||
}
|
||
|
||
VkPresentModeKHR choosePresentMode(const std::vector<VkPresentModeKHR> presentModes) {
|
||
for (const auto& presentMode : presentModes) {
|
||
if (presentMode == VK_PRESENT_MODE_MAILBOX_KHR) {
|
||
return presentMode;
|
||
}
|
||
}
|
||
|
||
// If mailbox is unavailable, fall back to FIFO (guaranteed to be available)
|
||
return VK_PRESENT_MODE_FIFO_KHR;
|
||
}
|
||
|
||
void createCommandQueues() {
|
||
// Create presentation command pool
|
||
// Note: only command buffers for a single queue family can be created from this pool
|
||
VkCommandPoolCreateInfo poolCreateInfo = {};
|
||
poolCreateInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
|
||
poolCreateInfo.queueFamilyIndex = presentQueueFamily;
|
||
|
||
if (vkCreateCommandPool(device, &poolCreateInfo, nullptr, &commandPool) != VK_SUCCESS) {
|
||
std::cerr << "failed to create command queue for presentation queue family" << std::endl;
|
||
assert(0);
|
||
}
|
||
else {
|
||
std::cout << "created command pool for presentation queue family" << std::endl;
|
||
}
|
||
|
||
// Get number of swap chain images and create vector to hold command queue for each one
|
||
presentCommandBuffers.resize(swapChainImages.size());
|
||
|
||
// Allocate presentation command buffers
|
||
// Note: secondary command buffers are only for nesting in primary command buffers
|
||
VkCommandBufferAllocateInfo allocInfo = {};
|
||
allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
|
||
allocInfo.commandPool = commandPool;
|
||
allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
|
||
allocInfo.commandBufferCount = (uint32_t)swapChainImages.size();
|
||
|
||
if (vkAllocateCommandBuffers(device, &allocInfo, presentCommandBuffers.data()) != VK_SUCCESS) {
|
||
std::cerr << "failed to allocate presentation command buffers" << std::endl;
|
||
assert(0);
|
||
}
|
||
else {
|
||
std::cout << "allocated presentation command buffers" << std::endl;
|
||
}
|
||
}
|
||
|
||
void recordCommandBuffers()
|
||
{
|
||
// Prepare data for recording command buffers
|
||
VkCommandBufferBeginInfo beginInfo = {};
|
||
beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
|
||
beginInfo.flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT;
|
||
|
||
// Note: contains value for each subresource range
|
||
VkClearColorValue clearColor = {
|
||
{ 0.4f, 0.6f, 0.9f, 1.0f } // R, G, B, A
|
||
};
|
||
VkClearValue clearValue = {};
|
||
clearValue.color = clearColor;
|
||
|
||
VkImageSubresourceRange subResourceRange = {};
|
||
subResourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
||
subResourceRange.baseMipLevel = 0;
|
||
subResourceRange.levelCount = 1;
|
||
subResourceRange.baseArrayLayer = 0;
|
||
subResourceRange.layerCount = 1;
|
||
|
||
VkRenderPassBeginInfo renderPassInfo = {};
|
||
renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
|
||
renderPassInfo.renderPass = renderPass;
|
||
renderPassInfo.renderArea.offset.x = 0;
|
||
renderPassInfo.renderArea.offset.y = 0;
|
||
renderPassInfo.renderArea.extent.width = swapChainExtent.width;
|
||
renderPassInfo.renderArea.extent.height = swapChainExtent.height;
|
||
renderPassInfo.clearValueCount = 1;
|
||
renderPassInfo.pClearValues = &clearValue;
|
||
|
||
VkViewport viewport = { 0 };
|
||
viewport.height = (float)swapChainExtent.width;
|
||
viewport.width = (float)swapChainExtent.height;
|
||
viewport.minDepth = (float)0.0f;
|
||
viewport.maxDepth = (float)1.0f;
|
||
|
||
VkRect2D scissor = { 0 };
|
||
scissor.extent.width = swapChainExtent.width;
|
||
scissor.extent.height = swapChainExtent.height;
|
||
scissor.offset.x = 0;
|
||
scissor.offset.y = 0;
|
||
|
||
// Record the command buffer for every swap chain image
|
||
for (uint32_t i = 0; i < swapChainImages.size(); i++) {
|
||
// Record command buffer
|
||
vkBeginCommandBuffer(presentCommandBuffers[i], &beginInfo);
|
||
|
||
renderPassInfo.framebuffer = fbs[i];
|
||
|
||
vkCmdBeginRenderPass(presentCommandBuffers[i], &renderPassInfo, VK_SUBPASS_CONTENTS_INLINE);
|
||
|
||
vkCmdBindPipeline(presentCommandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
|
||
|
||
//vkCmdSetViewport(presentCommandBuffers[i], 0, 1, &viewport);
|
||
|
||
//vkCmdSetScissor(presentCommandBuffers[i], 0, 1, &scissor);
|
||
|
||
VkDeviceSize offsets = 0;
|
||
vkCmdBindVertexBuffers(presentCommandBuffers[i], 0, 1, &vertexBuffer, &offsets );
|
||
|
||
float Wcoeff = 1.0f; //1.0f / Wc = 2.0 - Wcoeff
|
||
float viewportScaleX = (float)(swapChainExtent.width) * 0.5f * 16.0f;
|
||
float viewportScaleY = -1.0f * (float)(swapChainExtent.height) * 0.5f * 16.0f;
|
||
float Zs = 0.5f;
|
||
|
||
uint32_t pushConstants[4];
|
||
pushConstants[0] = *(uint32_t*)&Wcoeff;
|
||
pushConstants[1] = *(uint32_t*)&viewportScaleX;
|
||
pushConstants[2] = *(uint32_t*)&viewportScaleY;
|
||
pushConstants[3] = *(uint32_t*)&Zs;
|
||
|
||
vkCmdPushConstants(presentCommandBuffers[i], pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(pushConstants), &pushConstants);
|
||
|
||
vkCmdDraw(presentCommandBuffers[i], 3, 1, 0, 0);
|
||
|
||
vkCmdEndRenderPass(presentCommandBuffers[i]);
|
||
|
||
if (vkEndCommandBuffer(presentCommandBuffers[i]) != VK_SUCCESS) {
|
||
std::cerr << "failed to record command buffer" << std::endl;
|
||
assert(0);
|
||
}
|
||
else {
|
||
std::cout << "recorded command buffer for image " << i << std::endl;
|
||
}
|
||
}
|
||
}
|
||
|
||
void draw() {
|
||
// Acquire image
|
||
uint32_t imageIndex;
|
||
VkResult res = vkAcquireNextImageKHR(device, swapChain, UINT64_MAX, imageAvailableSemaphore, VK_NULL_HANDLE, &imageIndex);
|
||
|
||
if (res != VK_SUCCESS && res != VK_SUBOPTIMAL_KHR) {
|
||
std::cerr << "failed to acquire image" << std::endl;
|
||
assert(0);
|
||
}
|
||
|
||
std::cout << "acquired image" << std::endl;
|
||
|
||
// Wait for image to be available and draw
|
||
VkSubmitInfo submitInfo = {};
|
||
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
|
||
|
||
submitInfo.waitSemaphoreCount = 1;
|
||
submitInfo.pWaitSemaphores = &imageAvailableSemaphore;
|
||
|
||
submitInfo.signalSemaphoreCount = 1;
|
||
submitInfo.pSignalSemaphores = &renderingFinishedSemaphore;
|
||
|
||
submitInfo.commandBufferCount = 1;
|
||
submitInfo.pCommandBuffers = &presentCommandBuffers[imageIndex];
|
||
|
||
if (vkQueueSubmit(presentQueue, 1, &submitInfo, VK_NULL_HANDLE) != VK_SUCCESS) {
|
||
std::cerr << "failed to submit draw command buffer" << std::endl;
|
||
assert(0);
|
||
}
|
||
|
||
std::cout << "submitted draw command buffer" << std::endl;
|
||
|
||
// Present drawn image
|
||
// Note: semaphore here is not strictly necessary, because commands are processed in submission order within a single queue
|
||
VkPresentInfoKHR presentInfo = {};
|
||
presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
|
||
presentInfo.waitSemaphoreCount = 1;
|
||
presentInfo.pWaitSemaphores = &renderingFinishedSemaphore;
|
||
|
||
presentInfo.swapchainCount = 1;
|
||
presentInfo.pSwapchains = &swapChain;
|
||
presentInfo.pImageIndices = &imageIndex;
|
||
|
||
res = vkQueuePresentKHR(presentQueue, &presentInfo);
|
||
|
||
if (res != VK_SUCCESS) {
|
||
std::cerr << "failed to submit present command buffer" << std::endl;
|
||
assert(0);
|
||
}
|
||
|
||
std::cout << "submitted presentation command buffer" << std::endl;
|
||
}
|
||
|
||
void CreateRenderPass()
|
||
{
|
||
VkAttachmentReference attachRef = {};
|
||
attachRef.attachment = 0;
|
||
attachRef.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
|
||
|
||
VkSubpassDescription subpassDesc = {};
|
||
subpassDesc.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
|
||
subpassDesc.colorAttachmentCount = 1;
|
||
subpassDesc.pColorAttachments = &attachRef;
|
||
|
||
VkAttachmentDescription attachDesc = {};
|
||
attachDesc.format = swapchainFormat.format; //Todo
|
||
attachDesc.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
|
||
attachDesc.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
|
||
attachDesc.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
|
||
attachDesc.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
|
||
attachDesc.initialLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
|
||
attachDesc.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
|
||
attachDesc.samples = VK_SAMPLE_COUNT_1_BIT;
|
||
|
||
VkRenderPassCreateInfo renderPassCreateInfo = {};
|
||
renderPassCreateInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
|
||
renderPassCreateInfo.attachmentCount = 1;
|
||
renderPassCreateInfo.pAttachments = &attachDesc;
|
||
renderPassCreateInfo.subpassCount = 1;
|
||
renderPassCreateInfo.pSubpasses = &subpassDesc;
|
||
|
||
VkResult res = vkCreateRenderPass(device, &renderPassCreateInfo, NULL, &renderPass);
|
||
|
||
printf("Created a render pass\n");
|
||
}
|
||
|
||
|
||
void CreateFramebuffer()
|
||
{
|
||
fbs.resize(swapChainImages.size());
|
||
|
||
VkResult res;
|
||
|
||
for (uint32_t i = 0; i < swapChainImages.size(); i++) {
|
||
VkImageViewCreateInfo ViewCreateInfo = {};
|
||
ViewCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
|
||
ViewCreateInfo.image = swapChainImages[i];
|
||
ViewCreateInfo.format = swapchainFormat.format; //Todo
|
||
ViewCreateInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
|
||
ViewCreateInfo.components.r = VK_COMPONENT_SWIZZLE_IDENTITY;
|
||
ViewCreateInfo.components.g = VK_COMPONENT_SWIZZLE_IDENTITY;
|
||
ViewCreateInfo.components.b = VK_COMPONENT_SWIZZLE_IDENTITY;
|
||
ViewCreateInfo.components.a = VK_COMPONENT_SWIZZLE_IDENTITY;
|
||
ViewCreateInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
||
ViewCreateInfo.subresourceRange.baseMipLevel = 0;
|
||
ViewCreateInfo.subresourceRange.levelCount = 1;
|
||
ViewCreateInfo.subresourceRange.baseArrayLayer = 0;
|
||
ViewCreateInfo.subresourceRange.layerCount = 1;
|
||
|
||
res = vkCreateImageView(device, &ViewCreateInfo, NULL, &views[i]);
|
||
|
||
VkFramebufferCreateInfo fbCreateInfo = {};
|
||
fbCreateInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
|
||
fbCreateInfo.renderPass = renderPass;
|
||
fbCreateInfo.attachmentCount = 1;
|
||
fbCreateInfo.pAttachments = &views[i];
|
||
fbCreateInfo.width = swapChainExtent.width;
|
||
fbCreateInfo.height = swapChainExtent.height;
|
||
fbCreateInfo.layers = 1;
|
||
|
||
res = vkCreateFramebuffer(device, &fbCreateInfo, NULL, &fbs[i]);
|
||
}
|
||
|
||
printf("Frame buffers created\n");
|
||
}
|
||
|
||
void CreateShaders()
|
||
{
|
||
/**
|
||
///Varyings are interpolated using (A * (x - x0) + B * (y - y0)) * W + C
|
||
///Hardware calculates (A * (x - x0) + B * (y - y0)) for us for each varying component
|
||
///but we still need to mul by W and add C
|
||
///C is loaded into R5 when we read a varying (to be used in next instruction)
|
||
|
||
///exploits multi-threaded fs programs
|
||
///the last cycle of the vertex shader writes W to RA14 and Z to RB14
|
||
///since the regfile is flipped when using multi-threading, they will be persisted to RA15 and RB15
|
||
///Otherwise they would be persisted to RA14 and RB14
|
||
|
||
//FS prog reading tex with varyings
|
||
0x100049e0203e303e nop nop, r0, r0 ; fmul r0, vary, ra15 //mul by w
|
||
0x100248e1213e317e fadd r3, r0, r5 ; fmul r1, vary, ra15 //add interpolation coefficient C, mul by w
|
||
0x600208a7019e7340 sig_thread_switch fadd r2, r1, r5 ; nop nop, r0, r0
|
||
0x10021e67159e7480 mov tmu0_t, r2 ; nop nop, r0, r0
|
||
0x10021e27159e76c0 mov tmu0_s, r3 ; nop nop, r0, r0
|
||
0xa00009e7009e7000 load_tmu0 nop nop, r0, r0 ; nop nop, r0, r0
|
||
0x190208e7049e7900 fmax r3, r4.8a, r4.8a ; nop nop, r0, r0
|
||
0x1b424823849e791b fmax r0, r4.8b, r4.8b ; mov r3.8a, r3
|
||
0x1d524863849e7900 fmax r1, r4.8c, r4.8c ; mov r3.8b, r0
|
||
0x1f6248a3849e7909 fmax r2, r4.8d, r4.8d ; mov r3.8c, r1
|
||
0x117049e3809e7012 nop nop, r0, r0 ; mov r3.8d, r2
|
||
0x10020ba7159e76c0 mov tlb_color_all, r3 ; nop nop, r0, r0
|
||
0x300009e7009e7000 sig_end nop nop, r0, r0 ; nop nop, r0, r0
|
||
0x100009e7009e7000 nop nop, r0, r0 ; nop nop, r0, r0
|
||
0x500009e7009e7000 sig_unlock_score nop nop, r0, r0 ; nop nop, r0, r0
|
||
|
||
//FS prog just outputting varyings
|
||
0x100049e0203e303e nop nop, r0, r0 ; fmul r0, vary, ra15
|
||
0x10024862213e317e fadd r1, r0, r5 ; fmul r2, vary, ra15
|
||
0x114248e0819e7549 fadd r3, r2, r5 ; mov r0.8a, r1
|
||
0x115049e0809e701b nop nop, r0, r0 ; mov r0.8b, r3
|
||
0xd16049e0809c003f sig_small_imm nop nop, r0, r0 ; mov r0.8c, 0
|
||
0xd17049e0809e003f sig_small_imm nop nop, r0, r0 ; mov r0.8d, 1.0
|
||
0x10020ba7159e7000 mov tlb_color_all, r0 ; nop nop, r0, r0
|
||
0x300009e7009e7000 sig_end nop nop, r0, r0 ; nop nop, r0, r0
|
||
0x100009e7009e7000 nop nop, r0, r0 ; nop nop, r0, r0
|
||
0x500009e7009e7000 sig_unlock_score nop nop, r0, r0 ; nop nop, r0, r0
|
||
|
||
VS prog 2/1 QPU:
|
||
0xd002102702821f80 sig_small_imm fsub rb0, 2.0, uni ; nop nop, r0, r0
|
||
0x00401a00:
|
||
0000 0000 0100 0000 0001 1010 0000 0000
|
||
///addr: 0
|
||
///size: 32bit
|
||
///packed
|
||
///horizontal
|
||
///stride=1
|
||
///vectors to read = 4
|
||
0xe0024c6700401a00 load_imm vr_setup, nop, 0x00401a00 (0.000000)
|
||
0x100049e220c20037 nop nop, r0, r0 ; fmul r2, vpm_read, uni
|
||
0x100049e3209c0017 nop nop, r0, r0 ; fmul r3, r2, rb0
|
||
0x1012402027c206f7 ftoi ra0.16a, r3, r3 ; fmul r0, vpm_read, uni
|
||
0x1002482135c00d87 mov r0, vpm_read ; fmul r1, r0, rb0
|
||
0x1022402187c27276 ftoi ra0.16b, r1, r1 ; mov r1, vpm_read
|
||
0xe0025c6700001a00 load_imm vw_setup, nop, 0x00001a00 (0.000000)
|
||
0x10020c2715027d80 mov vpm, ra0 ; nop nop, r0, r0
|
||
0x10020c2715827d80 mov vpm, uni ; nop nop, r0, r0
|
||
0x10020c27159c0fc0 mov vpm, rb0 ; nop nop, r0, r0
|
||
0x10020c27159e7000 mov vpm, r0 ; nop nop, r0, r0
|
||
0x10020c27159e7240 mov vpm, r1 ; nop nop, r0, r0
|
||
0x300009e7009e7000 sig_end nop nop, r0, r0 ; nop nop, r0, r0
|
||
0x100009e7009e7000 nop nop, r0, r0 ; nop nop, r0, r0
|
||
0x100009e7009e7000 nop nop, r0, r0 ; nop nop, r0, r0
|
||
/**/
|
||
|
||
|
||
//TODO doesn't work for some reason...
|
||
char vs_asm_code[] =
|
||
///0x40000000 = 2.0
|
||
///uni = 1.0
|
||
///rb0 = 2 - 1 = 1
|
||
"sig_small_imm ; rx0 = fsub.ws.always(b, a, uni, 0x40000000) ; nop = nop(r0, r0) ;\n"
|
||
///set up VPM read for subsequent reads
|
||
///0x00201a00: 0000 0000 0010 0000 0001 1010 0000 0000
|
||
///addr: 0
|
||
///size: 32bit
|
||
///packed
|
||
///horizontal
|
||
///stride=1
|
||
///vectors to read = 4 (TODO not exactly clear what this means...)
|
||
"sig_load_imm ; vr_setup = load32.always(0x00401a00) ; nop = load32.always() ;\n"
|
||
///uni = viewportXScale
|
||
///r0 = vpm * uni
|
||
"sig_none ; nop = nop(r0, r0, vpm_read, uni) ; r0 = fmul.always(a, b) ;\n"
|
||
///r1 = r0 * rb0 (1)
|
||
"sig_none ; nop = nop(r0, r0, nop, rb0) ; r1 = fmul.always(r0, b) ;\n"
|
||
///uni = viewportYScale
|
||
///ra0.16a = int(r1), r2 = vpm * uni
|
||
"sig_none ; rx0.16a = ftoi.always(r1, r1, vpm_read, uni) ; r2 = fmul.always(a, b) ;\n"
|
||
///r3 = r2 * rb0
|
||
///r0 = vpm
|
||
"sig_none ; r0 = or.always(a, a, vpm_read, rb0) ; r3 = fmul.always(r2, b) ;\n"
|
||
///ra0.16b = int(r3)
|
||
///r1 = vpm
|
||
"sig_none ; rx0.16b = ftoi.always(r3, r3, vpm_read, nop) ; r1 = v8min.always(a, a) ;\n"
|
||
///set up VPM write for subsequent writes
|
||
///0x00001a00: 0000 0000 0000 0000 0001 1010 0000 0000
|
||
///addr: 0
|
||
///size: 32bit
|
||
///horizontal
|
||
///stride = 1
|
||
"sig_load_imm ; vw_setup = load32.always.ws(0x00001a00) ; nop = load32.always() ;\n"
|
||
///shaded vertex format for PSE
|
||
/// Ys and Xs
|
||
///vpm = ra0
|
||
"sig_none ; vpm = or.always(a, a, ra0, nop) ; nop = nop(r0, r0);\n"
|
||
/// Zc
|
||
///uni = 0.5
|
||
///vpm = uni
|
||
"sig_none ; vpm = or.always(a, a, uni, nop) ; nop = nop(r0, r0);\n"
|
||
/// 1.0 / Wc
|
||
///vpm = rb0 (1)
|
||
"sig_none ; vpm = or.always(b, b, nop, rb0) ; nop = nop(r0, r0);\n"
|
||
///vpm = r0
|
||
"sig_none ; vpm = or.always(r0, r0) ; nop = nop(r0, r0);\n"
|
||
///vpm = r1
|
||
"sig_none ; vpm = or.always(r1, r1) ; nop = nop(r0, r0);\n"
|
||
///END
|
||
"sig_end ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;\n"
|
||
"sig_none ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;\n"
|
||
"sig_none ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;\n"
|
||
"\0";
|
||
|
||
char cs_asm_code[] =
|
||
///uni = 1.0
|
||
///r3 = 2.0 - uni
|
||
"sig_small_imm ; r3 = fsub.always(b, a, uni, 0x40000000) ; nop = nop(r0, r0);\n"
|
||
"sig_load_imm ; vr_setup = load32.always(0x00201a00) ; nop = load32.always() ;\n"
|
||
///r2 = vpm
|
||
"sig_none ; r2 = or.always(a, a, vpm_read, nop) ; nop = nop(r0, r0);\n"
|
||
"sig_load_imm ; vw_setup = load32.always.ws(0x00001a00) ; nop = load32.always() ;\n"
|
||
///shaded coordinates format for PTB
|
||
/// write Xc
|
||
///r1 = vpm, vpm = r2
|
||
"sig_none ; r1 = or.always(a, a, vpm_read, nop) ; vpm = v8min.always(r2, r2);\n"
|
||
/// write Yc
|
||
///uni = viewportXscale
|
||
///vpm = r1, r2 = r2 * uni
|
||
"sig_none ; vpm = or.always(r1, r1, uni, nop) ; r2 = fmul.always(r2, a);\n"
|
||
///uni = viewportYscale
|
||
///r1 = r1 * uni
|
||
"sig_none ; nop = nop(r0, r0, uni, nop) ; r1 = fmul.always(r1, a);\n"
|
||
///r0 = r2 * r3
|
||
"sig_none ; nop = nop(r0, r0) ; r0 = fmul.always(r2, r3);\n"
|
||
///ra0.16a = r0, r1 = r1 * r3
|
||
"sig_none ; rx0.16a = ftoi.always(r0, r0) ; r1 = fmul.always(r1, r3) ;\n"
|
||
///ra0.16b = r1
|
||
"sig_none ; rx0.16b = ftoi.always(r1, r1) ; nop = nop(r0, r0) ;\n"
|
||
///write Zc
|
||
///vpm = 0
|
||
"sig_small_imm ; vpm = or.always(b, b, nop, 0) ; nop = nop(r0, r0) ;\n"
|
||
///write Wc
|
||
///vpm = 1.0
|
||
"sig_small_imm ; vpm = or.always(b, b, nop, 0x3f800000) ; nop = nop(r0, r0) ;\n"
|
||
///write Ys and Xs
|
||
///vpm = ra0
|
||
"sig_none ; vpm = or.always(a, a, ra0, nop) ; nop = nop(r0, r0) ;\n"
|
||
///write Zs
|
||
///uni = 0.5
|
||
///vpm = uni
|
||
"sig_none ; vpm = or.always(a, a, uni, nop) ; nop = nop(r0, r0) ;\n"
|
||
///write 1/Wc
|
||
///vpm = r3
|
||
"sig_none ; vpm = or.always(r3, r3) ; nop = nop(r0, r0) ;\n"
|
||
///END
|
||
"sig_end ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;\n"
|
||
"sig_none ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;\n"
|
||
"sig_none ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;\n"
|
||
"\0";
|
||
|
||
//clever: use small immedate -1 interpreted as 0xffffffff (white) to set color to white
|
||
//"sig_small_imm ; tlb_color_all = or.always(b, b, nop, -1) ; nop = nop(r0, r0) ;"
|
||
|
||
//8bit access
|
||
//abcd
|
||
//BGRA
|
||
|
||
/**
|
||
//rainbow colors
|
||
char fs_asm_code[] =
|
||
"sig_none ; r1 = itof.always(a, a, x_pix, uni) ; r3 = v8min.always(b, b) ;" //can't use mul pipeline for conversion :(
|
||
"sig_load_imm ; r2 = load32.always(0x3a088888) ; nop = load32() ;" //1/1920
|
||
"sig_none ; nop = nop(r0, r0) ; r2 = fmul.always(r2, r3);\n"
|
||
"sig_none ; r1 = itof.pm.always(b, b, x_pix, y_pix) ; r0.8c = fmul.always(r1, r2) ;"
|
||
"sig_load_imm ; r2 = load32.always(0x3a72b9d6) ; nop = load32() ;" //1/1080
|
||
"sig_none ; nop = nop(r0, r0) ; r2 = fmul.always(r2, r3);\n"
|
||
"sig_none ; nop = nop.pm(r0, r0) ; r0.8b = fmul.always(r1, r2) ;"
|
||
"sig_small_imm ; nop = nop.pm(r0, r0, nop, 0) ; r0.8a = v8min.always(b, b) ;"
|
||
"sig_small_imm ; nop = nop.pm(r0, r0, nop, 1) ; r0.8d = v8min.always(b, b) ;"
|
||
"sig_none ; tlb_color_all = or.always(r0, r0) ; nop = nop(r0, r0) ;"
|
||
"sig_end ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;"
|
||
"sig_none ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;"
|
||
"sig_unlock_score ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;"
|
||
"\0";
|
||
/**/
|
||
|
||
/**
|
||
//display a color
|
||
char fs_asm_code[] =
|
||
"sig_none ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;"
|
||
"sig_load_imm ; r0 = load32.always(0xffa14ccc) ; nop = load32() ;"
|
||
"sig_none ; tlb_color_all = or.always(r0, r0) ; nop = nop(r0, r0) ;"
|
||
"sig_end ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;"
|
||
"sig_none ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;"
|
||
"sig_unlock_score ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;"
|
||
"\0";
|
||
/**/
|
||
|
||
/**/
|
||
//Varyings are interpolated using (A * (x - x0) + B * (y - y0)) * W + C
|
||
//Hardware calculates (A * (x - x0) + B * (y - y0)) for us for each varying component
|
||
//but we still need to mul by W and add C
|
||
//C is loaded into R5 when we read a varying (to be used in next instruction)
|
||
|
||
//display a varying
|
||
char fs_asm_code[] =
|
||
///r0 = varyingX * W
|
||
"sig_none ; nop = nop(r0, r0, pay_zw, vary) ; r0 = fmul.always(a, b) ;"
|
||
///r2 = r0 + r5 (C)
|
||
///r0 = varyingY * W
|
||
"sig_none ; r2 = fadd.always(r0, r5, pay_zw, vary) ; r0 = fmul.always(a, b) ;"
|
||
///r3 = r0 + r5 (C)
|
||
"sig_none ; r3 = fadd.pm.always(r0, r5) ; r0.8c = v8min.always(r2, r2) ;"
|
||
"sig_none ; nop = nop.pm(r0, r0) ; r0.8b = v8min.always(r3, r3) ;"
|
||
"sig_small_imm ; nop = nop.pm(r0, r0, nop, 0) ; r0.8a = v8min.always(b, b) ;"
|
||
"sig_small_imm ; nop = nop.pm(r0, r0, nop, 1) ; r0.8d = v8min.always(b, b) ;"
|
||
"sig_none ; tlb_color_all = or.always(r0, r0) ; nop = nop(r0, r0) ;"
|
||
"sig_end ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;"
|
||
"sig_none ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;"
|
||
"sig_unlock_score ; nop = nop(r0, r0) ; nop = nop(r0, r0) ;"
|
||
"\0";
|
||
/**/
|
||
|
||
char* asm_strings[] =
|
||
{
|
||
(char*)cs_asm_code, (char*)vs_asm_code, (char*)fs_asm_code, 0
|
||
};
|
||
|
||
VkRpiAssemblyMappingEXT mappings[] = {
|
||
//vertex shader uniforms
|
||
{
|
||
VK_RPI_ASSEMBLY_MAPPING_TYPE_PUSH_CONSTANT,
|
||
VK_DESCRIPTOR_TYPE_MAX_ENUM, //descriptor type
|
||
0, //descriptor set #
|
||
0, //descriptor binding #
|
||
0, //descriptor array element #
|
||
0, //resource offset
|
||
VK_SHADER_STAGE_VERTEX_BIT
|
||
},
|
||
{
|
||
VK_RPI_ASSEMBLY_MAPPING_TYPE_PUSH_CONSTANT,
|
||
VK_DESCRIPTOR_TYPE_MAX_ENUM, //descriptor type
|
||
0, //descriptor set #
|
||
0, //descriptor binding #
|
||
0, //descriptor array element #
|
||
4, //resource offset
|
||
VK_SHADER_STAGE_VERTEX_BIT
|
||
},
|
||
{
|
||
VK_RPI_ASSEMBLY_MAPPING_TYPE_PUSH_CONSTANT,
|
||
VK_DESCRIPTOR_TYPE_MAX_ENUM, //descriptor type
|
||
0, //descriptor set #
|
||
0, //descriptor binding #
|
||
0, //descriptor array element #
|
||
8, //resource offset
|
||
VK_SHADER_STAGE_VERTEX_BIT
|
||
},
|
||
{
|
||
VK_RPI_ASSEMBLY_MAPPING_TYPE_PUSH_CONSTANT,
|
||
VK_DESCRIPTOR_TYPE_MAX_ENUM, //descriptor type
|
||
0, //descriptor set #
|
||
0, //descriptor binding #
|
||
0, //descriptor array element #
|
||
12, //resource offset
|
||
VK_SHADER_STAGE_VERTEX_BIT
|
||
}
|
||
};
|
||
|
||
VkRpiShaderModuleAssemblyCreateInfoEXT shaderModuleCreateInfo;
|
||
shaderModuleCreateInfo.asmStrings = asm_strings;
|
||
shaderModuleCreateInfo.mappings = mappings;
|
||
shaderModuleCreateInfo.numMappings = sizeof(mappings) / sizeof(VkRpiAssemblyMappingEXT);
|
||
|
||
VkResult res = vkCreateShaderModuleFromRpiAssemblyEXT(device, &shaderModuleCreateInfo, 0, &shaderModule);
|
||
assert(shaderModule);
|
||
}
|
||
|
||
|
||
#define VERTEX_BUFFER_BIND_ID 0
|
||
|
||
void CreatePipeline()
|
||
{
|
||
VkPushConstantRange pushConstantRanges[1];
|
||
pushConstantRanges[0].offset = 0;
|
||
pushConstantRanges[0].size = 4 * 4; //4 * 32bits
|
||
pushConstantRanges[0].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
|
||
|
||
VkPipelineLayoutCreateInfo pipelineLayoutCI = {};
|
||
pipelineLayoutCI.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
|
||
pipelineLayoutCI.setLayoutCount = 0;
|
||
pipelineLayoutCI.pushConstantRangeCount = 1;
|
||
pipelineLayoutCI.pPushConstantRanges = &pushConstantRanges[0];
|
||
vkCreatePipelineLayout(device, &pipelineLayoutCI, 0, &pipelineLayout);
|
||
|
||
|
||
VkPipelineShaderStageCreateInfo shaderStageCreateInfo[2] = {};
|
||
|
||
shaderStageCreateInfo[0].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
|
||
shaderStageCreateInfo[0].stage = VK_SHADER_STAGE_VERTEX_BIT;
|
||
shaderStageCreateInfo[0].module = shaderModule;
|
||
shaderStageCreateInfo[0].pName = "main";
|
||
shaderStageCreateInfo[1].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
|
||
shaderStageCreateInfo[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT;
|
||
shaderStageCreateInfo[1].module = shaderModule;
|
||
shaderStageCreateInfo[1].pName = "main";
|
||
|
||
VkVertexInputBindingDescription vertexInputBindingDescription =
|
||
{
|
||
0,
|
||
sizeof(float) * 2 * 2,
|
||
VK_VERTEX_INPUT_RATE_VERTEX
|
||
};
|
||
|
||
VkVertexInputAttributeDescription vertexInputAttributeDescriptions[2] =
|
||
{
|
||
{
|
||
0,
|
||
0,
|
||
VK_FORMAT_R32G32_SFLOAT,
|
||
0
|
||
},
|
||
{
|
||
1,
|
||
0,
|
||
VK_FORMAT_R32G32_SFLOAT,
|
||
sizeof(float) * 2
|
||
}
|
||
};
|
||
|
||
VkPipelineVertexInputStateCreateInfo vertexInputInfo = {};
|
||
vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
|
||
vertexInputInfo.vertexAttributeDescriptionCount = 2;
|
||
vertexInputInfo.pVertexAttributeDescriptions = vertexInputAttributeDescriptions;
|
||
vertexInputInfo.vertexBindingDescriptionCount = 1;
|
||
vertexInputInfo.pVertexBindingDescriptions = &vertexInputBindingDescription;
|
||
|
||
VkPipelineInputAssemblyStateCreateInfo pipelineIACreateInfo = {};
|
||
pipelineIACreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
|
||
pipelineIACreateInfo.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
|
||
|
||
VkViewport vp = {};
|
||
vp.x = 0.0f;
|
||
vp.y = 0.0f;
|
||
vp.width = (float)swapChainExtent.width;
|
||
vp.height = (float)swapChainExtent.height;
|
||
vp.minDepth = 0.0f;
|
||
vp.maxDepth = 1.0f;
|
||
|
||
VkPipelineViewportStateCreateInfo vpCreateInfo = {};
|
||
vpCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
|
||
vpCreateInfo.viewportCount = 1;
|
||
vpCreateInfo.pViewports = &vp;
|
||
|
||
VkPipelineRasterizationStateCreateInfo rastCreateInfo = {};
|
||
rastCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
|
||
rastCreateInfo.polygonMode = VK_POLYGON_MODE_FILL;
|
||
rastCreateInfo.cullMode = VK_CULL_MODE_NONE;
|
||
rastCreateInfo.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
|
||
rastCreateInfo.lineWidth = 1.0f;
|
||
|
||
VkPipelineMultisampleStateCreateInfo pipelineMSCreateInfo = {};
|
||
pipelineMSCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
|
||
|
||
VkPipelineColorBlendAttachmentState blendAttachState = {};
|
||
blendAttachState.colorWriteMask = 0xf;
|
||
blendAttachState.blendEnable = false;
|
||
|
||
VkPipelineColorBlendStateCreateInfo blendCreateInfo = {};
|
||
blendCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
|
||
blendCreateInfo.attachmentCount = 1;
|
||
blendCreateInfo.pAttachments = &blendAttachState;
|
||
|
||
VkPipelineDepthStencilStateCreateInfo depthStencilState = {};
|
||
depthStencilState.depthTestEnable = false;
|
||
depthStencilState.stencilTestEnable = false;
|
||
|
||
VkGraphicsPipelineCreateInfo pipelineInfo = {};
|
||
pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
|
||
pipelineInfo.stageCount = 2;
|
||
pipelineInfo.pStages = &shaderStageCreateInfo[0];
|
||
pipelineInfo.pVertexInputState = &vertexInputInfo;
|
||
pipelineInfo.pInputAssemblyState = &pipelineIACreateInfo;
|
||
pipelineInfo.pViewportState = &vpCreateInfo;
|
||
pipelineInfo.pRasterizationState = &rastCreateInfo;
|
||
pipelineInfo.pMultisampleState = &pipelineMSCreateInfo;
|
||
pipelineInfo.pColorBlendState = &blendCreateInfo;
|
||
pipelineInfo.renderPass = renderPass;
|
||
pipelineInfo.basePipelineIndex = -1;
|
||
pipelineInfo.pDepthStencilState = &depthStencilState;
|
||
pipelineInfo.layout = pipelineLayout;
|
||
|
||
VkResult res = vkCreateGraphicsPipelines(device, VK_NULL_HANDLE, 1, &pipelineInfo, NULL, &pipeline);
|
||
|
||
printf("Graphics pipeline created\n");
|
||
}
|
||
|
||
uint32_t getMemoryTypeIndex(VkPhysicalDeviceMemoryProperties deviceMemoryProperties, uint32_t typeBits, VkMemoryPropertyFlags properties)
|
||
{
|
||
// Iterate over all memory types available for the device used in this example
|
||
for (uint32_t i = 0; i < deviceMemoryProperties.memoryTypeCount; i++)
|
||
{
|
||
if ((typeBits & 1) == 1)
|
||
{
|
||
if ((deviceMemoryProperties.memoryTypes[i].propertyFlags & properties) == properties)
|
||
{
|
||
return i;
|
||
}
|
||
}
|
||
typeBits >>= 1;
|
||
}
|
||
|
||
assert(0);
|
||
}
|
||
|
||
void CreateVertexBuffer()
|
||
{
|
||
unsigned vboSize = sizeof(float) * 2 * 2 * 3; //3 x vec2 x 2
|
||
|
||
VkMemoryRequirements mr;
|
||
|
||
{ //create staging buffer
|
||
VkBufferCreateInfo ci = {};
|
||
ci.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
|
||
ci.size = vboSize;
|
||
ci.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT;
|
||
|
||
VkResult res = vkCreateBuffer(device, &ci, 0, &vertexBuffer);
|
||
|
||
vkGetBufferMemoryRequirements(device, vertexBuffer, &mr);
|
||
|
||
VkMemoryAllocateInfo mai = {};
|
||
mai.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
|
||
mai.allocationSize = mr.size;
|
||
mai.memoryTypeIndex = getMemoryTypeIndex(pdmp, mr.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
|
||
|
||
res = vkAllocateMemory(device, &mai, 0, &vertexBufferMemory);
|
||
|
||
float vertices[] =
|
||
{ // verts texcoords
|
||
-1, -1, 0, 0,
|
||
1, -1, 1, 0,
|
||
0, 1, 0.5, 1
|
||
};
|
||
|
||
void* data;
|
||
res = vkMapMemory(device, vertexBufferMemory, 0, mr.size, 0, &data);
|
||
memcpy(data, vertices, vboSize);
|
||
vkUnmapMemory(device, vertexBufferMemory);
|
||
|
||
res = vkBindBufferMemory(device, vertexBuffer, vertexBufferMemory, 0);
|
||
}
|
||
|
||
printf("Vertex buffer created\n");
|
||
}
|
||
|
||
int main() {
|
||
// Note: dynamically loading loader may be a better idea to fail gracefully when Vulkan is not supported
|
||
|
||
// Create window for Vulkan
|
||
//glfwInit();
|
||
|
||
//glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);
|
||
//glfwWindowHint(GLFW_RESIZABLE, GLFW_FALSE);
|
||
|
||
//window = glfwCreateWindow(WINDOW_WIDTH, WINDOW_HEIGHT, "The 630 line cornflower blue window", nullptr, nullptr);
|
||
|
||
// Use Vulkan
|
||
setupVulkan();
|
||
|
||
mainLoop();
|
||
|
||
cleanup();
|
||
|
||
|
||
return 0;
|
||
}
|